導航:首頁 > 凈水問答 > 離子交換基因

離子交換基因

發布時間:2021-03-08 04:04:47

1. 陽離子交換樹脂所帶的活性基因有那些

磺丙基(SP)基團-CH2CH2CH2SO3-
羧甲基(CM)基團-O-CH2COO-
都是陽離子交換樹脂的活性基團.

2. 細胞膜內外的小分子物質及離子交換有哪些方式,它們各有何特點比較它們的異同。

按組成元素分
構成細胞膜的成分有磷脂,糖蛋白,糖脂和蛋白質。
2.按組成結構分
磷脂雙分子層是構成細胞膜的的基本支架。細胞膜的主要成分是蛋白質和脂質,含有少量糖類。其中部分脂質和糖類結合形成糖脂,部分蛋白質和糖類結合形成糖蛋白。
3.化學組成
細胞膜主要由脂質(主要為磷脂)、蛋白質和糖類等物質組成;其中以蛋白質和脂質為主。在電鏡下可分為三層,即在膜的靠內外兩側各有一條厚約2.5nm的電子緻密帶,中間夾有一條厚2.5nm的透明帶,總厚度約7.0~7.5nm左右這種結構不僅見於各種細胞膜,細胞內的各種細胞器膜如:線粒體、內質網等也具有相似的結構。[2]
簡介
細胞膜是防止細胞外物質自由進入細胞的屏障,它保證了細胞內環境的相對穩定,使各種生化反應能夠有序運行。但是細胞必須與周圍環境發生信息、物質與能量的交換,才能完成特定的生理功能,因此細胞必須具備一套物質轉運體系,用來獲得所需物質和排出代謝廢物。據估計細胞膜上與物質轉運有關的蛋白占核基因編碼蛋白的15~30%,細胞用在物質轉運方面的能量達細胞總消耗能量的三分之二。
原始生命向細胞進化所獲得的重要形態特徵之一,是生命物質外面出現了一層膜性結構,即「細胞膜」。細胞膜位於細胞表面,厚度通常為7~8nm,由脂類和蛋白質組成。它最重要的特性是半透性,或稱選擇透過性,對進出入細胞的物質有很強的選擇透過性。細胞膜和細胞內膜系統統稱為生物膜(biomembrane),具有相同的基本結構特徵。
細胞膜結構圖
細胞膜又稱質膜(plasmalemma),是位於原生質體外圍、緊貼細胞壁的膜結構,作用是保護內部。組成質膜的主要物質是蛋白質和脂類,以及少量的多糖、微量的核酸、金屬離子和水,在電子顯微鏡下,用四氧化鋨固定的細胞膜具有明顯的「暗-明-暗」三條平行的帶,其內、外兩層暗帶由蛋白質分子組成,中間一層明帶由雙層脂類分子組成,三者的厚度分別約為2.5 nm、3.5 nm和2.5nm,這樣的膜稱為單位膜(unit membrane)或生物膜(biomembrane)。

