① 工業生產蛋白,提取液脫鹽用什麼方法超濾還是離子交換樹脂好些理由是什麼比如成本和效率方面
超濾,用於截留水中膠體大小的顆粒,而水和低分子量溶質則允許透過膜。由膜表面機械篩分、膜孔阻滯和膜表面及膜孔吸附的綜合效應,以篩濾為主。所以超濾不能做為脫鹽設備,一般用在反滲透前做除鹽水預處理設備。
如果在你的問題中選的話只能用離子交換樹脂了。
離子交換法是以圓球形樹脂(離子交換樹脂)過濾原水,水中的離子會與固定在樹脂上的離子交換。常見的兩種離子交換方法分別是硬水軟化和去離子法。硬水軟化主要是用在反滲透(RO)處理之前,先將水質硬度降低的一種前處理程序。軟化機裡面的球狀樹脂,以兩個鈉離子交換一個鈣離子或鎂離子的方式來軟化水質。 離子交換樹脂利用氫離子交換陽離子,而以氫氧根離子交換陰離子;以包含磺酸根的苯乙烯和二乙烯苯製成的陽離子交換樹脂會以氫離子交換碰到的各種陽離子(例如Na+、Ca2+、Al3+)。同樣的,以包含季銨鹽的苯乙烯製成的陰離子交換樹脂會以氫氧根離子交換碰到的各種陰離子(如Cl-)。從陽離子交換樹脂釋出的氫離子與從陰離子交換樹脂釋出的氫氧根離子相結合後生成純水。 陰陽離子交換樹脂可被分別包裝在不同的離子交換床中,分成所謂的陰離子交換床和陽離子交換床。也可以將陽離子交換樹脂與陰離子交換樹脂混在一起,置於同一個離子交換床中。不論是那一種形式,當樹脂與水中帶電荷的雜質交換完樹脂上的氫離子及(或)氫氧根離子,就必須進行「再生」。再生的程序恰與純化的程序相反,利用氫離子及氫氧根離子進行再生,交換附著在離子交換樹脂上的雜質。
② 哪些方法可以進行蛋白質脫鹽處理
小分子蛋白的脫鹽用什麼方法比較好透析、超濾、分子篩層析、冷乙醇沉澱等分子篩層析是最徹底的,不過對上樣量有要求. 做冷乙醇沉澱的時候得先做預實驗,防止蛋白變性.
③ 【求助】超濾能否脫鹽和濃縮一步完成啊
昨天有個millipore的技術人員就是這樣說的~HarveyWang(站內聯系TA)本人主要是從發酵液中提取酶,文獻上一般的步驟是先用硫酸銨沉澱,然後透析,再用超濾濃縮,最後冷凍乾燥, 這要看你需要做多大的體積了。:) (1)硫酸銨沉澱法:我的觀點是,如果你1000 mL的發酵液的話,硫酸銨沉澱可以用,但是這浪費多少硫酸銨啊?!做學術研究可以,如果你的課題是計劃做提取酶的工藝和中試的話,這種硫酸銨沉澱並不有太大的實用性。 (2)超濾步驟的選用要看你的酶溶液有多大的體積。 如果發酵液的酶的量並不是很濃的話,例如50 mL 10 mg/L的酶量,用這種超濾膜會損失掉大部分你的目地酶,都粘到膜上去了,很難洗下來(稀的NaOH可以)。不能輕信某品牌銷售說的話,用用就知道了。如果你的濃縮液體積比較大,例如100-500 mL,酶的濃度也很高,這是可以用超濾膜的。 (3)對於小體積的脫鹽透析,透析袋很好用的。這里是指10 mL-100 mL。從操作方便性上看,這個在小型試驗中我最喜歡用。好簡單啊。。。。 自己頂一個,解答的詳細的有重獎!(金幣可以再加) (1)發酵液的酶蛋白濃度大約是多少,純度是多少?