導航:首頁 > 凈水問答 > 粘土表面離子交換吸附規則

粘土表面離子交換吸附規則

發布時間:2021-03-24 02:47:44

1. 黏土礦物為什麼具有吸附性

因為黏土礦物晶體邊緣帶正電荷,陰離子基團可以靠靜電引力吸附在黏土礦物的邊回面上。介質中有答中性電解質存在時,無機陽離子可以在黏土礦物與陰離子型聚合物之間起“橋接”作用,使高聚物吸附在黏土礦物的表面上。

2. 表面絡合吸附和離子交換吸附哪個能力大

表面吸附作用指的是在固體表面有吸附水中溶解及膠體物質的能力,比表面積很大的活性炭等具有很高的吸附能力,可用作吸附劑。吸附可分為物理吸附和化學吸附。如果吸附劑與被吸附物質之間是通過分子間引力(即范德華力)而產生吸附,稱為物理吸附;如果吸附劑與被吸附物質之間產生化學作用,生成化學鍵引起吸附,稱為化學吸附。離子交換實際上也是一種吸附。物理吸附和化學吸附並非不相容的,而且隨著條件的變化可以相伴發生,但在一個系統中,可能某一種吸附是主要的。

3. 什麼是表面吸附作用,離子交換吸附作用和專屬吸附作用

表面吸附作用來指的是在固體源表面有吸附水中溶解及膠體物質的能力,比表面積很大的活性炭等具有很高的吸附能力,可用作吸附劑。吸附可分為物理吸附和化學吸附。如果吸附劑與被吸附物質之間是通過分子間引力(即范德華力)而產生吸附,稱為物理吸附;如果吸附劑與被吸附物質之間產生化學作用,生成化學鍵引起吸附,稱為化學吸附。離子交換實際上也是一種吸附。物理吸附和化學吸附並非不相容的,而且隨著條件的變化可以相伴發生,但在一個系統中,可能某一種吸附是主要的。

4. 根部離子交換吸附原理

根系吸收礦質的過程
1.離子被吸附在根系細胞表面
Ø根部細胞呼吸作用放出CO2和H2O。CO2溶於水生成H2CO3, H2CO3能解離出H+和HCO3-離子,這些離子同土壤溶液和土壤膠粒上吸附的離子交換,如K+、Cl-、NCO3-等進行交換,使土壤中的離子被吸附到根表面。
Ø離子交換按「同荷等價」的原理進行,即陽離子只同陽離子交換,陰離子只能同陰離子交換,而且價數必須相等。
Ø根系還可分泌出一些檸檬酸、蘋果酸等有機酸來溶解一些難溶性鹽類,並進一步加以吸收。岩石縫中生長的樹木、岩石表面的地衣等植物就是通過這種方式來獲取礦質營養的。
http://jpkc.yzu.e.cn/course/zhwshl/nljx/sfja/sfjafile/chap3-2.files/frame.htm#slide0100.htm

5. 吸附種類和吸附機理

按吸附現象產生的原因而言,可分為物理吸附及化學吸附。

(一)物理吸附

固體顆粒表面電荷的不均衡,往往使其帶電荷。按其電荷的性質可分為永久電荷和可變電荷。

永久電荷是礦物晶格內的同晶替代所產生的電荷。例如,粘土礦物的結構為硅四面體和鋁八面體,四面體內的硅和八面體內的鋁均可被與其直徑大小相近的離子所替代;四價的Si4+可被三價的Al3+所替代,而三價的Al3+可被二價的Mg2+所替代,這樣的結果,使顆粒表面電荷產生了不均衡,使其呈現出負電性。由於同晶替代是在粘土礦物形成時產生的,並且是在粘土晶格的內部,因此一旦產生這種電荷就不會改變,具有永久性質,故稱永久電荷。蒙脫石和伊利石的同晶替代較多,所以它們的表面電荷以永久電荷為主;而高嶺石則不同,它的同晶替代少,其主要的表面電荷另有來源。

可變電荷是顆粒表面產生化學解離形成的,其表面電荷的性質(正電荷或負電荷)及數量往往隨介質的pH值的改變而變化,所以稱為可變電荷。例如某些膠體顆粒表面分子或原子團的解離:

(1)二氧化硅膠體和含水二氧化硅膠體的解離

水文地球化學基礎

(2)粘土礦物顆粒晶面上的OH基中H+的解離

水文地球化學基礎

高嶺石晶體表面的OH基較多,所以它的表面電荷以可變電荷為主。

(3)氫氧化鐵及氫氧化鋁表面分子OH基的解離

Fe(OH)3→Fe(OH)2--+OH-

A1(OH)3→Al(OH)2++H+

(4)腐殖質上某些原子團的解離

水文地球化學基礎

上述談到顆粒表面電荷形成的機理。由於固體顆粒表面帶電荷,所以在固液相接觸時。便會發生靠固體表面靜電引力吸附液相異性離子的現象,這種現象稱為物理吸附。

物理吸附的特點是,其吸附的鍵聯力為靜電引力,鍵聯力較弱,因此已吸附在顆粒表面的離子,在一定條件下,可被液體中另一種離子所替換,所以物理吸附也稱為「離子交換」。被吸附離子的電性,取決於表面電荷的電性,顆粒表面帶負電荷,吸附陽離子,稱為陽離子吸附,或陽離子交換;顆粒表面帶正電荷,吸附陰離子,稱為陰離子吸附,或陰離子交換。物理吸附這個表面反應是一種可逆反應,可用質量作用定律來描述。

(二)化學吸附

化學吸附不是依賴於靜電引力發生的,液相中的離子是靠鍵力強的化學鍵(如共價鍵)結合到固體顆粒表面的;被吸附的離子進入顆粒的結晶格架,成為晶格的一部分,它不可能再返回溶液,是一種不可逆反應。這種現象也稱為「特殊吸附」。產生化學吸附的一個基本條件是,被吸附離子直徑與晶格中網穴的直徑大致相等,例如,K+的直徑為266pm(2.66Å),硅鋁酸鹽膠體晶格網穴直徑為280pm(2.80Å),它們的直徑大致相等,所以K+可被吸附到膠體的晶格里。

在實際研究中,要區分物理吸附及化學吸附是十分困難的;而物理吸附要比化學吸附普遍。因此,目前研究最多的是物理吸附,而且物理吸附的研究,實際上也包括化學吸附在內,因為兩者很難區分。特別是地下水污染中污染物的研究更是如此。

6. 離子交換法和吸附法在處理污水時的運行機理有何異同

離子交換法是屬於化學反滲透,吸附法屬於物理分離。
拓展閱讀:污水處理回 (sewage treatment,wastewater treatment):為使污水達到答排水某一水體或再次使用的水質要求對其進行凈化的過程。污水處理被廣泛應用於建築、農業,交通、能源、石化、環保、城市景觀、醫療、餐飲等各個領域,也越來越多地走進尋常百姓的日常生活。

7. 離子交替吸附作用

離子交替吸附作用主要發生在具有固定電荷的固體礦物表面,無論是陽離子還是陰離子,均可發生交替吸附作用,但目前研究得較多的是陽離子交替吸附作用。離子交替吸附作用的一個重要特點就是,伴隨著一定量的一種離子的吸附,必然有等當量的另一種同號離子的解吸(圖2-5-4)。離子交替吸附作用之所以具有這樣的特點,主要是由於吸附劑通常都具有一定的離子交換容量,因此這里首先對離子交換容量予以討論。

圖2-5-3 有機質表面的負電荷

圖2-5-4 陽離子交替吸附作用圖解

2.5.2.1 離子交換容量

離子交換容量包括陽離子交換容量(CEC—Cation Exchange Capacity)和陰離子交換容量(AEC—Anion Exchange Capacity),我們主要討論陽離子交換容量,它被定義為每100 g干吸附劑可吸附陽離子的毫克當量數。例如,在蒙脫石的結晶格架中,鋁八面體中的三價鋁可被二價鎂所置換,根據測定,每摩爾蒙脫石中鎂的含量為0.67 mol,即蒙脫石的分子式為:Si8Al3.33Mg0.67O20(OH)4。已知蒙脫石的分子量是734 g,因此這種蒙脫石的陽離子交換容量為:

水文地球化學

在實際中,通常都是通過實驗來測定吸附劑的陽離子交換容量。尤其是對於野外所採取的土樣或岩樣,由於其中含有多種吸附劑,實驗測定往往是唯一可行的方法。陽離子交換容量的實驗測定在多數情況下都是用pH為7的醋酸銨溶液與一定量固體樣品混合,使其全部吸附格位被所飽和,然後用其他溶液(例如NaCl溶液)把被吸附的全部交換出來,達到交換平衡後,測定溶液中Na+的減少量,據此便可計算樣品的陽離子交換容量。表252列出了一些粘土礦物及土壤的陽離子交換容量,由表可見,與土壤相比,礦物的陽離子交換容量有更大的變化范圍。

鬆散沉積物的陽離子交換容量受到了多種因素的影響,主要有:

(1)沉積物中吸附劑的種類與數量。例如,我國北方土壤中的粘土礦物以蒙脫石和伊利石為主,因此其CEC值較大,一般在20 meq/100 g以上,高者達50 meq/100 g以上;而南方的紅壤,由於其有機膠體含量少,同時所含的粘土礦物多為高嶺石及鐵、鋁的氫氧化物,故CEC較小,一般小於20 meq/100 g。

表2-5-2 一些粘土礦物及土壤的陽離子交換容量

(2)沉積物顆粒的大小。一般來說,沉積物的顆粒越小,其比表面積越大,CEC值越高。例如,根據一河流沉積物的粒徑及其CEC的實測結果,隨著沉積物的粒徑為從4.4μm增至1000μm,其CEC從14~65 meq/100 g變到4~20 meq/100 g,最終減小到0.3~13 meq/100 g。

(3)水溶液的pH值。一般來說,隨著水溶液pH值的增加,土壤表面的可變負電荷量增多,其CEC相應增加;相反,隨著水溶液pH值的減小,土壤表面的可變負電荷量不斷減少,其CEC也隨之減小。

2.5.2.2 陽離子交換反應及平衡

陽離子交換反應的一般形式可寫為:

水文地球化學

式中:Am+、Bn+表示水溶液中的A、B離子;AX、BX表示吸附在固體表面的A、B離子。上述反應的平衡常數可寫為:

水文地球化學

式中:a標記溶液中組分的活度;{}表示表示吸附在固體表面上的離子的活度。對於水溶液中的離子,其活度可使用表2-1-1中的公式進行計算;但對於吸附在固體表面上的離子,其活度的計算至今還沒有滿意的方法。目前主要採用兩種替代的方法來處理這一問題,一種是Vanselow慣例,另一種是Gaines-Thomas慣例。Vanselow慣例是由Vanselow於1932年提出的,他建議使用摩爾分數來代替式(2-5-7)中的{AX}和{BX}。若固體表面僅吸附了A離子和B離子,在一定重量(100 g)的吸附劑表面A、B的含量(mmol)依次為qA和qB,則吸附劑表面A、B的摩爾分數分別為:

水文地球化學

顯然,xA+xB=1。這樣式(2-5-7)可改寫為:

水文地球化學

Gaines-Thomas慣例是由Gaines和Thomas於1953年提出的,他們建議採用當量百分數來代替式(2-5-7)中的{AX}和{BX}。若用yA和yB分別表示吸附劑表面A、B的當量百分數,則有:

水文地球化學

同樣,yA+yB=1,這樣式(2-5-7)變為:

水文地球化學

目前,這兩種慣例都還在被有關的研究者所使用,各有優點,互為補充。事實上,離子交換反應的平衡常數並不是一個常數,它往往隨著水溶液的成分、pH值及固體表面成分的變化而變化,因此許多研究者認為將其稱為交換系數(Exchange Coefficient)或選擇系數(Selectivity Coefficient)更合適一些(Appelo,1994;Deutsch,1997;Benefield,1982;Kehew,2001)。

若已知兩種不同離子與同一種離子在某種吸附劑中發生交換反應的交換系數,則可計算出這兩種離子發生交換反應的交換系數。例如,若在某種吸附劑中下述反應:

水文地球化學

交換系數分別為KCa-Na和KK-Na,則在該吸附劑中反應:

水文地球化學

的交換系數為:

水文地球化學

這是因為(以Vanselow慣例為例):

水文地球化學

故有:

水文地球化學

表2-5-3列出了不同離子與Na+發生交換反應的交換系數(Vanselow慣例),據此便可按照上述的方法求得這些離子之間發生交換反應時的交換系數。

需要說明的是,在表2-5-3中,I離子與Na+之間交換反應的反應式為:

水文地球化學

表2-5-3 不同離子與Na+發生交換反應時的交換系數

其交換系數的定義式如下:

水文地球化學

【例】在某地下水系統中,有一段含有大量粘土礦物、因此具有明顯陽離子交換能力的地段,假定:

(1)該地段含水層的陽離子交換容量為100 meq/100 g,含水層中的交換性陽離子只有Ca2+和Mg2+,初始狀態下含水層顆粒中Ca2+、Mg2+的含量相等;

(2)在進入該地段之前,地下水中的Ca2+、Mg2+濃度相等,均為10-3 mol/L;

(3)含水層的孔隙度為n=0.33,固體顆粒的密度為ρ=2.65 g/cm3

(4)含水層中發生的陽離子交換反應為:

水文地球化學

不考慮活度系數的影響,其平衡常數(Vanselow慣例)為:

水文地球化學

試使用陽離子交換平衡關系計算,當地下水通過該地段並達到新的交換平衡後,水溶液中及含水層顆粒表面Ca2+、Mg2+濃度的變化。

【解】:設達到新的交換平衡後,含水層顆粒中Ca2+的摩爾分數為y、水溶液中Ca2+的濃度為x(mmol/L),則這時含水層顆粒中Mg2+的摩爾分數為1-y、水溶液中Mg2+的濃度為2-x(mmol/L),故有:

水文地球化學

整理得:

水文地球化學

已知含水層的CEC=100 meq/100g,因此對於二價陽離子來說,含水層顆粒可吸附的陽離子總量為50 mmol/100 g=0.5 mmol/g。若用z表示達到交換平衡後1 g含水層顆粒中Ca2+的含量,則有:

水文地球化學

以式(2-5-25)帶入式(2-5-24)得:

水文地球化學

為了計算上述變化,需要對1 L水所對應的含水層中Ca2+的質量守恆關系進行研究。已知含水層的孔隙度為0.33,顯然在這樣的含水層中,1 L水所對應的含水層顆粒的體積為0.67/0.33(L),相應的含水層顆粒的質量為:

水文地球化學

故吸附作用前後1 L水所對應的含水層中Ca2+的質量守恆關系為:

水文地球化學

式中的0.25為吸附作用前1 g含水層顆粒中Ca2+的含量(mmol),由式(2-5-27)可得:

水文地球化學

以式(2-5-26)帶入式(2-5-28)並整理得:

水文地球化學

這是一個關於z的一元二次方程,求解該方程可得:z=0.2500627 mmol/g。代z入式(2-5-25)和式(2-5-26)可得達到新的交換平衡後含水層顆粒中Ca2+的摩爾分數為0.5001254,水溶液中Ca2+的濃度為0.75 mmol/L,故這時含水層顆粒中Mg2+的摩爾分數為0.4998746、水溶液中Mg2+的濃度為1.25 mmol/L。由此可見,地下水通過該粘性土地段後,盡管Ca2+、Mg2+在含水層顆粒中的含量變化很小,但它們在地下水中的含量變化卻較大,Mg2+從原來的1 mmol/L增加到了1.25 mmol/L,Ca2+則從原來的1 mmol/L減少到了0.75 mmol/L。

2.5.2.3 分配系數及離子的吸附親和力

除了交換系數,還有一個重要的參數需要介紹,這就是分配系數(Separation Factor)(Benefield,1982)。對於反應(2-5-6),它被定義為:

水文地球化學

式中cA和cB分別為水溶液中A、B離子的摩爾濃度。顯然,若不考慮活度系數的影響,對於同價離子間的交換反應,QA-B=KA-B。式(2-5-29)可改寫為:

水文地球化學

由式(2-5-30)可見,QA-B反映了溶液中B與A的含量之比與吸附劑表面B與A的含量之比之間的相對關系。當QA-B=1時,說明達到交換平衡時B與A在水溶液中的比例等於其在吸附劑表面的比例,因此對於該吸附劑,A和B具有相同的吸附親和力;當QA-B>1時,說明達到交換平衡時B與A在水溶液中的比例大於其在吸附劑表面的比例,因此A與B相比具有更大的吸附親和力;當QA-B<1時,說明達到交換平衡時B與A在水溶液中的比例小於其在吸附劑表面的比例,因此B與A相比具有更大的吸附親和力。