3. 離子交換介質如何去除dna殘留

摘要:酸是重要的染料中間體。伴隨著DSD酸的生產,產生了大量含氨基和磺酸基的芳香族有機化合物的廢水。離子吸附與交換作為一種有效的化學分離方法,具有優越的分離選擇性和很高的濃縮倍數,操作方便,效果突出。採用離子交換樹脂法處理DSD酸還原廢水,並對該過程進行系統的研究。通過樹脂選型確定出大孔弱鹼性陰離子交換樹脂D301R,其對廢水COD_(Cr)的去除率可達74.7%。對各種不同因素影響下D301R對DSD酸還原廢水吸附交換進行熱力學實驗研究,分別考察了時間、溫度、pH值、鹽含量等對該過程的影響。實驗結果表明,離子交換樹脂對DSD酸還原廢水的吸附平衡時間為6h;該吸附交換過程為放熱過程,溫度越高樹脂吸附交換量越低,低溫有利於樹脂吸附交換反應的進行;高pH值有利於吸附交換的進行;含鹽量對該過程的影響主要是來自於廢水中大量的SO~(2-)_4離子的競爭交換作用。除了上述靜態因素,考察了動態因素對吸附交換的影響。流速低時,處理效果較好,隨著流速的增加,穿透時間提前,並且穿透曲線的形狀趨於平坦,完全穿透時間延長。隨著溶液pH值的增加,流出液的CODCr降低,表明高pH值有利於吸附交換反應。當含鹽量加倍時,穿透時間大大提前,表明含鹽量是影響該吸附交換過程的重要因素之一。以NaOH溶液為洗脫劑,採用高溫、高濃度、低流速洗脫劑洗脫有利於床層的再生。以DSD酸鈉鹽為代表物研究DSD酸在D301R樹脂上的吸附交換過程。分別應用Langmuir模型、Freundlich模型和Langmuir-Freundlich模型採用非線性最小二乘法對等溫平衡吸附數據進行擬合,結果發現Langmuir-Freundlich模型能更准確反映該吸附交換過程。以三參數方程描述該吸附交換過程,獲得了不同溫度時D301R吸附交換DSD酸的標准自由能變以及不同吸附交換量下的吸附交換焓變,從理論上證明了該吸附交換過程是放熱過程。DSD酸鈉鹽在D301R樹脂上的靜態吸附交換顯示了良好的動力學特徵。對動態吸附交換實驗數據進行擬合,其符合一級反應動力學過程。進一步研究測定交換率(F)與時間(t)的關系,發現實驗數據按「[1-3(1-F)~(2/3)+2(1-F)]-t」標繪,呈良好的線性關系,線性相關系數為0.99957,說明該過程為顆粒擴散控制。

4. 離子交換怎麼試驗

離子交換法是一種藉助於離子交換劑上的離子和廢水中的離子進行交換反應而除去廢水中有害離子的方法。離子交換是一種特殊吸附過程,通常是可逆性化學吸附;其特點是吸附水中離子化物質,並進行等電荷的離子交換。
離子交換劑分無機的離子交換劑如天然沸石,人工合成沸石,及有機的離子交換劑如磺化煤和各種離子交換樹脂。
在應用離子交換法進行水處理時,需要根據離子交換樹脂的性能設計離子交換設備,決定交換設備的運行周期和再生處理。通過本實驗希望達到下述目的:
1) 加深對離子交換基本理論的理解;學會離子交換樹脂的鑒別;
2) 學會離子交換設備操作方法;
3) 學會使用手持式鹽度計,掌握pH計、電導率儀的校正及測量方法。
二、實驗內容和原理
由於離子交換樹脂具有交換基因,其中的可游離交換離子能與水中的同性離子進行等當量交換。 用酸性陽離子交換樹脂除去水中陽離子,反應式如下:
nRH + M+n → RnM + nH+
M——陽離子 n——離子價數
R——交換樹脂
用鹼性陰離子交換樹脂除去水中的陰離子,反應式如下:
nROH + Y−n → RnY + nOH-
Y——陰離子
離子交換法是固體吸附的一種特殊形式,因此也可以用解吸法來解吸,進行樹脂再生。
本實驗採用自來水為進水,進行離子交換處理。因為自來水中含有較多量的陰、陽離
子,如Cl¯, NH4+,Ca,Mg,Fe,Al,K,Na等。在某些工農業生產、科研、醫療衛生等工作中所用的水,以及某些廢水深度處理過程中,都需要除去水中的這些離子。而採用離子交換樹脂來達到目的是可行的方法。

5. 陰離子交換樹脂吸附交換質粒DNA的原理是什麼

DNA在溶液狀態下會電離出H離子,本身帶負電荷~~

6. 「離子交換樹脂的再生」的意思是什麼

離子交換樹脂為什麼要再生?

