A. 納濾膜壓力應該如何掌控
耐高壓納濾膜一般來情況下工作壓源力范圍在0.1~0.6MPa,但是在分離不同分子量物質時,需要選用不同型號的膜元件,其操作壓力也有一定區別。如果膜殼屬於塑料材質,納濾膜耐壓強度小於0.3MPa,此時膜元件工作壓力需要控制在0.2MPa,膜兩側壓差不能超過0.1MPa。
當耐高壓納濾膜壓力達到0.6MPa,此時,耐高壓納濾膜壓力可達到0.3MPa 壓強,此時膜元件內外兩側壓力差不能超過0.3MPa 。在控制工作壓力時除了依據膜及外殼耐壓強度外,還要考慮膜的壓密性及膜抗污染能力,壓力越高透水量越大,但是如果有大量污染物質堆積,會導致膜阻力增大,從而影響透水速率。如果膜孔徑堵塞,此時需要將壓力調低。
耐高壓納濾膜壓力降低是指溶液進口處壓力與出口壓力之間的差。壓力情況與供水量、流速等因素有關聯。納濾膜運行壓力不夠,會直接影響水處理效果。
B. 納濾膜為什麼可以在較低的操作壓力條件下實現較高的脫鹽率
應用納濾膜對溶液中的溶質進行分離時,它的截留率會受到一些因素回的影響,從而呈現出不同的變化答規律,對這個規律進行詳細的了解有利於更好的應用納濾膜的分離性能。
這里我們將主要針對納濾膜在對溶液進行分離的過程中,其根據處理溶質的不同所呈現的一些變化規律做以下詳細介紹:
一、若保持系統的壓力恆定,那麼納濾膜的截留率將會隨著溶液濃度的增加而降低。
二、這種膜的截留率與溶質的摩爾質量變化成正比,當摩爾質量減少時,那麼截留率也將隨之降低。
三、如果溶液的濃度保持恆定時,那麼膜的截留率將同其兩側壓差變化形成正比,壓差降低將導致截留率也隨之下降。
四、對於溶液中一些常見的陰離子,膜的截留率將按照硝酸根離子、氯離子、氫氧離子、硫酸離子的順序依次升高。
五、對於溶液中一些常見的陽離子,膜的截留率將按照氫離子、鈉離子、鉀離子、鈣離子、鎂離子、銅離子的順序依次升高。
C. 納濾膜操作壓力一般為多少
在納濾過程中操作壓力一般低於1.0兆帕,故也稱為低壓滲透。操作壓力降低則意味著對系統動力設備要求的降低,這對於降低整個分離系統的設備投資是有利的。
納濾 ( NF,Nanofiltration)是一種介於反滲透和超濾之間的壓力驅動膜分離過程,納濾膜的孔內徑范圍在幾個納米左右。與容其他壓力驅動型膜分離過程相比,出現較晚。它的出現可追溯到70年代末J.E. Cadotte的NS-3 0 0膜的研究,之後,納濾發展得很快,膜組器於80年代中期商品化。納濾膜大多從反滲透膜衍化而來,如CA、CTA膜、芳族聚醯胺復合膜和磺化聚醚碸膜等。但與反滲透相比,其操作壓力更低,因此納濾又被稱作「低壓反滲透」或「疏鬆反滲透」( Loose RO )。
E. 納濾膜操作壓力一般為多少
操作壓力。在使用復過程中,維持和提制高操作壓力有利於提高透水率,並且由於膜被壓密,鹽的透過率會減小。但操作壓力超出一定極限時,由於膜壓實變形嚴重,會導致膜的透水能力衰退和膜的老化。因此,應根據實際處理料液和所選納濾膜的耐壓性能,選擇適當的運行操作壓力。
F. 請比較說明微濾,超濾,納濾和反滲透等四種常用膜分離技術的異同點
微濾microfiltration以壓力為驅動力,分離0.1-1微米的微粒的過程,簡稱為MF
超濾ultrafiltration以壓力差為動力,膜孔徑約0.001-0.2微米的物理篩分過程,簡稱為UF
1,微濾和超濾同屬於微孔膜范疇,微孔過濾是一種物理篩分過程,其功能在於截留分子量為幾百至幾百萬的物質,包括大分子有機物,微生物等,而不是以脫鹽為目的。
2,微孔膜的孔徑為一個范圍值:微濾在0.1-1微米,超濾為0.001-0.2微米
3,在學術領域,微濾膜的過濾精度一般用孔徑表示,而超濾的過濾精度一般用切割分子量來表示
4,微濾和超濾的過程均以壓力為驅動力,用於溶液體系中的物質分離。
5,膜的材料分為有機高分子和無機高分子材料。
納濾:nanofiltration以壓力為驅動力,用於脫除二價及二價以上的多價離子和分子量200以上有機物的膜分離過程,簡稱為NF
1, 納濾技術是繼反滲透後出現的一種新的分離技術,其分離機理基本和反滲透一致。
2, 納濾理論精度為0.001-0.005微米,略大於反滲透,因此所需工作壓力低於反滲透,早期被稱為「鬆散反滲透」
3, 納濾的作用在於去除二價及二價以上離子和分子量200以上的物質,對一價離子的去除率較低,其綜合脫鹽率低於反滲透
反滲透reverse
osmosis在膜的進水一側施加比溶液滲透壓高的外界壓力,只允許溶液中水和某些組分選擇性透過,其他物質不能透過而被截留在表面的過程,簡稱RO
1,反滲透的概念始於滲透現象,當把只允許水透過的高分子半透膜作為介質,兩側分別是鹽水和純水時,由於純水測水的濃度高於鹽水測的濃度,純水將向鹽水側擴散透過,這種濃度差異導致的遷移過程,就是滲透,他是自然界中在生物體內存在的一個普遍現象。
