㈠ 磷對環境有什麼危害能詳細點說出它的原因嗎
1、會產生赤潮,因為大量的磷、氮等元素會使海水營養化,使藻類大量繁殖,導致藻類植物不停的擴大領域,使海中動物缺氧(因為藻類繁殖要溶解氧,且大面積的藻類使大氣與水隔開)、誤食有毒藻類等,遭受大面積死亡。
2、磷對土壤的危害 ,所謂的土壤污染就是向土壤中排放的物質超過了其本身的自凈能力,土壤質量發生了不良變化,危害了人類健康和生存。如今,隨著人類活動范圍和深度的增大,各種物質輸入土壤的數量與速度也大大增加了,這就超過土壤的自凈能力,破壞了自然生態平衡。污染物質逐漸積累,導致了土壤自然正常功能失調。更為嚴重的是,由於土壤污染物質的遷移轉化,毒化空氣和水質;或通過植物吸收,降低農副產品的生物學質量,造成殘毒通過食物鏈傳遞最終危害人類的生命和健康。甚至造成土壤的板結、鹼化和沙化,使土壤喪失了提供農作物生長的必要條件。
磷對土壤的污染主要是人為污染,來源於人類過量施用農葯、化肥及污水灌溉等。
希望對你有用。
㈡ 污水中去除磷的重要性
污水處理中去除磷是非常重要的環節,因為廢水中的氮和磷能夠與微生物反應生產對生物有害的物質,還有就是氮與磷發生反應的過程中,需要消耗大量的氧氣,使水體氧氣濃度大幅度下降,水中的魚蝦等生存受到嚴重影響,而現在可以完全解決難題的就是青島弘國環境工程技術公司了,推出的物化BFMS技術、生化EBR技術及DW型疊螺式污泥脫水機,大中型企業得到了廣泛的應用。
㈢ 磷對環境的危害
隨著工農業生產的增長,人口的增加,含磷農葯和農肥的大量使用,使水體的磷污染日益嚴重。磷是地球系統中維系生命的主要元素之一,也是構成生物體並參與新陳代謝過程必不可少的元素。但水體中如果磷含量超過20mg/L,就會導致水體富營養化,造成藻類大量繁殖,藻體死亡後分解會使水體產生霉味和臭味,影響魚類等水生生物的生存 一、引言 伴隨著我國化工行業的高速發展,近二十年來,我國磷化工得到了迅速的發展,並取得了令人鼓舞的成績。但是,伴隨著磷化工的發展而產生的環境污染狀況也日趨嚴重。因此,防治磷化工污染,保護生態環境,合理利用不可再生的有限資源,是我國磷化工健康發展所面臨的一項迫切任務和重要課題,認識磷污染的危害和研究除磷的方法具有重大的現實意義。 二、磷化工污染的危害 我國現有磷化工生產企業300家左右,從業人數十餘萬人,已形成固定資產約60億元,約佔全國化工固定資產總額的20%左右。主要產品有磷礦石、硫酸、普通過磷酸鈣、鈣鎂磷肥、重過磷酸鈣、黃磷、赤磷、磷酸(包括工業級和食品級)、三聚磷酸鈉、磷酸氫鈣(包括飼料級和牙膏級)、三氯化磷、五硫化二磷、磷酸三鈉、磷化鋅、磷化鋁、含磷農葯、有機磷水質穩定劑、金屬磷化劑等。我國磷化工行業給社會提供了大量的物資財富,同時也伴隨著產生了大量的污染物,主要是廢氣和粉塵、廢水、固體廢物(簡稱「三廢」)。這些污染物中含有許多有毒有害的物質進入了大氣,江河湖海和陸地成為我國環境污染最主要的來源之一。 1.廢氣和粉塵。磷化工在生產過程中產生的廢氣主要有一氧化碳、二氧化硫、二氧化碳、氟化氫、四氟化硅、磷化氫、硫化氫等,還會產生一些粉塵。 一氧化碳(CO)是一種無色無味具有可燃性的有毒氣體。黃磷尾氣是產生CO的主要來源。因此,防止CO 2 氣體造成的全球變暖危害到了刻不容緩的嚴峻時刻。 二氧化硫(SO 2 )是一種無色而略有臭味的窒息性氣體,也是污染大氣的主要物質之一。 