發個SDS-PAGE看看,註明上樣量。 (2)硫酸銨沉澱後和透析後可上離子交換,這可以濃縮10-1000倍,還可以有純化效果,然後再冷凍濃縮啊。HarveyWang(站內聯系TA)哈哈哈哈,回帖就有金幣拿:Ddaidai0124(站內聯系TA)本人現在只是小規模的提取酶,馬上要上發酵罐,需要大規模的提取酶液,不是做酶學性質,所以酶的純度要求不高,和工業用酶的純度差不多就可以了!希望大家推薦個適合工業化提取酶液的工藝,主要考慮成本問題.請版主幫忙在增加懸賞金幣20個lvgl158(站內聯系TA)起碼知道 它的分子量 才能知道是否可以用同一個膜 如果小於一萬可能就有點難度 可以先用少量的硫酸銨澄清 離心後 進行超濾 在超濾前 必須的保證液體 清澈hezhao999(站內聯系TA)體積的在200ml以上用超濾儀,200ml以下可以用超濾離心管,如果不知分子量選用1000的膜完全可以了,如果知道分子量,則選擇酶分子量1/5的超濾膜。zhaocy8903(站內聯系TA)多大規模的發酵 多大規模的發酵
④ 蛋白質層析、超濾常用技術手段
在分離分析特別是蛋白質分離分析中,層析是相當重要、且相當常見的一種技術,其原理較為復雜,對人員的要求相對較高,這里只能做一個相對簡單的介紹。
一、 吸附層析
1、 吸附柱層析
吸附柱層析是以固體吸附劑為固定相,以有機溶劑或緩沖液為流動相構成柱的一種層析方法。
2、 薄層層析
薄層層析是以塗布於玻板或滌綸片等載體上的基質為固定相,以液體為流動相的一種層析方法。這種層析方法是把吸附劑等物質塗布於載體上形成薄層,然後按紙層析操作進行展層。
3、 聚醯胺薄膜層析
聚醯胺對極性物質的吸附作用是由於它能和被分離物之間形成氫鍵。這種氫鍵的強弱就決定了被分離物與聚醯胺薄膜之間吸附能力的大小。層析時,展層劑與被分離物在聚醯胺膜表面競爭形成氫鍵。因此選擇適當的展層劑使分離在聚醯胺膜表面發生吸附、解吸附、再吸附、再解吸附的連續過程,就能導致分離物質達到分離目的。
二、 離子交換層析
離子交換層析是在以離子交換劑為固定相,液體為流動相的系統中進行的。離子交換劑是由基質、電荷基團和反離子構成的。離子交換劑與水溶液中離子或離子化合物的反應主要以離子交換方式進行,或藉助離子交換劑上電荷基團對溶液中離子或離子化合物的吸附作用進行。`
三、 凝膠過濾
凝膠過濾又叫分子篩層析,其原因是凝膠具有網狀結構,小分子物質能進入其內部,而大分子物質卻被排除在外部。當一混合溶液通過凝膠過濾層析柱時,溶液中的物質就按不同分子量篩分開了。
四、 親和層析
親和層析的原理與眾所周知的抗原一抗體、激素一受體和酶一底物等特異性反應的機理相類似,每對反應物之間都有一定的親和力。正如在酶與底物的反應中,特異的廢物(S')才能和一定的酶(E)結合,產生復合物(E-S')一樣。在親和層析中是特異的配體才能和一定的生命大分子之間具有親和力,並產生復合物。而親和層析與酶一底物反應不同的是,前者進行反應時,配體(類似底物)是固相存在;後者進行反應時,底物呈液相存在。