導航:首頁 > 廢水污水 > 廢水厭氧實驗怎麼做

廢水厭氧實驗怎麼做

發布時間:2022-12-18 05:09:55

Ⅰ 如何處理生活污水里的厭氧生物

小分子的化合物發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。發酵細菌絕大多數是嚴格厭氧菌,但通常有約1%的兼性厭氧菌存在於厭氧環境中,這些兼性厭氧菌能夠起到保護像甲烷菌這樣的嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產物有揮發性脂肪酸、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等,產物的組成取決於厭氧降解的條件、底物種類和參與酸化的微生物種群。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此,未酸化廢水厭氧處理時產生更多的剩餘污泥。

Ⅱ 能給我一個實驗室 厭氧廢水處理 實驗怎麼做怎麼評估的 請給我一個方案唄!最好能詳細點

別把這個想的太復雜,其實就是把一個厭氧設備按比例縮小就行,按調試方式正常進水出水,要求不高的話,拿個瓶瓶罐罐就能做了

Ⅲ 廢水的厭氧生物處理方法有哪些厭氧處理的原理是什麼

厭氧消化具有下列優點:無需攪拌和供氧,動力消耗少;能產生大量含甲烷的沼氣,是很好的能源物質,可用於發電和家庭燃氣;可高濃度進水,保持高污泥濃度,所以其溶劑有機負荷達到國家標准仍需要進一步處理;初次啟動時間長;對溫度要求較高;對毒物影響較敏感;遭破壞後,恢復期較長。污水厭氧生物處理工藝按微生物的凝聚形態可分為厭氧活性污泥法和厭氧生物膜法。厭氧活性污泥法包括普通消化池、厭氧接觸消化池、升流式厭氧污泥床(upflow anaerobic sludge blanket,UASB)、厭氧顆粒污泥膨脹床(EGSB)等;厭氧生物膜法包括厭氧生物濾池、厭氧流化床和厭氧生物轉盤。
一般來說,廢水中復雜有機物物料比較多,通過厭氧分解分四個階段加以降解:
(1)水解階段:高分子有機物由於其大分子體積,不能直接通過厭氧菌的細胞壁,需要在微生物體外通過胞外酶加以分解成小分子。廢水中典型的有機物質比如纖維素被纖維素酶分解成纖維二糖和葡萄糖,澱粉被分解成麥芽糖和葡萄糖,蛋白質被分解成短肽和氨基酸。分解後的這些小分子能夠通過細胞壁進入到細胞的體內進行下一步的分解。答案來自環保通。
(2)酸化階段:上述的小分子有機物進入到細胞體內轉化成更為簡單的化合物並被分配到細胞外,這一階段的主要產物為揮發性脂肪酸(VFA),同時還有部分的醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等產物產生。
(3)產乙酸階段:在此階段,上一步的產物進一步被轉化成乙酸、碳酸、氫氣以及新的細胞物質。
(4)產甲烷階段:在這一階段,乙酸、氫氣、碳酸、甲酸和甲醇都被轉化成甲烷、二氧化碳和新的細胞物質。這一階段也是整個厭氧過程最為重要的階段和整個厭氧反應過程的限速階段。

Ⅳ 如何做廢水生化處理的對比實驗

A/O工藝:

A/O工藝法,也叫厭氧好氧工藝法,主要用於水處理方面。A就是厭氧段,主要用於脫氮除磷;O就是好氧段,主要用於去除水中的有機物。它除了可去除廢水中的有機污染物外,還可同時去除氮、磷,對於高濃度有機廢水及難降解廢水,在好氧段前設置水解酸化段,可顯著提高廢水可生化性。


A2/O工藝:

A2/O工藝亦稱A-A-O工藝,即厭氧-缺氧-好氧工藝,被稱為最簡單的同步脫氮除磷工藝。按實質意義來說,本工藝應為生物脫氮除磷工藝的簡稱。該工藝處理效率一般能達到:BOD5和SS為90%~95%,總氮為70%以上,磷為90%左右,一般適用於要求脫氮除磷的大中型城市污水廠。但A2/O工藝的基建費和運行費均高於普通活性污泥法,運行管理要求高,所以對目前我國國情來說,當處理後的污水排入封閉性水體或緩流水體引起富營養化,從而影響給水水源時,才採用該工藝。


SBR工藝:

SBR是序列間歇式活性污泥法的簡稱,是一種按間歇曝氣方式來運行的活性污泥污水處理技術,又稱序批式活性污泥法。與傳統污水處理工藝不同,SBR技術採用時間分割的操作方式替代空間分割的操作方式,非穩定生化反應替代穩態生化反應,靜置理想沉澱替代傳統的動態沉澱。它的主要特徵是在運行上的有序和間歇操作,SBR技術的核心是SBR反應池,該池集均化、初沉、生物降解、二沉等功能於一池,無污泥迴流系統。

Ⅳ 如何取沼氣罐中的厭氧污泥

AAO污泥一起培養的方法,厭氧污泥怎麼培養好好看看就知道了。

1、聯系、引進足夠的焦化廢水處理工程產生的剩餘污泥作為接種污泥。
2、在厭氧、缺氧和好氧池中通入約1/2池深的稀釋水(或將前期充水調試稀釋水排水至1/2池深處),通入接種污泥,並投加葯劑:厭氧池混合進水時投加P鹽、酸或鹼調節pH值(6.5-7.2);缺氧池混合進水時投加P鹽、酸或鹼調節pH值(7.0-7.2)以及硝酸鹽(人工促進掛膜);好氧池混合進水時投加P鹽、酸或鹼調節pH值(7.0-7.2),適當投加補充碳源(葡萄糖、甲醇等)。
3、引入廢水和稀釋水,直到充滿整個厭氧、缺氧和好氧池(但不得進入二沉池),充水後COD介於800-1000mg/l。根據廢水水質,計算確定廢水與稀釋水比例,同時測定混合液上清液COD進行校核。再次調節厭氧池pH值至(6.5-7.2),缺氧池、好氧池pH值至(7.0-7.2)。
4、好氧池進行悶曝,當好氧池COD≤400 mg/l且穩定2小時後,停止曝氣排上清液,排水量約為池容的1/5-1/4。
5、再補充廢水、稀釋水至池滿,使好氧池充水後COD再次介於800-1000mg/l。根據廢水水質,計算確定廢水與稀釋水比例,同時測定混合液上清液COD進行校核。好氧池再次悶曝,當好氧池COD≤400 mg/l且穩定2小時、污泥沉降比(%)SV30≥5時,此階段結束。否則停止曝氣排上清液,再次配水,再悶曝,直到同時達到兩個指標(COD≤400 mg/l且穩定2小時、污泥沉降比(%)SV30≥5 )為止。每次換水時均需投加P鹽、調節pH值至(7.0-7.2)。為加快污泥培養,可在每次配水後通入接種污泥。P鹽添加量按照生物適宜濃度添加,可參照C/P比例。
6、從預處理段引入10%的設計廢水總量到厭氧池,並依次進入缺氧池、好氧池、二沉池,加稀釋水調節好氧池進水COD介於800-1000mg/l,同時將二沉池污泥迴流入好氧池,上清液迴流入缺氧池,建立循環。此時,密切注意二沉池出水,如果COD≥500 mg/l或污泥沉降比(%)SV30≤5時,可暫停引入廢水和稀釋水,直到好氧池COD≤400 mg/l、污泥沉降比(%)SV30≥5時,再開始連續進水。連續進水時,保持投加足夠的P鹽、硝酸鹽(缺氧池),並調節各池pH值(同上),在以下的步驟中同樣如此。同時,為加快污泥培養,可間斷通入接種污泥。
7、按以上狀態運行,確保好氧池進水COD介於800-1000mg/l。當好氧池COD≤400 mg/l、污泥沉降比(%)SV30≥5時,引入廢水。二沉池出水COD≥500 mg/l或污泥沉降比(%)SV30≤5時,可暫停引入廢水和稀釋水。循環操作,並逐漸加大廢水引入量,從10%到25%、40%、60%、80%直到100%。當廢水引入量達到60%時,進入好氧池的COD可放寬至最大1200mg/l。
注意:加大廢水引入量時,要加大P鹽、硝酸鹽(缺氧池)的投加量。缺氧池投加硝酸鹽是加快調試進度的重要措施,因為在調試初期,好氧池出水COD偏高,氨氮硝化作用不足,迴流到缺氧池的硝酸鹽濃度很低,造成缺氧池反硝化作用相應較弱,降解有機物能力弱,給好氧池壓力大,且不利於缺氧池掛膜。為此,在系統沒有產生足夠的硝酸鹽時(即氨氮還沒有得到一定降解時),人工投加硝酸鹽氮可促進缺氧池掛膜,減少調試周期。隨著調試的進展,二沉池出水COD將逐步降低,同時氨氮的去除率逐漸增加,此時需要減小硝酸鹽投加量。當氨氮去除率達到80%或者出水氨氮低於15 mg/l時,可停止投加硝酸鹽。