2.廢水。磷化工在加工生產中都要產生大量的含有磷、氟、硫、氯、砷、鹼、鈾等有毒有害物質的廢水。黃磷生產中要產生黃磷污水,其黃磷污水中含有50~390 mg/L濃度的黃磷,黃磷是一種劇毒物質,進入人體對肝臟等器官危害極大。長期飲用含磷的水可使人的骨質疏鬆,發生下頜骨壞死等病變。黃磷污水中還含有68~270 mg/L的氟化物,經過處理後可降至15~40 mg/L,但仍高於國家規定的10 mg/L的排放標准。 3.固體廢棄物。磷化工生產中產生的固體廢物主要有礦山尾礦、廢石;黃磷生產排出的磷渣、碎礦、粉礦、磷泥、磷鐵;濕法磷酸生產中產生的磷石膏;硫酸生產中排出的硫鐵礦渣、鈣鎂磷肥高爐灰渣等。這些固體廢物在廠區內長期堆積,不僅佔用大量土地,而且對周圍環境造成了較嚴重的污染。因此這些固體廢物的處理和利用是當前磷化工行業必須解決的實際問題 三、國內外常用除磷方法 1.化學沉澱法。該方法是通過投加化學沉澱劑與廢水中的磷酸鹽生成難溶沉澱物,可把磷分離出去,同時形成的絮凝體對磷也有吸附去除作用。常用的混凝沉澱劑有石灰、明礬、氯化鐵、石灰與氯化鐵的混合物等。為了降低廢水的處理成本,提高處理效果,學者們在研製開發新型廉價高效化學沉澱劑方面做了大量工作。研究發現,原水含磷 10mg/L時,投加 300mg/L的A1 2 (S0 4 ) 3 或 90mg/L的FeCl 3 ,可除磷70%左右,而在初沉時加入過量石灰,一般總磷可去除80%左右。他根據化學凝聚能增加可沉澱物質的沉降速度,投加新型凈水劑鹼式氯化鋁,沉降效果達80%~85%,很好地解決了生產用水的磷污染。該方法具有簡便易行,處理效果好的優點。但是長期的運行結果表明,化學沉澱劑的投加會引起廢水pH值上升,在池子及水管中形成堅硬的垢片,還會產生一定量的污泥。 2.生物法。20世紀70年代美國的Spector發現,微生物在好氧狀態下能攝取磷,而在有機物存在的厭氧狀態下放出磷。含磷廢水的生物處理方法便是在此基礎上逐步形成和完善起來的。目前,國外常用的生物脫磷技術主要有3種:第一,向曝氣貯水池中添加混凝劑脫磷;第二,利用土壤處理,正磷酸根離子會與土壤中的Fe和Al的氧化物反應或與粘土中的OH - 或SiO 32- 進行置換,生成難溶性磷酸化合物;第三種方法是活性污泥法,這是目前國內外應用最為廣泛的一類生物脫磷技術。生物除磷法具有良好的處理效果,沒有化學沉澱法污泥難處理的缺點,且不需投加沉澱劑。但要求管理較嚴格,成本較高。 3.離子交換法。該方法是利用強鹼性陰離子交換樹脂,與廢水中的磷酸根陰離子進行交換反應,將磷酸根陰離子置換到交換劑上予以除去的方法。離子交換樹脂脫除PO 43- 戶的交換容量比較穩定,其再生後交換容量也比較穩定。但離子交換樹脂的價格較高,樹脂再生時需用酸、鹼或食鹽,運行費用較高 4.吸附法。20世紀80年代,多孔隙物質作為吸附劑和離子交換劑就已應用在水的凈化和控制污染方面。黃巍等以粉煤灰作為吸附劑,對含磷50~120mg/L模擬廢水脫磷的規律特徵進行了研究。研究表明粉煤灰中含有較多的活性氧化鋁和氧化硅等,具有相當強的吸附作用,粉煤灰對無機磷酸根不是單純吸附,其中CaO、FeO、A1 2 O 3 等可以和磷酸根生成不溶或直溶性沉澱,因而在廢水處理方面具有廣闊的應用前景。吸附法由於佔地面積小、工藝簡單、操作方便、無二次污染,特別適用於低濃度廢水的處理而倍受關注。