強鹼性是因為季銨鹽(氫氧化銨),氫氧根完全電離,而伯胺、仲胺、叔胺形成的交換基團因為氫氧根不能完全電離,故為弱鹼。
弱鹼性陰樹脂主要用於水處理行業,比如原水含較高有機物,使用強鹼陰樹脂容易中毒的工況中,會選用大孔弱鹼陰樹脂置前,後跟強鹼陰樹脂。
弱鹼陰樹脂也普遍用於食品發酵行業,比如澱粉糖行業,澱粉水解板框過濾,通過活性炭脫色處理後,溶液中含有灰分和有機色素,需要採用離交設備進行脫灰脫色處理,一般為陽床+弱陰床+陽床+弱陰床,或陽+弱陰+弱陰等工藝,也會在最後跟上一個小陽柱調節PH值,這個時候弱陰樹脂主要是去除溶液中的強酸根陰離子(比如硫酸根離子、氯根離子),同時最主要的是對溶液進行脫色處理,因為弱陰樹脂對有機色素的吸附與洗脫能力都很不錯,而強陰樹脂雖然對有機色素吸附能力好,但很難洗脫,並容易導致葡萄糖異構化。
但是現在大部分國內離子交換樹脂生產企業,受迫於環保和生產成本的壓力,都普遍採用了新工藝生產弱鹼陰樹脂,這類新工藝弱鹼樹脂在使用中,物化性能表現不佳,弱鹼陰樹脂一直是爭光的王牌產品,不管是生產工藝的可靠性,還是應用研究的先進性,幾十年來一直穩居國內第一,並且在多種工況應用中,也完全達到並超過國外品牌同類產品。所以很負責任的給您推薦一下,這個產品您可以毫無疑問的選擇爭光。
藉此問題回答之際,呼籲國內離子交換樹脂生產企業同行,將企業發展眼光放長遠一些,尤其是個別企業(在此不方便一一點名),不要為了眼前的蠅頭小利,生產那些偷工減料的產品,市場用戶終究是會漸漸明白性價比的,國家也不會允許你們將三廢如此偷排放的,因為你們的子孫後代終究還是需要這個地球,需要這份空氣,需要一些干凈的水源。
還有也順便敬告廣大用戶,控制采購成本是需要專業技術為基礎的,一味的打壓供應商產品價格,您就不怕搬了石頭砸自己的腳?買的終究沒有賣的精,你那些所謂的節約降低采購成本,是否用專業數據統計過,您的使用成本?離子交換樹脂最大的特點就是可以重復使用,如果在重復使用中,制水量不足,再生頻率變高,酸鹼耗水耗以及人工成本是否一一統計了?
最後呼籲國家廢除現有招投標制度,因為現有的招投標法,已經嚴重被濫用,集體拍板也就是集體承擔責任,其實也意味著沒有人會去承擔責任。國內市場持續十多年的低價惡性競爭,所謂的層層審批制度,這類制度成為了大眾創新萬眾創業的攔路虎絆腳石,因為一些創新技術是需要終端市場去嘗試的,其中必然存在失敗的概率,而現如今,反腐讓您怠工,招投標讓您不願去學習研究技術,長久如此下去,您的不進步,讓我失去了為您提供服務的同時,也喪失了國內整個實體經濟的良性有效持續發展的機會。
2. 離子交換樹脂的工作原理
離子交換樹脂原理即是離子交換樹把溶液中的鹽分脫離出來的過程:
離子交換樹脂作用環境中的水溶液中,含有的金屬陽離子(Na+、Ca2+、 K+、 Mg2+、Fe3+等)與陽離子交換樹脂(含有的磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基團,在水中易生成H+離子)上的H+進行離子交換,使得溶液中的陽離子被轉移到樹脂上,而樹脂上的H+交換到水中,(即為陽離子交換樹脂原理)。
水溶液中的陰離子(Cl-、HCO3-等)與陰離子交換樹脂(含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亞胺基(—NH2)等鹼性基團,在水中易生成OH-離子)上的OH-進行交換,水中陰離子被轉移到樹脂上,而樹脂上的OH-交換到水中,(即為陰離子交換樹脂原理)。而H+與OH-相結合生成水,從而達到脫鹽的目的。