厭氧池掛膜
厭氧池的掛膜是調試的難點之一,主要原因在於厭氧菌生長緩慢,且易於流失。在調試過程中,對厭氧池的掛膜,可採取如下方案:通過設置迴流水泵(或臨時污水泵),從厭氧池出水與缺氧池迴流水的混合池(迴流吸水井)取水,重新迴流到厭氧池進水端,同時利用污泥迴流水泵將適量污泥打入厭氧池進行強化掛膜。該方案優點:一是通過人工迴流,污泥充分攪拌,方便厭氧池內填料截留處於懸浮狀態的污泥,加快掛膜速度;二是通過迴流,加快了廢水流動速度,提高了傳質效果,增強生物膜的活性。缺點:若迴流量控制不當,流速過快,有可能對已掛生物膜形成沖刷,造成流失。此外,迴流可增加動力費用。

Ⅵ 厭氧污水處理的原理

在厭氧處理過程中,廢水中的有機物經大量微生物的共同作用,被最終轉化為甲烷、二氧化碳、水、硫化氫和氨等。在此過程中,不同微生物的代謝過程相互影響,相互制約,形成了復雜的生態系統。對高分子有機物的厭氧過程的敘述,有助於我們了解這一過程的基本內容。
高分子有機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階段。 水解可定義為復雜的非溶解性的聚合物被轉化為簡單的溶解性單體或二聚體的過程。
高分子有機物因相對分子量巨大,不能透過細胞膜,因此不可能為細菌直接利用。它們在第一階段被細菌胞外酶分解為小分子。例如,纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶分解為麥芽糖和葡萄糖,蛋白質被蛋白質酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。水解過程通常較緩慢,因此被認為是含高分子有機物或懸浮物廢液厭氧降解的限速階段。多種因素如溫度、有機物的組成、水解產物的濃度等可能影響水解的速度與水解的程度。水解速度的可由以下動力學方程加以描述:ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物濃度(g/L);
ρo———非溶解性底物的初始濃度(g/L);
Kh——水解常數(d^-1);
T——停留時間(d) 發酵可定義為有機物化合物既作為電子受體也是電子供體的生物降解過程,在此過程中溶解性有機物被轉化為以揮發性脂肪酸為主的末端產物,因此這一過程也稱為酸化。
在這一階段,上述小分子的化合物發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。發酵細菌絕大多數是嚴格厭氧菌,但通常有約1%的兼性厭氧菌存在於厭氧環境中,這些兼性厭氧菌能夠起到保護像甲烷菌這樣的嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產物有揮發性脂肪酸、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等,產物的組成取決於厭氧降解的條件、底物種類和參與酸化的微生物種群。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此,未酸化廢水厭氧處理時產生更多的剩餘污泥。
在厭氧降解過程中,酸化細菌對酸的耐受力必須加以考慮。酸化過程pH下降到4時能可以進行。但是產甲烷過程pH值的范圍在6.5~7.5之間,因此pH值的下降將會減少甲烷的生成和氫的消耗,並進一步引起酸化末端產物組成的改變。 在產氫產乙酸菌的作用下,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。
其某些反應式如下:
CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG』0=-4.2KJ/MOL
CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG』0=9.6KJ/MOL
CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG』0=48.1KJ/MOL
CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG』0=76.1KJ/MOL
4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG』0=-2.9KJ/MOL
2HCO3-+4H2+H+->CH3COO-+4H2O ΔG』0=-70.3KJ/MOL 這一階段,乙酸、氫氣、碳酸、甲酸和甲醇被轉化為甲烷、二氧化碳和新的細胞物質。
甲烷細菌將乙酸、乙酸鹽、二氧化碳和氫氣等轉化為甲烷的過程有兩種生理上不同的產甲烷菌完成,一組把氫和二氧化碳轉化成甲烷,另一組從乙酸或乙酸鹽脫羧產生甲烷,前者約占總量的1/3,後者約佔2/3。
最主要的產甲烷過程反應有:
CH3COO-+H2O->CH4+HCO3- ΔG』0=-31.0KJ/MOL
HCO3-+H++4H2->CH4+3H2O ΔG』0=-135.6KJ/MOL
4CH3OH->3CH4+CO2+2H2O ΔG』0=-312KJ/MOL
4HCOO-+2H+->CH4+CO2+2HCO3- ΔG』0=-32.9KJ/MOL
在甲烷的形成過程中,主要的中間產物是甲基輔酶M(CH3-S-CH2-SO3-)。
需要指出的是:一些書把厭氧消化過程分為三個階段,把第一、第二階段合成為一個階段,稱為水解酸化階段。在這里我們則認為分為四個階段能更清楚反應厭氧消化過程。

Ⅶ 污水處理中怎樣創造厭氧和缺氧環境呢

樓上講的都什麼啊,不太對,污水處理中厭氧和缺氧都很好實現的,缺氧狀態微曝氣或者把二層污泥迴流進來就可以,厭氧,就是進水就可以了,負荷上來就肯定是厭氧了,
缺氧的構築物有水解酸化池,厭氧的有UASB

Ⅷ 關於污水處理小實驗

水質變黑 濁度升高 主要都是你菌體群落控制不好
以下我指出幾點存在及可能存在的問題回
1.模擬生產就一定要隨答著檢測結果的變化或正反饋或逆反饋地通過一定設定條件改變你的工藝參數。 用一個固定參數去模擬生化過程略有些荒唐。
2.你的流量控制以及聯通每個缸子的管徑如何?能否達到模擬平推流?
3.你的固定床是不是需要經過一定時間反沖洗?
4.你的進水貌似少加了無機鹽。
5.厭氧液面的白色乳狀是什麼,要搞清楚。

Ⅸ 污水凈化處理厭氧生物處理的三個階段是怎樣的

理論研究認為三個階段,即厭氧消化過程分為水解發酵階段、產內乙酸產氫階段、容產甲烷階段三部分。
水解發酵階段和產乙酸產氫階段又可合稱為酸性發酵階段。在這個階段,污水中的復雜有機物,在酸性腐化菌或產酸菌的作用下,分解成簡單的有機物,如有機酸,醇類等,以及CO2、NH3和H2S等無機物。由於有機酸的積累,污水的pH值下降到6以下。此後,由於有機酸和含氮化合物的分解,產生碳酸鹽和氨等使酸性減退,pH值回升到6.6~6.8左右。
⑴ 水解酸化階段。污水中復雜的大分子、不溶性的有機物在細胞外酶的作用下水解為小分子、溶解性有機物,然後滲入細胞體內,水解產生揮發性有機酸、醇類及醛類等。
⑵ 產氫產乙酸階段。在產氫產酸菌的作用下,各種有機酸分解轉化為乙酸、氫和二氧化碳。
⑶ 產甲烷階段。產甲烷菌將乙酸、氫及二氧化碳轉化為甲烷。