在吸附法研究中,尋找新的吸附劑是開發新的除磷工藝的關鍵所在,因此自然界廣泛存在的天然粘土礦物是人們研究的熱點。 5.膜分離方法。液膜分離法是一種新型的、類似溶劑萃取的膜分離技術。液膜法通常是將按一定比例配製的有機溶劑(有機相)同膜內試劑混合製成乳液微滴,微滴表面形成一層極薄的(l~10μm)液膜,膜內為內相試劑。在混合柱內,將此表面積極大的乳液微滴與廢水接觸,水中待除的金屬離子便通過選擇性滲透、萃取、吸附等穿過液膜,進入內相試劑進行化學反應,廢水中的金屬離子因而得到分離去除。
滿意請採納
㈣ 急急急!!!污水中氮和磷對環境有哪些危害分析生物脫氮除磷過程中不同階段微生物作用的特點
第1 卷第1 期
2 0 0 0 年2 月
環境污染治理技術與設備
Techniques and Equipment for Environmental Pollution Control
Vol . 1 , No . 1
Feb . , 2 0 0 0
生物脫氮除磷工藝中的
微生物及其相互關系
X
郭勁松 黃天寅 龍騰銳
(重慶建築大學城市建設學院,重慶400045)
摘 要
本文著重對近年來脫氮除磷微生物學方面的研究進展進行了綜述,分析了生物脫氮除磷
反應器中各類功能微生物間的相互作用關系,營養物代謝機理和對處理效率的貢獻,討論了
脫氮除磷生物學應深入研究的一些問題。
關鍵詞:廢水處理 脫氮除磷 微生物
一、前 言
生物方法脫氮除磷由於其處理效率高、運行成本較低、污泥相對易處理,受到廣泛重
視。目前已經發展了諸如A/ O、A2/ O、Bardenpho 、UCT、VIP、SBR 及氧化溝等較為成功
的脫氮除磷工藝。在生物脫氮除磷過程中,微生物的種類、數量和代謝活性以及它們之間
相互作用關系所形成的微生態系統的特徵,直接影響著廢水處理的效率。因此,分析研究
脫氮除磷微生物的種類及其相互作用的關系,對於生物脫氮除磷工藝的優化控制管理和
開發新工藝將會起到重要作用。
二、生物脫氮除磷活性污泥微生物組成
11 脫氮微生物
一般生物廢水處理反應器內的微生物都能降解蛋白質、多肽、氨基酸、尿素等含氮化
合物以獲得生命活動所需能量和其它小分子物質,並生成氨氮,這個過程稱為氨化[1 ] 。
蛋白質的分解過程如下[2 ] :
蛋白質
蛋白酶
蛋白腖
蛋白酶
多肽
肽酶
氨基酸
不同微生物所具有的蛋白酶也不盡相同,如枯草桿菌有明膠酶和酪蛋白酶,而大腸桿
菌沒有這兩種酶,因此不能分解明膠和酪蛋白。污水中能分解蛋白質的微生物種類很多,
特別是假單胞菌屬、牙孢菌屬中某些種均能產生蛋白酶。真菌中的麴黴、毛霉和木霉也能
X 本研究得到國家自然科學基金資助(59838300)
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
產生蛋白酶分解蛋白質。
氨基酸被吸收進入微生物細胞後,有的轉化為另一種氨基酸用於合成菌體蛋白質或
某些含氮化合物的合成。而另一部分氨基酸的降解主要通過脫氨基和脫羧基兩種方式。
由於微生物類型、氨基酸種類與環境條件不同,脫氨方式也不同,主要有:
a. 氧化脫氮:在有氧條件下好氧微生物將氨基酸氧化成酮基酸和氨。
b. 還原脫氮:在厭氧條件下,專性厭氧菌和兼性厭氧菌將氨基酸還原成飽和脂肪酸和
氨。