(2)陰離子交換樹脂表面帶負電嗎擴展閱讀:
離子交換樹脂使用方法:
1、預選。離子交換樹脂的粒度一般控制在20-35目,有些可達到50目,因此在使用前要先乾燥,粉碎,過篩,通常乾燥時在烘箱中進行,亦可在裝有五氧化二磷、氧化鈣或者濃硫酸的乾燥器中進行,粉碎時不要分得過細,否則影響實驗收率。
2、預處理。強鹼性離子交換樹脂應先用20倍樹脂體積的4%氫氧化鈉水溶液處理,然後用10倍體積的水洗,再用10倍量4%鹽酸處理,最後用蒸餾水洗至中性,然後將氯型轉化成OH型,再轉化成氯型,最後用10倍4%氫氧化鈉水溶液處理。弱鹼性離子交換樹脂處理時只需用10倍量蒸餾水洗即可,不必洗至中性。
3、裝柱。將處理好的樹脂至於燒杯中,加水充分攪拌除掉氣泡,靜置幾分鍾待樹脂大部分沉降後,傾去上層泥狀顆粒;反復操作直至上層液澄清後,即可裝柱。注意要在柱子底部放1cm後的玻璃絲,用玻璃棒將其壓平,將樹脂倒入柱子中,還要注意防止氣泡產生。
4、樹脂交換。將樣品配製成一定濃度的水溶液,以適當流速通過柱子,亦可將樣品溶液反復通過柱子,直到成分交換完全。用顯色法檢驗成分是否交換徹底。
5、樹脂洗脫。注意親和力弱的成分先被洗下來,常用的離子交換樹脂洗脫劑有強酸、強鹼、鹽類、不同pH緩沖溶液、有機溶液等,可選擇梯度洗脫或者單一濃度洗脫。
6、樹脂再生。
3. 陽離子交換樹脂與陰離子交換樹脂的區別
區分為陽離子樹脂和陰離子樹脂兩大類,它們可分別與溶液中的陽離子和陰離子進行離子交換。陽離子樹脂又分為強酸性和弱酸性兩類,陰離子樹脂又分為強鹼性和弱鹼性兩類 (或再分出中強酸和中強鹼性類)。
離子交換樹脂對溶液中的不同離子有不同的親和力,對它們的吸附有選擇性。各種離子受樹脂交換吸附作用的強弱程度有一般的規律,但不同的樹脂可能略有差異。主要規律如下: (1) 對陽離子的吸附 高價離子通常被優先吸附,而低價離子的吸附較弱。在同價的同類離子中,直徑較大的離子的被吸附較強。一些陽離子被吸附的順序如下: Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+ (2) 對陰離子的吸附 強鹼性陰離子樹脂對無機酸根的吸附的一般順序為: SO42-> NO3- > Cl- > HCO3- > OH- 弱鹼性陰離子樹脂對陰離子的吸附的一般順序如下: OH-> 檸檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3- (3) 對有色物的吸附 糖液脫色常使用強鹼性陰離子樹脂,它對擬黑色素(還原糖與氨基酸反應產物)和還原糖的鹼性分解產物的吸附較強,而對焦糖色素的吸附較弱。這被認為是由於前兩者通常帶負電,而焦糖的電荷很弱。 通常,交聯度高的樹脂對離子的選擇性較強,大孔結構樹脂的選擇性小於凝膠型樹脂。這種選擇性在稀溶液中較大,在濃溶液中較小。
4. 離子交換樹脂如何活化
一、本方法適用於用離子交換法處理鍍鉻廢水時陰、陽離子交換樹脂受污染時的活化
二、陰離子交換樹脂,可採用體外活化。活化液用量為樹脂體積的1-2倍。活化液用濃度為2.0-2.5MOL/L硫酸與亞硫酸氫鈉配製,亞硫酸氫鈉含量對凝膠型強鹼陰樹脂為45G/L,對大孔型弱鹼陰樹脂為28G/L,活化時,樹脂在活化液中浸泡一夜
三、陽離子交換樹脂,可在體內活化活化.液用量為樹脂體積的2倍.活化液用濃度為3.0MOL/L的鹽酸配製,以1.2-4.0M/H的流速通過樹脂層,再採用體積為樹脂體積的1-2倍、濃度為2.0-2.5MOL/L的硫酸浸泡3H以上