實質上親和層析是把具有識別能力的配體L(對酶的配體可以是類似底物、抑制劑或輔基等)以共價鍵的方式固化到含有活化基團的基質M(如活化瓊脂糖等)上,製成親和吸附劑M-L,或者叫做固相載體。而固化後的配體仍保持束縛特異物質的能力。因此,當把圍相載體裝人小層析柱(幾毫升到幾十毫升床體積)後,讓欲分離的樣品液通過該柱。這時樣品中對配體有親和力的物質S就可藉助靜電引力、范德瓦爾力,以及結構互補效應等作用吸附到固相載體上,而無親和力或非特異吸附的物質則被起始緩沖液洗滌出來,並形成了第一個層析峰。然後,恰當地改變起始緩沖 液的PH值、或增加離子強度、或加人抑③劑等因子,即可把物質S從固相載體上解離下來,並形成了第M個層析峰(見圖6-2)。顯然,通過這一操作程序就可把有效成分與雜質滿意地分離開。如果樣品液中存在兩個以上的物質與固相載體具有親和力(其大小有差異)時,採用選擇性緩沖液進行洗脫,也可以將它們分離開。用過的固相載體經再生處理後,可以重復使用。
上面介紹的親和層析法亦稱特異性配體親和層析法。除此之外,還有一種親和層析法叫通用性配體親和層析法。這兩種親和層析法相比,前者的配體一般為復雜的生命大分子物質(如抗體、受體和酶的類似底物等),它具有較強的吸附選擇性和較大的結合力。而後者的配體則一般為簡單的小分子物質(如金屬、染料,以及氨基酸等),它成本低廉、具有較高的吸附容量,通過改善吸附和脫附條件可提高層析的解析度。
五、 聚焦層析
聚焦層析也是一種柱層析。因此,它和另外的層析一樣,照例具有流動相,其流動相為多緩沖劑,固定相為多緩沖交換劑。
聚焦層析原理可以從PH梯度溶液的形成、蛋白質的行為和聚焦效應三方面來闡述。
1、PH梯度溶液的形成
在離子交換層析中,PH梯度溶液的形成是靠梯度混合儀實現的。例如,當使用陰離子 劑進行層析時,制備PH由高到低呈線性變化的梯度溶液的方法是,在梯度儀的混合室(這層析柱者)中裝高PH溶液,而在另一室裝低PH極限溶液,然後打開層析柱的下端出口,讓洗脫液連續不斷地流過柱體。這時從柱的上部到下部溶液的PH值是由高到低變化的。而在聚焦層析中,當洗脫液流進多緩沖交換劑時,由於交換劑帶具有緩沖能力的電荷基團,故PH梯度溶液可以自動形成。例如,當柱中裝陰離子交換劑PBE94(作固定相)時,先用起始緩沖液(配方見表了一2)平衡到PHg,再用含PH6的多緩沖劑物質(作流動相)的淋洗液通過柱體,這時多緩沖劑中酸性最強的組分與鹼性陰離子交換對結合發生中和作用。隨著淋洗液的不斷加人,住內每點的PH值從高到低逐漸下降。照此處理J段時間,從層析柱頂部到底部就形成了PH6~9的梯度。聚焦層析柱中的PH梯度溶液是在淋洗過程中自動形成的,但是隨著淋洗的進行,PH梯度會逐漸向下遷移,從底部流出液的PH卻由9逐漸降至6,並最後恆定於此值,這時層析柱的PH梯度也就消失了。
2.蛋白質的行為