c. 水解脫氮和減飽和脫氮:不同氨基酸經此兩種方式脫氨生成不同的產物。如大腸
桿菌及變形桿菌水解色氨酸,生成吲哚、丙酮酸及氨;糞鏈球菌使精氨酸產生瓜氨酸;大腸
桿菌、變形桿菌、枯草桿菌和酵母菌等能將半胱氨酸分解為丙酮酸、氨和硫化氫。
硝化反應是在好氧狀態下由亞硝酸菌( Nit rosomonas ) 與硝酸菌( Nit robacter) 共同完
成的。亞硝酸菌有亞硝酸單胞菌屬、亞硝酸螺桿菌屬和硝酸球菌屬等,硝酸菌有硝酸桿
菌、螺菌屬和球菌屬等,兩者都屬專性好氧菌。硝化細菌幾乎生活在所有污水處理過程
中,它們都是革藍氏染色陰性,具有強烈的好氧性,不能在酸性條件下生長,由於這兩類細
菌不需要有機物作為養料,且是通過氧化無機的氮化合物得到所需的能量,故它們是化能
自養型的細菌[3 ] 。亞硝酸菌和硝酸菌以無機化合物CO2 -
3 、HCO -
3 及CO2 等為碳源,以
NH+
4 及NO -
2 為電子供體,O2 為電子受體,使氨氮氧化並合成新細胞,反應式可表示為:
55NH+
4 + 76O2 + 109HCO-
3
亞硝酸菌
C5H7NO2 + 54NO -
2 + 57H2O + 104H2CO3
400NO -
2 + NH+
4 + 4H2CO3 + HCO -
3 + 195O2
硝酸菌
C5H7NO2 + 3H2O + 400NO -
3
污水生物處理系統中微生物在無氧條件下大多具有反硝化能力,常見的有變形桿菌、
微球菌屬、假單胞菌屬、芽胞桿菌屬等[4 ] 。這些細菌利用硝酸鹽中的氧進行呼吸,氧化分
解有機物,將硝態氮還原為N2 或N2O ,其過程如下[5 ] :
NO -
3
硝酸鹽還原酶
NO -
2
亞硝酸鹽還原酶
NO
氧化氮還原酶
N2O
氧化亞氮還原酶
N2
Payne[6 ] (1973) 系統回顧了具有反硝化能力的廢水處理微生物,指出有些類群只具有
硝酸鹽還原酶,故只能將NO -
3 還原至NO-
2 ,如無色桿菌屬、放線桿菌屬、氣單胞菌屬、瓊
脂桿菌屬、芽孢桿菌屬等;而其它類群由於具有反硝化中的全部酶系,因此能將NO-
3 還
原成N2 ,如微球桿菌屬、丙酸桿菌屬、螺菌屬等。在所有反硝化菌中,有些是專性好氧菌,
有些是兼性厭氧菌。它們在好氧、厭氧或缺氧條件下,即使利用相同的有機基質,但通過
不同的呼吸途徑,產生的能量不同,同時細胞產量也不同。此外,少數專性和兼性自養細
菌也能還原硝酸鹽,如硫桿菌屬細菌能以氫氣還原性H2S 等無機物為電子供體,在厭氧
條件下利用NO -
3 作為電子受體來氧化還原性硫。
Kuenen J G等[7 ] (1987) 及Robert son L A. 等[8 ] (1992) 發現,許多異養型硝化細菌能
進行好氧反硝化反應,在產生NO -
3 和NO -
2 的過程中將這些產物還原,這為在同一反應
器中在同一條件下完成生物脫氮提供了可能。Vandegraaf 等[9 ] (1995) 研究發現異養硝
化、好氧反硝化細菌Thiosphaera pantot ropha 能把NH+
4 氧化成NO-
2 ,爾後通過反硝化途
徑將NO-
2 (與外源提供的NO -
2 和NO -
3 一起) 還原為N2 ,從而完成脫氮。
1 期 郭勁松等:生物脫氮除磷工藝中的微生物及其相互關系 9
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