離子交換樹脂的工作原理及優缺點分析將離子性官能基結合在樹脂(有機高分子)上的材料,稱之為 「離子交換樹脂」。 樹脂表面帶有磺酸 (sulfonic acid) 者,稱為陽離子交換樹脂,而帶有四級氨離子的,則為陰離子交換樹脂。由於離子交換樹脂可以有效去除水中陰陽離子,所以經常使用於純水、超純水的製造程序中。(見下圖)離子交換樹脂上的官能基雖可去除原水 (Feed water) 中的離子,但隨著使用一段時間之後,因官能基的飽和而導致去離子效率的降低,引發水質劣化的缺點。此外,離子交換樹脂本身也是有機物質,使用中會受到氧化分解、機械性破裂、擔體流出而造成有機物質的溶出。此外,帶有電荷的有機物質也會受到離子交換樹脂的吸附,使離子交換樹脂很容易受到有機物質的污染 (Fouling)。而有些微生物由於菌體表面帶著負電,也會被陽離子交換樹脂所吸附,樹脂表面因而成為微生物的繁殖場地,造成純水的污染。在此同時,微生物所產生的代謝產物也會成為有機物質的污染來源。這些都是使用離子交換樹脂時,引發水質劣化而不可不注意的地方。通常失去離子去除能力(飽和)的離子交換樹脂,雖然可以經由酸鹼葯劑的作用來再生,達到重復使用的目的,但若因為有機物質的吸附(污染)而造成效率不好時,樹脂的去除性能就會降低。此外,依再生用化學葯劑的品質不同也會有離子交換樹脂本身被污染的風險。因此,超純水系統所使用的離子交換樹脂幾乎是不能進行再生處理的。
5. 陽離子交換樹脂和陰離子交換樹脂的區別和用法
陽離子交換樹脂:
陽離子交換樹脂是在交聯為7%的苯乙烯,二乙烯共聚體上帶有磺酸基(-SO3H)的陽離子交換樹脂,是一種磺酸化苯乙烯系凝膠型強酸性陽離子交換樹脂。它在鹼性、中性、甚至酸性介質中都顯示離子交換功能。本產品具有交換容量高、交換速度快、機械強度好等特點。主要用於鍋爐硬水軟化和純水制備,也用於濕法冶金、製糖、制葯、味精行業,以及作為催化劑和脫水劑。
陽離子交換樹脂含弱酸性基團,如羧基-COOH,能在水中離解出H+ 而呈酸性。樹脂離解後餘下的負電基團,如R-COO-(R為碳氫基團),能與溶液中的其他陽離子吸附結合,從而產生陽離子交換作用。這種樹脂的酸性即離解性較弱,在低pH下難以離解和進行離子交換,只能在鹼性、中性或微酸性溶液中(如pH5~14)起作用。這類陽離子交換樹脂亦是用酸進行再生(比強酸性樹脂較易再生)。
陰離子交換樹脂:
陰離子交換樹脂含有大量的強酸性基團,如磺酸基-SO3H,容易在溶液中離解出H+,故呈強酸性。樹脂離解後,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子。這兩個反應使樹脂中的H+與溶液中的陽離子互相交換。強酸性樹脂的離解能力很強,在酸性或鹼性溶液中均能離解和產生離子交換作用。
陽離子交換樹脂在使用一段時間後,要進行再生處理,即用化學品使離子交換反應以相反方向進行,使陽離子交換樹脂的功能基團回復原來狀態,以供再次使用。如上述的陰離子樹脂是用強酸進行再生處理,此時樹脂放出被吸附的陽離子,再與H+結合而恢復原來的組成。
6. 陰離子交換樹脂里的季胺基到底是怎麼回事……-N(CH3)3OH里氮的化學鍵是怎樣結合的怎麼還會多出電子
那個氫氧根是復帶負號的,制連在整體的最外面與碳相連但不構成化學鍵。還有氮本身連三個鍵,還有一對未用電子對,所以你寫的氮上化學鍵為那對電子,且氮上要有正號。如-N (cH3)3OH- 看不明白看有機化學
