Ⅰ 交換吸附的作用原理
簡單的說句是陰陽離子的結合,因此植物吸收礦物質元素都是以離子的形式吸收:
陰————陽
Ⅱ 如何解釋離子交換過程中的穿透曲線和吸附過程
圓錐曲線的解題技巧一、常規七大題型:(1)中點弦問題具有斜率的弦中點問題,常用設而不求法(點差法):設曲線上兩點為(x1,y1),(x2,y2),代入方程,然後兩方程相減,再應用中點關系及斜率公式(當然在這里也要注意斜率不存在的請款討論),消去四個參數。xy0x2y2如:(1)2?2?1(a?b?0)與直線相交於A、B,設弦AB中點為M(x0,y0),則有0?k?0。22ababxy0x2y2(2)2?2?1(a?0,b?0)與直線l相交於A、B,設弦AB中點為M(x0,y0)則有0?k?0aba2b2(3)y2=2px(p>0)與直線l相交於A、B設弦AB中點為M(x0,y0),則有2y0k=2p,即y0k=p.y2典型例題給定雙曲線x?過A(2,1)的直線與雙曲線交於兩點P1及P2,求線段P1P2?1。22的中點P的軌跡方程。(2)焦點三角形問題橢圓或雙曲線上一點P,與兩個焦點F1、F2構成的三角形問題,常用正、餘弦定理搭橋。x2y2典型例題設P(x,y)為橢圓2?2?1上任一點,F1(?c,0),F2(c,0)為焦點,?PF1F2??,ab?PF2F1??。(1)求證離心率e?sin(???);sin??sin?3(2)求|PF1|?PF2|的最值。3(3)直線與圓錐曲線位置關系問題直線與圓錐曲線的位置關系的基本方法是解方程組,進而轉化為一元二次方程後利用判別式、根與系1/27頁數的關系、求根公式等來處理,應特別注意數形結合的思想,通過圖形的直觀性幫助分析解決問題,如果直線過橢圓的焦點,結合三大麴線的定義去解。典型例題拋物線方程y2?p(x?1)(p?0),直線x?y?t與x軸的交點在拋物線准線的右邊。(1)求證:直線與拋物線總有兩個不同交點(2)設直線與拋物線的交點為A、B,且OA⊥OB,求p關於t的函數f(t)的表達式。(4)圓錐曲線的相關最值(范圍)問題圓錐曲線中的有關最值(范圍)問題,常用代數法和幾何法解決。若命題的條件和結論具有明顯的幾何意義,一般可用圖形性質來解決。若命題的條件和結論體現明確的函數關系式,則可建立目標函數(通常利用二次函數,三角函數,均值不等式)求最值。(1),可以設法得到關於a的不等式,通過解不等式求出a的范圍,即:「求范圍,找不等式」。或者將a表示為另一個變數的函數,利用求函數的值域求出a的范圍;對於(2)首先要把△NAB的面積表示為一個變數的函數,然後再求它的最大值,即:「最值問題,函數思想」。最值問題的處理思路:1、建立目標函數。用坐標表示距離,用方程消參轉化為一元二次函數的最值問題,關鍵是由方程求x、y的范圍;2、數形結合,用化曲為直的轉化思想;3、利用判別式,對於二次函數求最值,往往由條件建立二次方程,用判別式求最值;4、藉助均值不等式求最值。典型例題已知拋物線y2=2px(p>0),過M(a,0)且斜率為1的直線L與拋物線交於不同的兩點A、B,|AB|≤2p(1)求a的取值范圍;(2)若線段AB的垂直平分線交x軸於點N,求△NAB面積的最大值。(5)求曲線的方程問題1.曲線的形狀已知--------這類問題一般可用待定系數法解決。典型例題已知直線L過原點,拋物線C的頂點在原點,焦點在x軸正半軸上。若點A(-1,0)和點B(0,8)關於L的對稱點都在C上,求直線L和拋物線C的方程。2/27頁2.曲線的形狀未知-----求軌跡方程典型例題已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等於常數?(?>0),求動點M的軌跡方程,並說明它是什麼曲線。(6)存在兩點關於直線對稱問題在曲線上兩點關於某直線對稱問題,可以按如下方式分三步解決:求兩點所在的直線,求這兩直線的交點,使這交點在圓錐曲線形內。(當然也可以利用韋達定理並結合判別式來解決)x2y2典型例題已知橢圓C的方程??1,試確定m的取值范圍,使得對於直線y?4x?m,橢圓C43上有不同兩點關於直線對稱(7)兩線段垂直問題圓錐曲線兩焦半徑互相垂直問題,常用k1·k2?y1·y2??1來處理或用向量的坐標運算來處理。x1·x22典型例題已知直線l的斜率為k,且過點P(?2,0),拋物線C:y?4(x?1),直線l與拋物線C有兩個不同的交點(如圖)。(1)求k的取值范圍;(2)直線l的傾斜角?為何值時,A、B與拋物線C的焦點連線互相垂直。四、解題的技巧方面:3/27頁在教學中,學生普遍覺得解析幾何問題的計算量較大。事實上,如果我們能夠充分利用幾何圖形、韋達定理、曲線系方程,以及運用「設而不求」的策略,往往能夠減少計算