離子交換樹脂在長時間使用之後,吸附能力逐漸會達到飽和,樹脂吸附能力達到飽和之後,就無法繼續吸附水中的雜質,就需要對樹脂進行再生處理,在實際運用中,為降低再生費用,要適當控制再生劑用量,使樹脂的性能恢復到最經濟合理的再生水平,通常控制性能恢復程度為70~80%左右。


離子交換樹脂的再生方法:

1、大孔吸附樹脂簡單再生的方法是用不同濃度的溶劑按極性從大到小剃度洗脫,再用2~3BV的稀酸、稀鹼溶液浸泡洗脫,水洗至PH值中性即可使用。

2、鈉型強酸性陽樹脂可用10%NaCl 溶液再生,用葯量為其交換容量的2倍 (用NaCl量為117g/ l 樹脂);氫型強酸性樹脂用強酸再生,用硫酸時要防止被樹脂吸附的鈣與硫酸反應生成硫酸鈣沉澱物。為此,宜先通入1~2%的稀硫酸再生。

3、氯型強鹼性樹脂,主要以NaCl 溶液來再生,但加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的鹼鹽液再生,常規用量為每升樹脂用150~200g NaCl ,及3~4g NaOH。OH型強鹼陰樹脂則用4%NaOH溶液再生。

4、一些脫色樹脂 (特別是弱鹼性樹脂) 宜在微酸性下工作。此時可通入稀鹽酸,使樹脂 pH值下降至6左右,再用水正洗,反洗各一次。

7. 離子交換色譜的原理以及陰陽離子交換樹脂的特性

離子交換樹脂的結構:

離子交換樹脂主要由高分子骨架和活性基團兩部分組成,高分子骨架是惰性的網狀結構骨架,是不溶於酸或鹼的高分子物質,常用的離子交換樹脂是由苯乙烯和二乙烯苯聚合得到樹脂的骨架。

而活性基團不能自由移動的官能團離子和可以自由移動的可交換離子兩部分組成,可交換離子能夠決定樹脂所吸附的離子,比如可交換離子為H型陽離子交換樹脂,那麼這個樹脂能夠吸附的離子,就是H型陽離子,而官能團離子能夠決定樹脂的「酸"、「鹼"性和交換能力的強弱,比如官能團離子是強酸性離子,那麼樹脂就是強酸性離子交換樹脂。


離子交換樹脂的內部結構:

1.凝膠型樹脂是由純單體混合物經縮合或聚合而成的,結構為微孔狀,合成的工藝比較簡單,孔徑大概在1-2nm左右,凝膠型樹脂的操作容量高,產水量高,物理強度好,且再生效率高,被廣泛應用在食品飲料加工,超純水制備,飲用水過濾,硬水軟化,製糖業,制葯等領域。

2.大孔型樹脂的孔徑一般在10nm左右,在樹脂中孔徑是比較大的,所以被稱為大孔型樹脂,且孔徑不會隨著周圍的環境而變化,能夠彌補凝膠型樹脂不能在非水系統中使用的缺點,吸附能力非常強大,不易碎裂,耐氧化好,操作容量高,能夠應用在醫葯領域、除重金屬污染、葯品純化、水處理中除去碳酸硬度、冷凝水精處理等領域。

詳情點擊:網頁鏈接

8. 離子交換層析是DNA濃縮的方法嗎

離子交換層析常用來分離濃縮蛋白質。是利用離子交換劑作為基質,使蛋白質依據其所帶電荷不同被分離的一種柱層析技術

9. 什麼是離子交換樹脂的轉型

離子交換樹脂轉型有什麼好處?

1、方便運輸,有效的減少運輸時樹脂被污染版的可能。

2、可以避權免PH值下降,不會出現副作用,且可用鹽水再生。

3、能夠更好、更快的對水中的離子進行吸附,使效率加快。

4、不會釋放出強酸性的離子,不需要使用其他物質將強酸性的離子進行置換。

離子交換樹脂能夠轉為哪些類型?