Ⅹ 厭氧污泥怎麼培養

厭氧污泥可以在無氧條件下,放入兼性菌和厭氧細菌,將污泥中的可生物降解的有機物分解CH4、CO2、H2O和H2S消化培養。

污泥厭氧消化是對有機污泥進行穩定處理的最常用的方法,可以處理有機物含量較高的污泥。有機物被厭氧分解,隨著污泥的穩定化,產生大量的高熱值的沼氣作為能源利用,使污泥資源化。適用於大型污水處理廠(站)的污泥處理方法。

在污泥厭氧消化過程中,溫度對有機物負荷和產氣量有明顯影響。根據微生物對溫度的適應性,可將污泥厭氧消化分為中溫(一般30~36℃)厭氧消化和高溫(一般50~55℃)厭氧消化。

研究表明,在污泥厭氧消化過程中,溫度發生±3℃變化時,就會抑制污泥消化速度;溫度發生±5℃變化時,就會突然停止產氣,使有機酸發生大量積累而破壞厭氧消化。

(10)廢水厭氧實驗怎麼做擴展閱讀

1、水解酸化階段

一般水解過程發生在污泥厭氧消化初始階段,污泥中的非水溶性高分子有機物,如碳水化合物、蛋白質、脂肪、纖維素等在微生物水解酶的作用下水解成溶解性的物質。水解後的物質在兼性菌和厭氧菌的作用下,轉化成短鏈脂肪酸,如乙酸、丙酸、丁酸等,還有乙醇、二氧化碳。

2、乙酸化階段

水解階段產生的簡單可溶性有機物在產氫和產酸細菌的作用下,進一步分解成揮發性脂肪酸(如丙酸、乙酸、丁酸、長鏈脂肪酸)醇、酮、醛、二氧化碳和氫氣等。該過程中乙酸菌和甲烷菌是共生的。

3、甲烷化階段

甲烷化階段發生在污泥厭氧消化後期,在這一過程中,甲烷菌將乙酸(CH3COOH)和H2、CO2分別轉化為甲烷, 如下:

2CH3COOH→2CH4↑+ 2CO2↑

4H2+CO2→CH4+ 2H2O

在整個厭氧消化過程中,由乙酸產生的甲烷約占總量的2/3,由CO2和H2轉化的甲烷約占總量的1/3。

閱讀全文

與廢水厭氧實驗怎麼做相關的資料

熱點內容
貝林樹脂如何 瀏覽:826
污水處理過程中水質過酸怎麼回事 瀏覽:507
葡萄酒行業的廢水處理 瀏覽:55
測高鹽廢水的COD 瀏覽:833
為什麼飲水機怎麼分水的 瀏覽:538
揚子嘉麗飲水機怎麼清洗 瀏覽:827
大型污水提升器哪裡買 瀏覽:671
除煙凈化器多少錢 瀏覽:285
小便異物像水垢 瀏覽:220
純凈水超濾設備 瀏覽:918
進過反滲透膜多少水是排掉的 瀏覽:811
污水泵維修後有振動是什麼原因 瀏覽:678
lc型陽離子交換樹脂 瀏覽:612
工廠焊煙凈化器價格怎麼樣 瀏覽:720
鋰電池半透膜和透析半透膜異同 瀏覽:818
蒸餾醋是否可以殺菌 瀏覽:984
什麼叫做純水車 瀏覽:637
生活污水生化池內填料有哪些 瀏覽:940
過濾器的pao檢測 瀏覽:503
種什麼植物治污水 瀏覽:649