Ⅲ 什麼是表面吸附作用,離子交換吸附作用和專屬吸附作用
表面吸附作用來指的是在固體源表面有吸附水中溶解及膠體物質的能力,比表面積很大的活性炭等具有很高的吸附能力,可用作吸附劑。吸附可分為物理吸附和化學吸附。如果吸附劑與被吸附物質之間是通過分子間引力(即范德華力)而產生吸附,稱為物理吸附;如果吸附劑與被吸附物質之間產生化學作用,生成化學鍵引起吸附,稱為化學吸附。離子交換實際上也是一種吸附。物理吸附和化學吸附並非不相容的,而且隨著條件的變化可以相伴發生,但在一個系統中,可能某一種吸附是主要的。
Ⅳ 離子交換柱的工作原理是什麼
離子復交換柱的原理制
採用離子交換方法,可以把水中呈離子態的陽、陰離子去除,以氯化鈉(NaCl)代表水中無機鹽類,水質除鹽的基本反應可以用下列方程式表達:
1、陽離子交換樹脂:R—H+Na+→R-Na+H+
2、陰離子交換樹脂:R—OH+CL-→R-CL+OH+
陽、陰離子交換樹脂總的反應式即可寫成:
RH+ROH+NaCL—RNa+RCL+H2O
由此可看出,水中的Nacl已分別被樹脂上的H+和OH-所取代,而反應生成物只有H2O,故達到了去除水中鹽的作用。
3、混合離子交換柱(混床):混床是裝陽、陰樹脂按一定比例(一般為1:2,以便陽、陰樹脂同時達到交換終點而同時再生)裝入混合柱而成,實際上它組合成了水中的H+和OH-立即生成電離度很小的水分子(H2O),幾乎不存在陽床或陰床交換時產生的逆交換現象,故可以使交換反應進行得十分徹底,因而混合床的出水水質優於陽、陰床串聯組成的復床所能達到的水質,能製取純度相當高的成品水。
Ⅳ 離子交換樹脂吸附的原理
離子交換樹脂是一類具有離子交換功能的高分子材料。在溶液中它能將本身的離子與溶液中的同號離子進行交換。按交換基團性質的不同,離子交換樹脂可分為陽離子交換樹脂和陰離子交換樹脂兩類。
陽離子交換樹脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基團,其中的氫離子能與溶液中的金屬離子或其他陽離子進行交換。例如苯乙烯和二乙烯苯的高聚物經磺化處理得到強酸性陽離子交換樹脂,其結構式可簡單表示為R—SO3H,式中R代表樹脂母體,其交換原理為 2R—SO3H+Ca2+——(R—SO3)2Ca+2H+
這也是硬水軟化的原理。
陰離子交換樹脂含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亞胺基(—NH2)等鹼性基團。它們在水中能生成OH-離子,可與各種陰離子起交換作用,其交換原理為
R—N(CH3)3OH+Cl- ——R—N(CH3)3Cl+OH-
由於離子交換作用是可逆的,因此用過的離子交換樹脂一般用適當濃度的無機酸或鹼進行洗滌,可恢復到原狀態而重復使用,這一過程稱為再生。陽離子交換樹脂可用稀鹽酸、稀硫酸等溶液淋洗;陰離子交換樹脂可用氫氧化鈉等溶液處理,進行再生。
離子交換樹脂的用途很廣,主要用於分離和提純。例如用於硬水軟化和製取去離子水、回收工業廢水中的金屬、分離稀有金屬和貴金屬、分離和提純抗生素等。
Ⅵ 將四種核苷酸吸附於陰離子交換柱上時,應將溶液調到什麼 ph
① 電泳分離4種核苷酸時應取pH3.5 的緩沖液,在該pH時,這4種單核苷酸之間所帶負電荷版差異較大權,它們都向正極移動,但移動的速度不同,依次為:UMP>GMP>AMP>CMP;
② 應取pH8.0,這樣可使核苷酸帶較多負電荷,利於吸附於陰離子交換樹脂柱。雖然pH 11.4時核苷酸帶有更多的負電荷,但pH過高對分離不利。