事實上,即使對於同一陽離子交換反應,其分配系數也會隨著水溶液性質的變化而變化(Stumm and Morgan,1996)。圖2-5-5給出了Na—Ca交換反應的分配系數隨Na+濃度的變化。沿著圖中的虛線,QNa-Ca=1,這時Na+和Ca2+具有相同的吸附親和力。但在稀溶液中,例如[Na+]=10-3 mol/L和10-2 mol/L,Ca2+在吸附劑中的比例要遠大於其在水溶液中的比例,因此在這種情況下Ca2+具有更強的吸附親和力。隨著Na+濃度的增大,Ca2+的吸附親和力逐漸減弱,Na+的吸附親和力則逐漸增強,當[Na+]=2 mol/L時,Na+已經變得比Ca2+具有更強的吸附親和力。Na—Ca交換反應分配系數的這種變化對於解釋一些實際現象具有重要的意義,根據這種變化,我們可以推斷淡水含水層中通常含有大量的可交換的Ca2+,而海水含水層中通常含有大量的可交換的Na+。這種變化關系也解釋了為什麼硬水軟化劑能夠選擇性地去除Ca2+,同時通過使用高Na+濃度的鹵水溶液進行沖刷而再生。

圖2-5-5 溶液中Ca2+的含量對吸附作用的影響

根據離子交換反應的分配系數,可以定量地評價離子的吸附親和力。一般來說,離子在土壤中的吸附親和力具有下述的規律:

(1)高價離子比低價離子具有更高的吸附親和力。例如,Al3+>Mg2+>Na+;>。這是因為離子交換反應從本質上說是一個靜電吸引過程,離子價越高,所受到的靜電吸引力就越大,它就越容易被吸附劑所吸附。

(2)同價離子的吸附親和力隨著離子水化半徑的減小而增大。例如,Ca2+>Mg2+>Be2+;>K+>Na+>Li+。這是因為離子的水化半徑越小,它越容易接近固體表面,從而也就越易於被固體所吸附。

Deutsch(1997)根據Appelo和Postma(1994)的資料,對二價陽離子的吸附親和力進行了研究,他所得到了吸附親和力順序如下:

水文地球化學

在常見的天然地下水系統中,Ca2+和Mg2+通常為地下水中的主要陽離子,它們在水溶液中相對較高的含量將使其成為含水層顆粒表面的主要吸附離子,盡管一些微量元素可能更緊密地被吸附在含水層顆粒表面上。但在污染地下水系統中,若吸附親和力更強的Pb2+和Ba2+的含量與Ca2+、Mg2+的含量在同一水平上,則含水層顆粒表面的主要吸附離子將變為Pb2+和Ba2+,這將大大地影響Pb2+和Ba2+在地下水中的遷移能力。

綜合來講,陽離子和陰離子的吸附親和力順序分別為(何燧源等,2000):

水文地球化學

可見,陽離子中Li+和Na+最不易被吸附,陰離子中Cl-和最不易被吸附。

離子交換對地下水質產生重要影響的一種常見情況就是海水入侵到淡水含水層中。當在沿海地帶大量抽取含水層中的淡水時,海水將對含水層進行補給。初始狀態下含水層顆粒表面吸附的主要是Ca2+和Mg2+,海水中的主要陽離子為Na+,陰離子為Cl-。這樣入侵的海水將導致含水層中發生下述的陽離子交換反應:

水文地球化學

由於Cl-通常不易被吸附,也不參與其他的水岩作用過程。所以相對於Cl-來說,該過程將使得Na+的遷移能力降低。

地下水系統中另一種常見的情況與上述過程相反,這就是Ca2+置換被吸附的Na+,反應式如下:

水文地球化學

人們在大西洋沿岸的砂岩含水層(Zack and Roberts,1988;Knobel and Phillips,1988)以及北美西部的沉積盆地中(Thorstenson等,1979;Henderson,1985)均發現了這種天然的軟化過程。該反應發生的前提條件是:含水層中含有碳酸鹽礦物,CO2的分壓較高,含水層顆粒中含有大量的可交換的Na+

8. 無機材料黏土離子交換量的測定"的實驗為什麼要加入蒸餾水進行洗滌三次

無機材料黏土離子交換量的測定的實驗,至少要加入蒸餾水進行洗滌三次,是因版為:
粘土的表面積很權大,表面吸附有大量的水分,水分中含有很多游離的離子,必須充分將表面吸附的水分中的離子全部洗滌下來,測試結果才會准確。洗滌三次,確保表面吸附水分中的離子基本洗滌到溶液中。