Mnlder A 等[10 ] (1995) 發現氨確實可以直接作為電子供體進行反硝化反應,並稱之
為Anaerobic Ammonium Oxidation (厭氧氨生物氧化) 。Vandegraaf 等[11 ] (1996) 通過研
究,證實了厭氧氨生物氧化是一個微生物過程,在厭氧分批培養中,氨與硝酸鹽同時被轉
化,僅有微量的亞硝酸鹽積累,一旦硝酸鹽耗盡,氨轉化即停止,但其中起作用的菌屬還待
進一步研究。
21 除磷微生物
在有氧條件下攝取磷,在厭氧條件下釋放磷原理[12 ,13 ,14 ,15 ] ,目前已被普遍接受。
Fuhs 等[16 ] (1975) 對Baltimore Black River 和Seneca Falls 這兩個具有很好除磷效果的污
水廠曝氣池中的活性污泥進行檢測,發現不動桿菌屬( Acinetobacter) 與磷的去除密切相
關。Buchan[17 ] (1983) 研究分析了除磷效果良好的幾個試驗裝置及污水廠的曝氣活性污
泥,表明不動桿菌是其中的優勢菌種,他認為廢水生物除磷過程首先是富集不動桿菌屬,
然後通過該菌過量吸收磷達到除磷的目的。此後,Lotter[18 ] (1985) ,Cloete 等[19 ] (1985) ,Bay2
ly 等[20 ] (1989) 和Beacham[21 ] (1990) 也分別在除磷活性污泥中檢測到了大量的不動桿菌屬。
然而,Brodich 等[22 ] (1983) 發現其生物除磷試驗裝置活性污泥的微生物中,不動桿菌屬是少
數菌屬,只佔總量的1 %~10 %,而優勢菌屬為氣單胞菌屬和假單胞菌屬。Hiraishi 等[23 ]
(1989) 比較了生物除磷工藝活性污泥與非除磷工藝活性污泥的微生物組成,發現兩者中的
不動桿菌都不佔優勢,在除磷A/ O 法活性污泥中不動桿菌屬只佔大約1 %。由此可見不動
桿菌並不是唯一的除磷微生物,還有其它微生物的除磷能力也不容忽視。
Mino[24 ] (1987) 提出內源糖通過EMP 途徑(酵解途徑) 降解,獲得的能量用來吸收醋
酸以合成PHB(聚羥基丁酸鹽) ,除磷菌在厭氧段降解內源糖的反應式為:
CH2O + 0. 083C6H10O5 (CH) + 0. 44HPO2 -
3 + 0. 023H2O
1. 33CH1. 5O0. 5 (PHB) + 0. 17CO2 + 0. 44H3PO4
圖1 厭氧狀態放磷[ 21 ]
在好氧或有NO -
3 存在條件下,因消耗
PHB 及內源碳而建立起的三羧酸循環和呼
吸鏈產生氫離子,為維持細胞質子動力pmf
的恆定趨向,細胞吸收過量磷,並合成豐富的
Poly - P[25 ] 。除磷菌生化反應模型如圖2 所
示。
31 具有反硝化能力的除磷菌(DPB)
在污水生物處理中,生物除磷通常是與
生物脫氮(硝化與反硝化) 工藝一起應用。如
圖2 所示,有些除磷菌亦能利用NO -
3 作為電子受體,在吸收磷的同時進行反硝化。許多
研究者[27 ] [28 ,29 ,30 ]在活性污泥系統和實驗室培養中發現了具有反硝化能力的除磷菌
(DPB) 。NO -
3 被用來氧化細胞內儲存的PHB ,然後以氮分子的形式從廢水中排除。這樣
引起水體富營養化的氮、磷兩大主要元素都被去除。Kuba[31 ] (1994) 發現DPB 除磷能力