③ 當不考慮樹脂的非極性吸附時,根據核苷酸負電荷的多少來決定洗脫速度,則洗脫順序為CMP>AMP> GMP > UMP,但實際上核苷酸和聚苯乙烯陰離子交換樹脂之間存在著非極性吸附,嘌呤鹼基的非極性吸附是嘧啶鹼基的3倍。靜電吸附與非極性吸附共同作用的結果使洗脫順序為:CMP> AMP > UMP >GMP。
Ⅶ 什麼是吸附柱吸附柱按什麼分類吸附柱的作用是什麼
吸附陰或陽離子的一種裝置,按裡面所裝的樹脂分類,也有按柱的形式分類
Ⅷ 離子交換柱的工作原理
離子交換柱的工作原理:
採用離子交換方法,可以把水中呈離子態的陽、陰離子去除。
以氯化鈉(NaCl)代表水中無機鹽類,水質除鹽的基本反應可以用下列方程式表達:
1、陽離子交換樹脂:R—H+Na+→R-Na+H+
2、陰離子交換樹脂:R—OH+CL-→R-CL+OH+
陽、陰離子交換樹脂總的反應式即可寫成:
RH+ROH+NaCL—RNa+RCL+H2O
由此可看出,水中的Nacl已分別被樹脂上的H+和OH-所取代,而反應生成物只有H2O,故達到了去除水中鹽的作用。
離子交換柱(ion exchange column)是用來進行離子交換反應的柱狀壓力容器。充填有離子交換樹脂的細長管柱。可由玻璃、不銹鋼、有機玻璃等不被所用的流動相腐蝕的材料製成。離子交換柱(混床)的分類:混床按再生方式分可分為體內再生混床、體外再生混床、陰樹脂外移再生混床三種。
離子交換柱的分類:
混床按再生方式分可分為體內再生混床、體外再生混床、陰樹脂外移再生混床三種。
1、體外再生混床適合小流量、對環保有嚴格要求的企業。但由於體外再生式混床配套設備多,操作復雜,現在已很少使用。
2、體內再生混床和陰樹脂外移再生混床適合大流量,有專門的水處理操作人員及廢水處理的場合。體內再生混床在運行及整個再生過程均在混床內進行,再生時樹脂不移出設備以外,且陽、陰樹脂同時再生,因此所需附屬設備少,操作簡便。
3、陰樹脂外移再生混床:陰樹脂外移再生式混合床及其配套的陰樹脂再生柱基本構造與小型逆流再生固定床大致相同,陰樹脂再生柱厚度較混合床小,所需的膨脹高度為樹脂層高度的50%~60%,故再生柱可較低,但一般為統一起見做成與混合床相同。
Ⅸ 根部離子交換吸附原理
根系吸收礦質的過程
1.離子被吸附在根系細胞表面
Ø根部細胞呼吸作用放出CO2和H2O。CO2溶於水生成H2CO3, H2CO3能解離出H+和HCO3-離子,這些離子同土壤溶液和土壤膠粒上吸附的離子交換,如K+、Cl-、NCO3-等進行交換,使土壤中的離子被吸附到根表面。
Ø離子交換按「同荷等價」的原理進行,即陽離子只同陽離子交換,陰離子只能同陰離子交換,而且價數必須相等。
Ø根系還可分泌出一些檸檬酸、蘋果酸等有機酸來溶解一些難溶性鹽類,並進一步加以吸收。岩石縫中生長的樹木、岩石表面的地衣等植物就是通過這種方式來獲取礦質營養的。
http://jpkc.yzu.e.cn/course/zhwshl/nljx/sfja/sfjafile/chap3-2.files/frame.htm#slide0100.htm
Ⅹ 離子交換樹脂的吸附選擇
離子交換樹脂的吸附交換原理:
樹脂本身的離子內一般是低價離子,所以樹脂在與水接觸時,根據樹脂的容吸附選擇性,會將水中的高價離子吸附,將低價離子釋放,而這些被釋放的低價離子會與水中的其他離子結合,成為無害的物質,而在實際使用的過程中,經常都是將樹脂轉化為其他的離子形式進行使用,比如一般陽離子交換樹脂會轉化為鈉型樹脂再進行使用,從而達到軟化水的目的。
離子交換樹脂的吸附順序:
1、離子交換樹脂對陽離子的吸附順序:
Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
2、強鹼性陰離子交換樹脂對陰離子的吸附順序:
SO42- > NO3- > Cl- > HCO3- > OH-
3、弱鹼性陰離子交換樹脂對陰離子的吸附順序:
OH- > 檸檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-