1、陽離子樹脂可以使用氯化鈉,進行轉化成為鈉型樹脂,可以更好的對水中的鈣鎂等離子進行吸附,且樹脂反應時不會釋放出氫離子,再生時不需要使用強酸,而是使用食鹽水進行再生,更加的安全。

2、陰離子交換樹脂可以轉化為氯型樹脂,也可以轉變為碳酸氫型,在工作時可以更好的將陰離子吸附,而且不再具有強鹼性,但是卻仍然具有離解性強和工作的pH范圍寬廣等能力。

3、樹脂還可以使用氯化氫(HCl)轉化,將樹脂轉化成為氫型樹脂,其官能團中含有大量的氫離子,氫型樹脂的大小一般在0.3-1.2mm之間,主要的作用就是將硬水軟化,硬水中含有大量的鈣、鎂等離子,氫型樹脂中的氫離子能夠有效的將這些離子吸附、替換,將硬水軟化成為軟水,氫型樹脂能夠和納型樹脂相互轉換。

10. 微生物發酵產物離子交換提取法原理

90、穩態:神經系統、體液和免疫系統調節下,內環境的相對穩定
溫度、pH、滲透壓,水、無機鹽、血糖等化學物質含量
血漿 7.35—7.45 緩沖對 NaHCO3/H2CO3 Na2HPO4/NaH2PO4
2/3細胞內液 組織液

91、65%體液 1/3細胞外液 血漿 淋巴
(內環境) 不是血液 血液>血漿>血清
食物 排尿
92、體內水來源 飲水 水排出途徑 出汗 皮膚
代謝水(有氧呼吸)面蟲、駱駝 呼氣 肺
(氨基酸脫水縮合) 排遺 消化道
93、K不吃也排 不經過出汗排
腎上腺分泌醛固酮(固醇) 保Na排K
高溫工作、重體力勞動、嘔吐、腹瀉→→應特別注意補充足夠的水、Na(食鹽)
細胞外液滲透壓下降,出現四肢發冷、血壓下降、心率加快
K對細胞內液細胞滲透壓起決定作用,維持心肌緊張、心肌正常興奮性 K心
94、血糖三來源(食物、分解、轉化) 三去向
糖的主要功能:供能
胰島素 唯一降血糖激素;增加糖的去路,減少糖的來源 胰高血糖素、 腎上腺素 升血糖
胰高血糖素促進胰島素分泌,胰島素卻抑制胰高血糖素分泌
血 糖 升 高
↓ ↑ ↑
下丘腦某區域→胰島B細胞 胰高血糖素↑ 腎上腺素↑
↓ ↑ ↑
胰島素↑ 胰島A細胞 腎上腺髓質
↓ ↑ ↑ 下丘腦另一區域
血 糖 降 低
<50-60 低早 <45 低晚 >130高 >160-180糖尿
一次性攝糖過多,暫時尿糖 持續糖尿不一定糖尿病,如腎炎重吸收不行
糖尿病 血糖高且有糖尿 驗尿驗血 三多一少症狀?
不吃少吃多吃含膳食纖維多的粗糧和蔬菜
95、營養物質:
蛋白質不足:嬰幼兒、兒童、少年生長發育遲緩、體重過輕 成年人浮腫
提供能量
營養物質功能 提供構建和修復機體組織的物質
提供調節機體生理功能的物質
維生素:維持機體新陳代謝、某些特殊生理功能