蛋白質所帶電荷取決於它的等電點(PI)和層析柱中的PH值。當柱中的PH低於蛋白質的PI時,蛋白質帶正電荷,且不與陰離於交換劑結合。而隨著洗脫劑向前移動,固定相中的PH值是隨著淋洗時間延長而變化的。當蛋白質移動至環境PH高於其PI時,蛋白質由帶正電行變為帶負電荷,並與陰離子交換劑結合。由於洗脫劑的通過,蛋白質周圍的環境PH 再次低於PI時,它又帶正電荷,並從交換劑解吸下來。隨著洗脫液向柱底的遷移,上述過程將反復進行,於是各種蛋白質就在各自的等電點被洗下來,從而達到了分離的目的。
不同蛋白質具有不同的等電點,它們在被離子交換劑結合以前,移動之距離是不同的,洗脫出來的先後次序是按等電點排列的。
供靜脈注射的25%人胎盤血白蛋白(即胎白)通常是用硫酸銨鹽析法、透析脫鹽、真空濃縮等工藝制備的,該工藝流程硫酸銨耗量大,能源消耗多,操作時間長,透析過程易產生污染。改用超濾工藝後,平均回收率可達97.18%;吸附損失為1.69%;透過損失為1.23%;截留率為98.77%。大幅度提高了白蛋白的產量和質量,每年可節省硫酸銨6.2噸,自來水16000噸。目前國外生產超濾膜和超濾裝置最有名的廠家是美國的Milipore公司和德國的Sartorius公司。
隨著現代生物技術的發展, 通過基因工程生產蛋白質葯物在治療人類面臨的重大疾病如癌症等方面展示出巨大的潛力. 為滿足生物技術產品工業化生產的需要, 開發高通量、低成本、高效的分離純化方法已引起人們的高度關注. 超濾技術由於具有通量高, 操作條件溫和, 易於放大等特點, 特別適合生物活性大分子的分離. 在生物技術領域, 超濾技術目前已廣泛應用於細胞收集分離、除菌消毒、緩沖液置換、分級( fract ionatio n) 、脫鹽及濃縮[ 1] . 近年來越來越多的研究表明, 通過選擇適當的膜或膜表面改性,以及對分離過程進行優化, 充分利用和調控膜—蛋白質以及蛋白質—蛋白質之間的靜電相互作用, 可以實現分子量相近的兩種蛋白質的高選擇性超濾分離[2- 7] .
為克服常規蛋白質超濾分離過程優化中存在的實驗蛋白質消耗多、工作量大、費時以及費用高等缺點, 我們相繼開發了脈沖進樣技術( Pulsed sampleinject ion technique ) [8]和參數連續變化超濾技術( Parameter scanning ultraf ilt ration) [9]. 並以此為基礎, 結合載體相超濾技術( Carrier phase ult rafil—t rat ion) [10]進一步提出了一種蛋白質超濾分離快速優化新方法[11], 實現了人血漿白蛋白—免疫球蛋白[12]、人源化單克隆抗體( A lemtuzumab) 單體— 二聚體[13]的超濾分離過程快速優化和高選擇性分離,並在膜的篩選及其適用性快速評估方面展現出巨大的潛力. 該方法的主要特徵是與AKTA Prime 系統聯用, 採用脈動進樣技術顯著減少了蛋白質的用量;而利用雙緩沖體系( 類似梯度洗脫) 的參數連續變化超濾技術, 在pH 或離子強度連續變化的情況下考查pH 或離子強度對蛋白質透過率或截留率的影響, 進一步縮短了實驗時間, 降低了蛋白質的用量,極大地減少了實驗量, 加快了過程優化進程; 另外,載體相超濾技術的應用則可保證超濾分離自始至終在設定的條件下進行, 從而最大限度地保證超濾過程的穩定性.
