A. 離子交換法原理
採用鹼性陰離子交換樹脂,A-Cl + I- =A-I + Cl-。離子交換法一般應用於生化產品的制備、純水的制備等。原理內:根據目的物與雜質在容不同pH下所帶電荷的不同選擇相應的離子交換樹脂。你的實驗是提取碘,在溶液中,碘離子帶負電荷,那麼就要選擇陰離子交換樹脂,要麼強鹼性,要麼弱鹼性,如果原液ph>9,就必須用強鹼性樹脂,在9以下,強鹼弱鹼都可以。你可以都試試。碘酸屬於中強酸,優先選擇弱鹼性陽離子交換樹脂。
B. 離子交換法有哪些優點
離子交換法是液相中的離子和固相中離子間所進行的一種可逆性化學反應,當液相中的某些離子較為離子交換固體所喜好時,便會被離子交換固體吸附,為維持水溶液的電中性,所以離子交換固體必須釋出等價離子回溶液中
C. 離子交換分離法
磺酸型陽離子交換樹脂在稀鹽酸介質中,可吸附鋯氧離子,經1~2mol/LHCl淋洗,僅釷和稀專土留在屬交換柱上,鈦則部分分離,其他多數元素均能分離。再用4mol/LHCl淋洗,即可使鋯與釷和稀土分離。
此外,在鹽酸-過氧化氫溶液中,鋯(鉿)均可吸附於陽離子交換柱上,再用檸檬酸或草酸淋洗可進行定量分離。
某些陰離子交換樹脂在鹽酸溶液中,能吸附鋯、鉿、鈾和鈰,釷不被吸附。在氫氟酸介質中,鋯被吸附而與鋁、鐵分離。
D. 離子交換法的發展歷程
因為超濾膜反滲透膜的飛速發展,離子交換法在很多領域正逐步退出市場。
特別在處理水版量較大的行業,如權電廠、水廠等,因為膜法處理佔地面積小(就目前見過的,同等產水佔地至少小一半),維護簡便,
因此即使初期投資比離子交換法大,很多新建水處理項目還是採用膜法處理。
但是離子交換法有些技術還不是膜法能達到,其出水較混床純度低,因此需要製取高純水等級的
經常採用膜法+離子交換混合使用,或者加用EDI。離子交換還有些設備暫時沒有其他可以替代,例如高速混床。
離子交換的發展方向就是樹脂交換速度更快,結構更穩定耐用。交換容量更大這些方面了。
說實話我不看好離子交換的未來,我就是學這個,畢業也在電廠用過離子交換和膜法,膜法優勢實在太大,佔地小、維護簡單、維護一般不涉及酸鹼(化學清洗除外)。只有混床是好東西,膜法要達到同樣效果只有用EDI,那投資和運行成本比混床高,雖然佔地、維護還是劣勢,但費用比混床高多了。
以上就是我了解的離子交換法在水處理行業的境遇,至於其他離子交換法法用途,例如層析、萃取等實驗室用途,不了解╮(╯▽╰)╭
看樹脂種類,發展歷史,你可以找找美國羅門哈斯樹脂,那是全球最大樹脂供應商,品質也是最好那批。
E. 離子交換法 的名詞解釋
離子交換抄法是通過離子交換劑上襲的離子與水中離子交換以去除水中陰離子的方法。
離子交換法(ion exchange process)是液相中的離子和固相中離子間所進行的的一種可逆性化學反應,當液相中的某些離子較為離子交換固體所喜好時,便會被離子交換固體吸附,為維持水溶液的電中性,所以離子交換固體必須釋出等價離子回溶液中。
F. 如何利用連續離子交換法對糖液進行脫色提純
木糖生產一般使用離子交換法來達到脫鹽脫灰的目的。最直接的可見效果是大幅度內降低電容導率和提升透光度。木糖生產一般採用玉米芯或秸稈的水解液,然後通過活性炭硅藻土脫色或膜法脫色(注意控制木質素,其會嚴重堵膜)、通過中合法或者酸糖分離法、電滲析等大幅度降低 料液電導至≤4000us/cm,再使用大孔吸附樹脂提高透光度至80%,PH≥3的程度。此時糖液很澀,不符合要求,最後使用陰陽樹脂進行脫鹽脫灰。料液電導仍有4000us是由於其游離的離子較多,離子分為陽離子和陰離子。色素也有離子型色素和苯酚類色素,離子交換法其應用原理是利用陰陽樹脂所帶的不同官能集團對不同的離子和色素進行交換。陽樹脂吸附陽離子置換下來氫離子,陰樹脂吸附陰離子置換下來氫氧根,兩者中和電導降低,而離子型色素也吸附在樹脂上以達到脫鹽脫灰的效果。若前處理妥當,離子交換法能保證料液透光≥95%,電導≤50us/cm,此時已經完全沒有澀味符合食品要求,接著進行濃縮、旋蒸、噴霧乾燥得到合格產品。
G. 何為離子交換法常見的離子交換樹脂一般可分為哪幾種
離子交換法的應用,非常廣泛,工農業生產各行各業,從飲用自來水到污水處理,從食品生版產到服飾的印染業,以及電力權,化工,造紙等…其中的離子交換樹脂起著至關重要的作用,至於離子交換樹脂種類不是幾種,相關型號都幾十上百個型號…不知你具體講的是那個行業生產,所以我不能把幾十上百個種樹脂都跟你吧,呵呵!當然我也講不出來…。華粼水處理