2,反滲透是一種由人類創造力產生的非自然現象或一種水溶液分離技術,其原理是通過施加機械外壓,克服濃度差導致的逆向遷移的過程。
3, 反滲透僅適用於液相體系(水溶液體系)中溶質和溶劑的分離,在凈水器中運用較多。
4, 反滲透現象必須在外界壓力作用下發生,且壓力必須高於水溶液的滲透壓。
G. 超濾、微濾、納濾的過濾標準是多少
1.超濾膜(UF):過濾精度在0.001-0.1微米。是一種利用壓差的膜法分離技術,可濾除水中的鐵銹、泥沙、懸浮物、膠體、細菌、大分子有機物等有害物質,並能保留對人體有益的一些礦物質元素。是礦泉水、山泉水生產工藝中的核心部件。超濾工藝中水的回收率高達95%以上,並且可方便的實現沖洗與反沖洗,不易堵塞,使用壽命相對較長。
2.微濾(MF):過濾精度一般在0.1-50微米,常見的各種PP濾芯,活性碳濾芯,陶瓷濾芯等都屬於微濾范疇,用於簡單的粗過濾,過濾水中的泥沙、鐵銹等大顆粒雜質,但不能去除水中的細菌等有害物質。濾芯通常不能清洗,為一次性過濾材料,需要經常更換。① PP棉芯:一般只用於要求不高的粗濾,去除水中泥沙、鐵銹等大顆粒物質。② 活性碳:可以消除水中的異色和異味,但是不能去除水中的細菌,對泥沙、鐵銹的去除效果也很差。③ 陶瓷濾芯:最小過濾精度也只0.1微米,通常流量小,不易清洗。
3.納濾(NF):過濾精度介於超濾和反滲透之間,脫鹽率比反滲透低,也是一種需要加電、加壓的膜法分離技術,水的回收率較低。也就是說用納濾膜制水的過程中,一定會浪費將近30%的自來水。這是一般家庭不能接受的。一般用於工業純水製造。
4.反滲透(RO):過濾精度為0.0001微米左右,可濾除水中的幾乎一切的雜質(包括有害的和有益的),只能允許水分子通過。一般用於純凈水、工業超純水、醫葯超純水的製造。反滲透技術需要加壓、加電,流量小,水的利用率低,不適合大量生活飲用水的凈化。
H. 納濾的介紹
納濾 是一種介於反滲透和超濾之間的壓力驅動膜分離過程,納濾膜的孔徑范圍在幾內個納米左右。與其他容壓力驅動型膜分離過程相比,出現較晚。它的出現可追溯到70年代末J.E. Cadotte的NS-3 0 0膜的研究,之後,納濾發展得很快,膜組器於80年代中期商品化。納濾膜大多從反滲透膜衍化而來,如CA、CTA膜、芳族聚醯胺復合膜和磺化聚醚碸膜等。納濾(NF)用於將相對分子質量較小的物質,如無機鹽或葡萄糖、蔗糖等小分子有機物從溶劑中分離出來。納濾又稱為低壓反滲透,是膜分離技術的一種新興領域,其分離性能介於反滲透和超濾之間,允許一些無機鹽和某些溶劑透過膜,從而達到分離的效果1。
I. 工業用納濾膜過濾有哪些幾種方式
納濾是一種特殊而又很有前途的分離膜品種,它因能截留物質的大小約為1納米(0.001微米)而得名,納濾的操作區間介於超濾和反滲透之間,它截留有機物的分子量大約為200~400左右,截留溶解性鹽的能力為20~98%之間,對單價陰離子鹽溶液的脫除率低於高價陰離子鹽溶液,如氯化鈉及氯化鈣的脫除率為20~80%,而硫酸鎂及硫酸鈉的脫除率為90~98%。納濾膜一般用於去除地表水的有機物和色度,脫除井水的硬度及放射性鐳,部分去除溶解性鹽,濃縮食品以及分離葯品中的有用物質等,納濾膜運行壓力一般為3.5~16bar。
納濾
納濾與反滲透沒有明顯的界限。納濾膜對溶解性鹽或溶質不是完美的阻擋層,這些溶質透過納濾膜的高低取決於鹽份或溶質及納濾膜的種類,透過率越低,納濾膜兩側的滲透壓就越高,也就越接近反滲透過程,相反,如果透過率越高,納濾膜兩側的滲透壓就越低,滲透壓對納濾過程的影響就越小。
根據反滲透和納濾原理可知,滲透和反滲透及納濾必須與具有允許溶劑(水分子)透過的半透膜(反滲透膜或納濾膜)聯系在一起才有意義,才會出現滲透現象和反滲透或納濾操作。
納濾膜:允許溶劑分子或某些低分子量溶質或低價離子透過的一種功能性的半透膜稱為納濾膜;
詳情可見官網:網頁鏈接
J. 納濾技術是什麼
納濾 是一種介於反滲透和超濾之間的壓力驅動膜分離過程,納濾膜的孔徑范圍在幾個版納米左右權。與其他壓力驅動型膜分離過程相比,出現較晚。它的出現可追溯到70年代末J.E. Cadotte的NS-3 0 0膜的研究,之後,納濾發展得很快,膜組器於80年代中期商品化。納濾膜大多從反滲透膜衍化而來,如CA、CTA膜、芳族聚醯胺復合膜和磺化聚醚碸膜等。
納濾(NF)用於將相對分子質量較小的物質,如無機鹽或葡萄糖、蔗糖等小分子有機物從溶劑中分離出來。納濾又稱為低壓反滲透,是膜分離技術的一種新興領域,其分離性能介於反滲透和超濾之間,允許一些無機鹽和某些溶劑透過膜,從而達到分離的效果。(來自網路)