VA:夜盲症
維生素 VB:腳氣病
VC:壞血病
VD:佝僂病、骨軟化病、骨質疏鬆症
96、溫度感受器分為冷覺感受器和溫覺感受器(分布皮膚、粘膜、內臟器官)
體溫來自代謝釋放熱量(不是ATP提供),體溫恆定是產熱量,散熱量動態平衡結果
寒冷 炎熱
↓ ↓
皮膚冷覺感受器 溫覺感受器 血管
↓傳入神經 ↓ 立毛肌
下丘腦體溫調節中樞 下丘腦 骨骼肌
傳出神經 ↓ 汗
皮膚血管收縮 骨骼肌戰粟(產能特多) 血管舒張
皮膚立毛肌收縮 皮膚立毛肌收縮 汗液分泌增多
↓雞皮疙瘩 腎上腺素↑
縮小汗毛孔 甲狀泉激素↑
減少散熱 增加產熱 散熱量增加 不能減少產熱
調節水分、血糖、體溫
97、下丘腦 分泌激素:促激素釋放激素 抗利尿激素
感受刺激:下丘腦滲透壓感受器
傳導興奮:產生渴覺
第一道防線:皮膚、粘膜等
非特異性免疫(先天免疫)第二道防線:體液中殺菌物質、吞噬細胞
98、免疫 特異性免疫(獲得性免疫) 第三道防線:體液免疫和細胞免疫
在特異性免疫中發揮免疫作用的主要是淋巴細胞
淋巴細胞的起源和分化:胸腺—T 骨髓—B
免疫細胞:B、T
免疫系統的物質基礎 免疫器官:扁桃體、淋巴結、脾
免疫物質:抗體、淋巴因子(白介素、干擾素)
99、抗原特點:①一般異物性 但也有例外:如癌細胞、損傷或衰老的細胞
②大分子性
③特異性 抗原決定簇(病毒的衣殼)
100、體液免疫: 記憶細胞
↓ ↓再次受相同抗原刺激
抗原→→吞噬細胞→→T細胞→→B細胞→→→效應B細胞→→→抗體
↑ (攝取處理) (呈遞) (識別)
感應階段 反應階段 效應階段
效應B細胞產生:抗體(免疫球蛋白)、抗毒素、凝集素
效應T細胞產生:淋巴因子、干擾素、白細胞介素
識別抗原:B細胞、效應T細胞、記憶B/T
效應B細胞獲得有三途徑(直接、間接、記憶)
記憶細胞受相同抗原再次刺激後引起的二次免疫反應:更迅速、更強
再次接受過敏原(概念)
過敏反應 抗體分布 細胞表面
組織胺:體液調節
101、免疫失調引起的疾病 自身免疫疾病:風濕…類風濕…系統性紅斑狼瘡
先天性:先天性胸腺發育不全
免疫缺陷病 獲得性:艾滋病、肺炎、氣管炎
(人類免疫缺陷病毒) HIV↓攻擊T細胞
(AIDS) 獲得性免疫缺陷綜合症
102、色素吸收、傳遞、轉換光能 色素不能儲存光能
蛋白質、氨基酸也不能儲存
少數特殊狀態葉綠素a 最終電子供體:水
高能量、易失電子 光能→ 電能 最終電子受體:NADP+
103、C4植物:玉米、高梁、甘庶、莧菜
既C3又C4 CO2固定能力強 先CO2+C3→C4
C3、C4葉肉細胞都含正常葉綠體
選修 C3維管束鞘細胞無葉綠體
圖 C4維管束鞘細胞含無基粒的葉綠體 不進行光反應
(P29) C4植物花環型結構 里圈:維管束鞘細胞 外圈:部分葉肉細胞
降低呼吸消耗 增加凈光合量
104、提高產量 延長光合作用時間 光:光質、強度、長短
提高農作物對 增大光合作用面積 溫度:影響酶的活性
光能利用率 提高光合作用效率 水
礦質元素 N、P、K、Mg
CO2 農家肥、CO2發生器
105、生物固氮:N2 → NH3
根瘤菌的特異性:蠶豆根瘤菌侵入蠶豆、菜豆、豇豆;大豆根瘤菌侵入大豆。
N素
根瘤菌 有機物 豆科植物 異養需氧
共生固氮菌 根瘤 薄壁細胞 愈傷組織
固氮菌 自生≠自養 根瘤菌拌種 豆科植物綠肥
自生固氮菌:圓褐固氮菌(固氮+激素)
生物固氮(主:根瘤菌) 工業固氮 高能固氮
106、N循環 硝化、反硝化、氨化作用
反硝化:氧氣不足NO3-→N2
自生固氮菌的分離原理:無氮培養基對固氮菌的選擇生長
物質基礎:線粒體、葉綠體中的DNA(質基因)
…線粒體
107、細胞質遺傳 典型代表 …葉綠體 花斑植株→三種
特點 母系遺傳(受精卵中的細胞質幾乎全來自卵細胞)
後代性狀不出現一定分離比
(形成配子時,質基因不均等分配)