H. 離子交換法
陽離子交換樹脂對鹼金屬的吸附能力隨其水化物離子半徑的減小而增強專。根據鹼金屬屬的活度系數,陽離子交換樹脂對其吸附能力的次序為:Cs>Rb>K>NH+4>Na>Li。
有些無機化合物對鹼金屬有選擇性的吸附作用,可作為離子交換劑用。
磷酸鋁在水溶液中能吸附銣、銫,其分離系數比合成樹脂還高。交換柱上的銣、銫可分別用稀硝酸及高於1mol/LHNO3洗脫。
在硝酸溶液中,銣、銫可被磷鉬酸銨吸附,與鉀、鈉、鋰分離,再用2mol/L和6mol/LNH4NO3溶液洗脫銣、銫。當氧化鉀含量低於50mg時,銣、銫回收率均在90%以上。
陰離子交換樹脂在一定條件下,雖可用於鹼金屬彼此之間的分離,但大多數情況是作為分離其他元素用。
在鹽酸溶液中,鈷、鋅、鐵、鎘形成穩定的氯陰離子,能被強鹼性陰離子交換樹脂吸附,或上述元素及釩與檸檬酸作用後,也可被陰離子交換樹脂吸附而與鹼金屬分離。
鈣、鎂在EDTA的乙醇溶液中,或其他一些兩價金屬在有EDTA或乙酸鹽存在下,均可被陰離子交換樹脂吸附,因此可用作鹼金屬與鹼土金屬的分離。
I. 離子交換法的原理
吸附()
溶液中的離子與樹脂上官能團發生反應,並結合到樹脂上的過程。
淋洗(elution)
用一定濃度的淋洗劑將已吸附在離子交換樹脂上的金屬由樹脂轉移到水溶液中的過程,又稱解吸。
轉型(transformation)
將樹脂從一種型式轉變為其他離子型式的過程。
離子交換樹脂(ion exchange resin)
一種帶有官能團(有交換離子的活性基團)、具有網狀結構與不溶性的高分子聚合物。通常是球形顆粒物。
飽和樹脂(loadedresin)
在某一特定條件下,當吸附尾液中被吸附離子的濃度與進料液中濃度相等或達到動態平衡時的離子交換樹脂。
離子交換法是以圓球形樹脂(離子交換樹脂)過濾原水,水中的離子會與固定在樹脂上的離子交換。常見的兩種離子交換方法分別是硬水軟化和去離子法。硬水軟化主要是用在反滲透(RO)處理之前,先將水質硬度降低的一種前處理程序。軟化機裡面的球狀樹脂,以兩個鈉離子交換一個鈣離子或鎂離子的方式來軟化水質。
離子交換樹脂利用氫離子交換陽離子,而以氫氧根離子交換陰離子;以包含磺酸根的苯乙烯和二乙烯苯製成的陽離子交換樹脂會以氫離子交換碰到的各種陽離子(例如Na+、Ca2+、Al3+)。同樣的,以包含季銨鹽的苯乙烯製成的陰離子交換樹脂會以氫氧根離子交換碰到的各種陰離子(如Cl-)。從陽離子交換樹脂釋出的氫離子與從陰離子交換樹脂釋出的氫氧根離子相結合後生成純水。
陰陽離子交換樹脂可被分別包裝在不同的離子交換床中,分成所謂的陰離子交換床和陽離子交換床。也可以將陽離子交換樹脂與陰離子交換樹脂混在一起,置於同一個離子交換床中。不論是哪一種形式,當樹脂與水中帶電荷的雜質交換完樹脂上的氫離子及(或)氫氧根離子,就必須進行「再生」。再生的程序恰與純化的程序相反,利用氫離子及氫氧根離子進行再生,交換附著在離子交換樹脂上的雜質。
J. 離子交換過程的5個步驟
離子交換過程歸納為如下幾個過程1.水中離子在水溶液中向樹脂表面擴散2.水中離子進入樹脂顆粒的交聯網孔,並進行擴散3.水中離子與樹脂交換基團接觸,發生復分解反應,進行離子交換4.被交換下來的離子,在樹脂的交聯網孔內向樹脂表面擴散5.被交換下來的離子,向水溶液中擴散影響交換的主要因素有流速、原料液濃度、溫度等。流速原料液的流速實際上反映了達到反應平衡的時間,在交換過程中,離子進行擴散—交換—擴散一系列步驟,有效地控制流速很重要。一般,交換液流速大,離子的透析量就高,未來及交換而通過樹脂層流失的量增多。因此,應根據交換容量等選擇適宜的流速。原料液濃度樹脂中可交換的離子與溶液中同性離子既有可能進行交換,也有可能相斥,液相離子濃度高,樹脂接觸機會多,較易進入樹脂網孔內,液相濃度低,樹脂交換容量大時,則相反。但液相離子濃度過高,將引起樹脂表面及內部交聯網孔收縮,也會影響離子進入網孔。實驗證明,在流速一定時,溶液濃度越高,溶質的流失量液越大。溫度溫度越提高,離子的熱運動越劇烈。單位時間碰撞次數增加,可加快反應速率。但溫度太高,離子的吸附強度會降低,甚至還會影響樹脂的熱穩定性,經濟上不利,實際生產中採用室溫操作較宜。
贊同0
暫無評論