與傳統A/ O 工藝中普通除磷菌相似,同時也具有建立在內源PHB 和糖類物質(Carbohy2
drate) 基礎上類似的生物代謝機理。在特定的條件下,除磷菌具有很強的反硝化能力。
1 0 郭勁松等:生物脫氮除磷工藝中的微生物及其相互關系 1 卷
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
Kuba[32 ] (1997) 在Holten 污水處理廠的研究表明,約有50 %的除磷菌參與了反硝化活動。
圖2 好氧/ 缺氧狀態吸磷[ 26 ]
三、生物脫氮除磷工藝反應器中微生物關系
一般來說[33 ] ,微生物的相互關系有三種可能:第一,一種微生物的生長和代謝對另一
種微生物的生長產生有利影響,或者相互有利,形成有利關系,如生物間的共生和互生;第
二,一種微生物的生長與代謝對另一種微生物的生長產生不利影響,或者相互有害,形成
有害關系,如微生物間的拮抗、競爭、寄生和捕食;第三,兩種微生物生活在一起,兩者間發
生無關緊要、沒有意義的相互影響,表現出彼此對生長和代謝無明顯的有利或有害影響,
形成中性關系,如種間共處。
11 有利關系
微生物之間的有利關系可分為互生關系和共生關系。互生關系是微生物間比較鬆散
的聯合,在聯合中可以是一方得利,即一方為另一方提供或改善生活條件,或者是雙方都
得利。而共生關系是兩種微生物緊密地結合在一起,當這種關系高度發展時,就形成特殊
的共同體,在生理上表現出一定的分工,在組織和形態上產生新的結構。
生物脫氮系統中,互生關系主要表現為在化學水平的協作,即微生物間相互提供生長
因子、代謝刺激物或降解對方的代謝抑制物,平衡pH 值,維持適當的氧化還原電位或消
除中間產物的累積。氨化細菌,亞硝酸菌,硝酸菌及反硝化菌之間就表現為互生關系。在
氮素轉化過程中,氨化細菌分解有機氮化合物產生氨,為亞硝酸菌創造了必需的生活條
件,但對氨化細菌則無害也無利。亞硝酸菌氧化氨,生成亞硝酸,又為硝酸菌創造了必要
的生活條件。Chai Sung Gee 等[34 ]研究了亞硝化單胞菌屬與硝化桿菌在反應器內的相互
作用,運用懸浮生長實驗獲得的穩態氨和亞硝酸氧化的數據確定了這兩種細菌數量的生
長參數,得出結論:硝化桿菌的活性依賴於硝化桿菌對亞硝化單胞菌的數量比例,而亞硝
化單胞菌的活性則不受兩者之間數量比例的影響。可以斷定這兩個種群之間必然存在著
酶促共棲或生物化學的能量轉移。反硝化菌則在厭氧條件下將NO-
3 、NO -
2 還原為N2 氣
體,從污水的液相中排出,為亞硝化菌和硝化菌解除抑制因子,同時反硝化過程還提高了
反應器內的鹼度,部分地補充了硝化過程所消耗的鹼度,有利於反應器內pH 值穩定在硝
化菌活性較大的范圍內。
㈤ 生活污水中磷的來源有哪些,如何處理
生活污水常含有大量的磷,排入水體會造成藻類過度繁殖,導致水體富營養化,使水質惡化。生活污水中,大多數的磷來自人體排泄,其餘的來自於洗滌廢水和食物廢渣。其中含磷洗衣粉是生活含磷污水的主要來源。含磷廢水的危害磷是引起水體富營養化的關鍵營養物質。水體富營養化不僅會導致水中藻類瘋長,而且會使水體含氧量急劇下降,影響魚類等水生生物的生存。含磷廢水處理方法化學沉澱法化學沉澱法除磷主要指應用鈣鹽,鐵鹽和鋁鹽等產生的金屬離子與磷酸根生成難溶磷酸鹽沉澱物的方法來去除廢水中的磷。