編碼區:編碼蛋白質 連續的
原核細胞 非編碼區 編碼區上游:RNA聚合酶結合位點
基因結構 調控 編碼區下游
108、基因的結構 真核細胞 非編碼區
基因結構 編碼區 內含子:非編碼序列
外顯子:能編碼蛋白質內含子>外顯子
原核基因無外顯子內含子之說
主要分布於微生物
剪刀:限制性內切酶 特異性(專一性)
(200多種) 獲得粘性末端
109、基因的操作工具 針線:DNA連接酶:扶手(磷酸二脂鍵)不是踏板(氫鍵)
條件①復制保存②多切點③標記基因
種類:質粒、病毒
運輸工具:運載體 ①染色體外小型環狀DNA
②存在於細菌、酵母菌
質粒特點 ③質粒是常用的運載體
④最常用:大腸桿菌
⑤對宿主細胞的生存無
基因工程 (基因拼接技術、DNA重組技術、轉基因技術) 決定性作用
直接分離 常用鳥槍法
提取目的基因 人工合成(反轉錄法、根據已知AA序列合成DNA)
目的基因與運載體結合 同一種限制酶
110、基因操作步驟 將目的基因導入受體細胞→細菌、酵母菌、動植物
CaCl2處理細胞壁 ( 受精卵好 繁殖速度快)
目的基因的檢測和表達:標記基因、目的基因是否表達?
逆轉錄 鹼基互補配對
mRNA 單鏈DNA 雙鏈DNA
推測 推測 合成
氨基酸序列 mRNA序列 DNA鹼基序列 目的基因
葯(胰島素、干擾素、白細胞介素、乙肝疫苗)
111、基因工程的成果 治病:基因診斷與基因治療(基因替換)
新品種(轉基因) 食品工業(食物)
環境監測(DNA分子雜交 探針)
生物固氮、基因診斷、基因治療、單細胞蛋白(微生物菌體本身)、
單克隆抗體、生物導彈(單抗+抗癌葯物)
112、 間接聯系 核心 核膜
高爾基體 內質網 細胞膜
線粒體膜
間接(具膜小泡) (內吞外排說明雙向)
分泌蛋白:抗體、蛋白質類激素、胞外酶(消化酶)等分泌到細胞外
粗面內質網上的核糖體 內質網運輸加工 高爾基體加工 成熟蛋白質 胞外
113、生物膜系統(不等於生物膜):細胞膜、核膜及由膜圍繞而成的細胞器
離體→營養物質+激素 適宜溫度+無菌
植物組織培養 離體→愈傷組織→根芽(胚狀體)→植物體
選無病毒 尖(生長點) 紫草素
114、植物細胞工程 兩種不同→雜種細胞→新植物體
植物體細胞 去掉細胞壁→原生質體→雜種細胞→新植物體
雜交 種間存在生殖隔離 不能有性雜交
好處:克服遠源雜交不親和障礙 培育新品種
是其它動物細胞工程技術的基礎
動物細胞培養 液體培養基:動物血清
115、 動 取自動物胚胎或出生不久的幼齡動物的器官或組織
物 用胰蛋白酶處理
細 原代培養→傳代培養(細胞株→細胞系 遺傳物質發生改變)
胞 滅活的病毒做誘導劑+物理、化學方法
工 動物細胞融合 最重要用途:制備單克隆抗體
程 理論基礎:細胞膜的流動性
單克隆抗體→指單個B淋巴細胞經克隆形成的細胞群產生的化學性質單一、特異性強的抗體(優點:特異性強、靈敏度高)。每一個B淋巴細胞只分泌一種特異性抗體(共百萬種) *雜交瘤細胞 *生物導彈
116、微生物包含了除植物界和動物界以外的所有生物
質粒(小型環狀DNA)控制抗葯性、固氮、抗生素生成
核區(大型環狀DNA)控制主要遺傳性狀 有的細菌有莢膜、芽孢、鞭毛
碳源:無機/有機碳源 自養/異養
117、 微生物生長 氮源:加不加額外的氮源
所需的營養物質 生長因子:(維生素、氨基酸、鹼基→構成酶和核酸)
水:
無機鹽:
固體培養基:分離、鑒定、計數
物理性質 半固體培養基:運動、保藏菌種
液體培養基:工業生產
118、培養基 天然培養基:工業生產
化學性質 合成培養基:分類鑒定
選擇培養基 青黴素→選出酵母菌、黴菌等真菌
用途 NaCl:金黃色葡萄球菌
鑒定培養基:伊紅美藍→大腸桿菌→深紫色和金屬光澤
自己設計實驗:把混合在一起的圓褐固氮菌、硝化細菌、大腸桿菌區分開,並篩選純種。