7. 陰陽離子交換樹脂的工作原理
離子交換樹脂原理即是離子交換樹把溶液中的鹽分脫離出來的過程:
離子交換樹脂作用環境中的水溶液中,含有的金屬陽離子(Na+、Ca2+、 K+、 Mg2+、Fe3+等)與陽離子交換樹脂(含有的磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基團,在水中易生成H+離子)上的H+進行離子交換,使得溶液中的陽離子被轉移到樹脂上,而樹脂上的H+交換到水中,(即為陽離子交換樹脂原理)。
水溶液中的陰離子(Cl-、HCO3-等)與陰離子交換樹脂(含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亞胺基(—NH2)等鹼性基團,在水中易生成OH-離子)上的OH-進行交換,水中陰離子被轉移到樹脂上,而樹脂上的OH-交換到水中,(即為陰離子交換樹脂原理)。而H+與OH-相結合生成水,從而達到脫鹽的目的。
(7)陰離子交換樹脂表面帶負電嗎擴展閱讀:
離子交換樹脂使用方法:
1、預選。離子交換樹脂的粒度一般控制在20-35目,有些可達到50目,因此在使用前要先乾燥,粉碎,過篩,通常乾燥時在烘箱中進行,亦可在裝有五氧化二磷、氧化鈣或者濃硫酸的乾燥器中進行,粉碎時不要分得過細,否則影響實驗收率。
2、預處理。強鹼性離子交換樹脂應先用20倍樹脂體積的4%氫氧化鈉水溶液處理,然後用10倍體積的水洗,再用10倍量4%鹽酸處理,最後用蒸餾水洗至中性,然後將氯型轉化成OH型,再轉化成氯型,最後用10倍4%氫氧化鈉水溶液處理。弱鹼性離子交換樹脂處理時只需用10倍量蒸餾水洗即可,不必洗至中性。
3、裝柱。將處理好的樹脂至於燒杯中,加水充分攪拌除掉氣泡,靜置幾分鍾待樹脂大部分沉降後,傾去上層泥狀顆粒;反復操作直至上層液澄清後,即可裝柱。注意要在柱子底部放1cm後的玻璃絲,用玻璃棒將其壓平,將樹脂倒入柱子中,還要注意防止氣泡產生。
4、樹脂交換。將樣品配製成一定濃度的水溶液,以適當流速通過柱子,亦可將樣品溶液反復通過柱子,直到成分交換完全。用顯色法檢驗成分是否交換徹底。
5、樹脂洗脫。注意親和力弱的成分先被洗下來,常用的離子交換樹脂洗脫劑有強酸、強鹼、鹽類、不同pH緩沖溶液、有機溶液等,可選擇梯度洗脫或者單一濃度洗脫。
6、樹脂再生。
8. 陰離子交換樹脂的原理
離子交換是帶電粒子或離子的可逆交換與相同電荷的交換。當存在於不溶性陰陽離子專交換樹脂基質上屬的離子有效地與周圍溶液中存在的類似電荷的離子交換位置時,會發生這種情況。
陰陽離子交換樹脂以這種方式起作用,因為它的官能團基本上是固定的離子,它們永久地結合在樹脂的聚合物基質中。這些帶電離子將容易與相反電荷的離子結合,這些離子通過施加抗衡離子溶液而被輸送。這些反離子將繼續與官能團結合,直至達到平衡。
混合離子交換器簡稱為混床。是指在一個交換容器當中,把陰陽離子交換樹脂按照一定的比例進行填裝,在混合均勻的狀態下,進行陰陽離子交換,從而去除水中的鹽分,達到出水的水質≥5MΩcm。去離子的目的是想將溶解在水當中的無機離子排除出去,與硬水通過軟化水設備軟化是一樣道理,也是利用離子交換樹脂的原理。使用兩種樹脂,陰陽離子樹脂。陽離子交換樹脂使用氫離子來交換陽離子,而陰離子交換使用氫氧根離子來交換陽離子,氫離子與氫氧根離子相互結合成為中性的水,具體的反應的方程式如下:
M+x+xH-Re→M-M-Rex+xH+1
A-z+zOH-Re→A-Rez+zOH-1