最常用的是石灰、硫酸鋁、鋁酸鈉、三氯化鐵、硫酸鐵、硫酸亞鐵和氯化亞鐵。生物法生物法除磷是基於噬磷菌在好氧及厭氧條件下,攝取及釋放磷的原理,通過好氧-厭氧條件的交替運行來實現除磷。該方法在合適的條件下,可以去除廢水中大部份的磷。但是一般來說,生物法除磷工藝運行穩定性差,依賴性強,當廢水中有機物含量較低,或磷含量超過過高時,出水很難滿足磷的排放標准,因此,往往需要對出水進行二次除磷處理,需要投加除磷劑對其進行處理液體除磷劑投加方法
㈥ 污水中氮和磷對環境有哪些危害
污水中的話主要導致水體富營養化,進一步導致水中藻類或水生植物的大爆發增值,導致水中含氧量下降,水中生物缺氧死亡,進一步加劇水體污染。嚴重時會堵塞航行,湖泊等靜水生態系統的滅絕。
㈦ 懂污水處理和原理的請進。請達人為我詳細解答一下污水裡面磷這種物質對水體的危害以及特性。還有國家對於
我國水體污染已經相當嚴重,其中由氮磷營養物質引起的水體富營養化問題日益突出。城市污水中的氮、磷主要來自生活污水和部分工業廢水。氮、磷進入水體後會產生多種危害,嚴重製約了城市水環境正常功能的發揮。水體富營養化引起水中藻類的過量繁殖,降低了水的透明度,使水帶有異味,造成水中溶解氧降低。甚至其中某些藻類產生毒素危害水生生物,影晌人類健康,破壞了水生生態。城市污水處理廠氮磷的排放標准污水廠的出水水質執行《城鎮污水處理廠污染物排放標准》(GB18918-2002)一級A標准。
COD=50mg/L,BOD=10mg/L,SS=10mg/L,TN=15mg/L,TP=0.5mg/L。總磷為0.5毫克每升。
㈧ 污水總磷高的影響因素有哪些
磷是一種活潑元素,在自然界中不以游離狀態存在,而是以含磷有機物、無機版磷化合物及還原態PH3這三種狀態存權在。污水中含磷化合物可分為有機磷與無機磷兩類。
水中,磷離子以HPO42ˉ還是以H2PO4ˉ形式存在取決於pH值,當pH值在2~7時,水中磷酸鹽離子多數以H2PO4ˉ形式存在,而pH值在7~12時,則水中的磷酸鹽離子多數以HPO42ˉ形式存在。所有含磷化合物都是首先轉化為PO43ˉ後,再轉化為其他形式,測定結果即是總磷的含量。總磷含量高會引起水體富營養化,其中,氮和磷是引起藻類大量繁殖的主要因素。欲控制富營養化,必須加強氮磷的處理,目前磷的排放標准為0.5mg/L。化學法中常用鋁鹽、鈣鹽、次亞磷去除劑、除磷劑等除磷,方便有效。
㈨ 污水處理中,磷超標會有什麼異常岀現
用肉眼是看不到的,但是如果你把這些磷超標的水放在一個池子里幾天,特別是在夏天,很專快就會屬有很多綠藻長出。磷超標會導致水體富營養化,在湖泊和河流里,如果流入大量的磷,會長出很多綠藻,隨之綠藻會搶奪水中的氧氣,使水中的魚大量死亡。
㈩ 污水處理磷過多有什麼影響
這就要看哪個來環節了,污水處自理的單元很多,對於很多物理處理單元是不受影響的,但是諸如生物污泥和其他化學污水處理環節影響很大。
污水中的BOD:氮:磷最佳比例是100:5:1的比例,如果比例失調或者污水中這幾種成分含量微小,都會導致微生物不工作。
如果污水中磷的含量很高,還要進行除磷處理。
生物除磷是依靠迴流污泥中聚磷菌的活動進行的,聚磷菌是活性污泥在厭氧、好氧交替過程中大量繁殖的一種好氧菌,雖競爭能力很差,卻能在細胞內貯存聚β經基丁酸(PHB)和聚磷酸鹽(Poly-p)。