9. 黏土的吸附和水化作用

泥漿中黏土顆粒和分解介質水的界面上,自動濃集介質中分子或離子的現象稱為黏土的吸附。由於黏土顆粒表面通常帶有負電荷,因而能吸附介質中的各種水化陽離子,使黏土顆粒表面形成一層具有一定厚度的水化膜,這種現象叫作黏土的水化作用。黏土的吸附和水化作用是使泥漿分散體系穩定的重要因素。用不同的化學處理方法調節,控制其吸附與水化作用,可以獲得不同性能的各種類型的泥漿。

(一)黏土的吸附性能

泥漿中黏土的吸附,和其他許多物體的吸附一樣,可以分為物理吸附、化學吸附和離子交換吸附三種。

物理吸附是分子間相互作用力所產生的吸附,是由於表面分子具有表面能所引起的。其吸附力弱並易解吸,且吸附速度快。泥漿中黏土顆粒與處理劑分子或離子之間廣泛存在著物理吸附現象。

化學吸附是吸附物質間存在化學鍵力的吸附,其吸附力強。不易解吸,吸附速度較慢。化學吸附也廣泛存在於泥漿中。

離子交換吸附是物理-化學吸附,泥漿中廣泛存在。是黏土在泥漿中的主要吸附作用,是進行泥漿化學處理和性能調整的依據。由於黏土顆粒表面帶負電荷,能吸附陽離子,並且所吸附的陽離子是可以交換的,即和泥漿中存在的其他陽離子進行交換,且這種交換是可逆的。黏土顆粒吸附陽離子的屬性,數量(交換容量)等對黏土顆粒在泥漿中的分散和穩定有很重要的影響。

(二)黏土的水化作用

黏土的水化作用是指泥漿中黏土顆粒表面吸附分子的狀態和能力。黏土顆粒表面可以直接吸附極性水分子——吸附水。更主要的是黏土顆粒表面帶負電荷、能吸附分散在泥漿中的大量陽離子來實現水化,使黏土顆粒表面形成一層水化膜,從而產生水化作用。

黏土的水化作用是影響水基泥漿性能的重要因素,泥漿中黏土顆粒的分散穩定與凝聚沉澱,在很大程度上取決於黏土顆粒的水化作用的強弱。

(三)泥漿中黏土顆粒表面的雙電層

黏土顆粒在水中,其表面所帶的負電荷能產生電場,通過靜電作用可把交換性陽離子吸引在它的周圍形成雙電層。黏土顆粒周圍所吸附的陽離子只有一部分同黏土顆粒一起運動,這部分同黏土吸引得比較牢固的陽離子層,稱為吸附層;另一部分陽離子距離黏土顆粒稍遠,不隨著一起運動,這部分陽離子所在的層位叫作擴散層。

泥漿中黏土顆粒表面的雙電層理論是用電解質進行泥漿化學處理的理論基礎。

閱讀全文

與粘土表面離子交換吸附規則相關的資料

熱點內容
福特猛禽52空調濾芯怎麼拆 瀏覽:833
即熱型飲水機夠多少人喝水 瀏覽:647
義大利wave前置過濾桶 瀏覽:79
凈水器一套4000利潤有多少 瀏覽:450
養豬場廢水處理方案 瀏覽:586
凈水器的廢水能澆花嗎 瀏覽:5
納智捷空氣濾芯如何更換 瀏覽:321
家用飲水機水可以燒到多少度 瀏覽:969
污水管道工程資料表格 瀏覽:103
超濾管怎麼確定蛋白質濾干凈 瀏覽:937
雲內動力的濾芯怎麼樣 瀏覽:190
噴漆廢水代碼 瀏覽:453
污水處理缺氧工藝溶解氧的控制 瀏覽:384
室內防水處理需要多少錢 瀏覽:426
米家隨手吸塵器濾芯怎麼清理 瀏覽:762
沁園的飲水機壺怎麼拿出來 瀏覽:47
上庄污水廠 瀏覽:509
初中蒸餾裝置圖 瀏覽:131
學校的飲水機為什麼有的不響 瀏覽:506
化妝棉可以過濾油嗎 瀏覽:305