酶合成的調節 誘導酶:基因和誘導物控制
119、微生物代謝調節 酶活性的調節 結構改變 可逆 快速 准確
必需物質,一直產生 氨基酸、核苷酸、維生素
初級代謝產物 無種的特異性 多糖、脂類
120、代謝產物 非必需物質,一定階段 抗生素、毒素
次級代謝產物 有種的特異性 四素 色素、激素
121、微生物群體生長曲線: 3

2 4
1

(1)調整期:代謝活躍,開始合成誘導酶 初級代謝產物收獲的最佳時期
(2)對數期:形態和生理特性穩定,代謝旺盛;科研用菌種,接種最佳時期
(3)穩定期:次級代謝產物收獲最佳時期,芽孢生成(種內斗爭最劇烈)
及時補充營養物質,可以延長穩定期
(4)衰亡期:多種形態,出現畸形,釋放次級代謝產物 生存環境惡劣
與無機環境斗爭最激烈的是4衰亡期。
營養物質消耗有害代謝產物積累PH不適宜導致3.4時期的出現。
注意:前三個時期類似「S」型增長曲線,但是多了衰亡期
122、影響微生物生活的環境因素
PH值:影響酶的活性、細胞膜的穩定性,從而影響微生物對營養物質的吸收
溫度:影響酶和蛋白質的活性
O2濃度:產甲烷桿菌
123、高壓蒸汽滅菌法:1/5、1/2、2/3、75% 由里向外、細密、不重復
溶化後分裝前必須要 調節pH
細菌培養的過程:培養基的配製→滅菌→擱置斜面→接種→培養觀察
實例:谷氨酸發酵(黃色短桿菌、谷氨酸棒狀桿菌)
概念:
菌種選育:誘變育種、基因工程、細胞工程
培養基的配製:成分、比例,pH適宜
124、發酵工程 內容 滅菌:去除雜菌
擴大培養和接種:菌種多次培養達到一定數量
發酵過程:(中心階段)控制各種條件,生產發酵產品
分離提純 菌體:過濾、沉澱(單細胞蛋白即微生物菌體本身)
代謝產物:蒸餾、萃取、離子交換
應用 醫葯工業:生產葯品和基因工程葯品
食品工業:傳統發酵產品、食品添加劑、單細胞蛋白等
125、 C/N=4/1 菌體大量繁殖但產生的谷氨酸少(P79)
記住 C/N=3/1 菌體繁殖受抑制,但谷氨酸的合成量大增
溶氧不足: 產生乳酸或琥珀酸
pH呈酸性: 產生乙醯谷氨醯胺(P95)
專家提供:

閱讀全文

與離子交換基因相關的資料

熱點內容
阻燃廢水 瀏覽:399
ro膜必須 瀏覽:470
家庭裝前置凈水器應如何選購 瀏覽:482
食品污水處理板框壓濾與離心機 瀏覽:928
月經回經可以用婦科葯嗎 瀏覽:227
衛生院醫療廢水自查報告 瀏覽:601
飲水機抽水機不出水怎麼回事 瀏覽:219
凈水器的陶瓷芯為什麼發黃 瀏覽:521
主角叫龍一的異界小說 瀏覽:224
昂克賽拉空氣濾芯哪裡買 瀏覽:636
胎牛血清需要過濾嗎 瀏覽:191
有沒有百合囚禁文 瀏覽:945
山東屠宰污水處理設備多少錢 瀏覽:736
鐵雨中國形象 瀏覽:344
不卡看電視的網址 瀏覽:86
房間包廂電影 瀏覽:67
青海廢水處理氨氮超標怎麼處理 瀏覽:636
混凝土污水使用記錄表 瀏覽:986
適量污水對魚類有什麼影響 瀏覽:296
瓊天電影院今日影訊 瀏覽:570