⑤ 超濾濃縮蛋白溶液時其濃度該從高到低還是有低到高對超濾膜好呢
從低到高,當然首先3瓶中蛋白分子量應該差不多,否則先超濾小分子的,主要是減少超濾膜的堵塞程度
⑥ 超濾蛋白 咪唑濃度在多少一下可以了
超濾蛋白不需要考慮咪唑的濃度
咪唑是小分子試劑,分子量68.07,正常的超濾管截留分子量一般都是3KD~10KD
咪唑這樣的小分子會直接透過濾膜進入到下層濾出液中,而蛋白會被留在上層溶液中
超濾蛋白如果不添加溶液,咪唑濃度是不會改變的,只會是提高蛋白的濃度
所以超濾蛋白不需要去考慮咪唑的濃度
⑦ 超濾、微濾、納濾的過濾標準是多少
1.超濾膜(UF):過濾精度在0.001-0.1微米。是一種利用壓差的膜法分離技術,可濾除水中的鐵銹、泥沙、懸浮物、膠體、細菌、大分子有機物等有害物質,並能保留對人體有益的一些礦物質元素。是礦泉水、山泉水生產工藝中的核心部件。超濾工藝中水的回收率高達95%以上,並且可方便的實現沖洗與反沖洗,不易堵塞,使用壽命相對較長。
2.微濾(MF):過濾精度一般在0.1-50微米,常見的各種PP濾芯,活性碳濾芯,陶瓷濾芯等都屬於微濾范疇,用於簡單的粗過濾,過濾水中的泥沙、鐵銹等大顆粒雜質,但不能去除水中的細菌等有害物質。濾芯通常不能清洗,為一次性過濾材料,需要經常更換。① PP棉芯:一般只用於要求不高的粗濾,去除水中泥沙、鐵銹等大顆粒物質。② 活性碳:可以消除水中的異色和異味,但是不能去除水中的細菌,對泥沙、鐵銹的去除效果也很差。③ 陶瓷濾芯:最小過濾精度也只0.1微米,通常流量小,不易清洗。
3.納濾(NF):過濾精度介於超濾和反滲透之間,脫鹽率比反滲透低,也是一種需要加電、加壓的膜法分離技術,水的回收率較低。也就是說用納濾膜制水的過程中,一定會浪費將近30%的自來水。這是一般家庭不能接受的。一般用於工業純水製造。
4.反滲透(RO):過濾精度為0.0001微米左右,可濾除水中的幾乎一切的雜質(包括有害的和有益的),只能允許水分子通過。一般用於純凈水、工業超純水、醫葯超純水的製造。反滲透技術需要加壓、加電,流量小,水的利用率低,不適合大量生活飲用水的凈化。
⑧ 納濾的過濾范圍是多少和超濾,反滲透有什麼區別
納濾 ( NF,Nanofiltration)是一種介於反滲透和超濾之間的壓力驅動膜分離過程,納濾膜的孔內徑范圍在幾個納米左右。與容其他壓力驅動型膜分離過程相比,出現較晚。它的出現可追溯到70年代末J.E. Cadotte的NS-3 0 0膜的研究,之後,納濾發展得很快,膜組器於80年代中期商品化。納濾膜大多從反滲透膜衍化而來,如CA、CTA膜、芳族聚醯胺復合膜和磺化聚醚碸膜等。但與反滲透相比,其操作壓力更低,因此納濾又被稱作「低壓反滲透」或「疏鬆反滲透」( Loose RO )。
⑨ 蛋白質脫鹽有哪些方法
常用的脫鹽方法有透析法、電透析法和凝膠過濾法。透析法及電透析法耗時長,樣品稀釋度大,不易放大進行大規模生產,所以工業生產中應用較少。凝膠過濾層析脫鹽過程中鹽分子和蛋白質分子大小差異巨大,蛋白質溶液中小分子的鹽分子隨著層析流動相進入孔徑較小的固定相,使其在層析中的遷移速率小,而蛋白質因分子尺寸較大,不能隨流動相進入固定相中,因此在層析柱中的遷移速率大,首先從層析術中流出,實現脫鹽。
用凝膠過濾法脫鹽時,為了使鹽同蛋白質充分地分離,除了應選用足夠長的層析柱之外,還應對樣品的體積加以限制。樣品的體積如果過大就導致蛋白質帶同鹽帶不能分開。一般來就,樣品體積不超過床體積的30%。這一數據的確定是根據鹽和蛋白質的分離體積(Vsep)決定的。兩種物質分離體積的定義為,當兩種物質的混合物在凝膠過濾層析柱上能夠完全分離時的最小體積。
⑩ 使用超濾管濃縮蛋白需要再脫鹽嗎
是否脫鹽,是根據您要達到的最終效果!