① 工業廢水處理中,總氮指標超標應該如何處理
工業廢水總氮超標大多數存在於污水處理廠的生化出水階段,在污水處理廠的前段,有機氮通過氨化的方式變為氨氮,氨氮再通過微生物硝化的方式變為硝態氮,但是在硝態氮進一步反硝化變為氮氣的過程中,往往受限於傳統生化的效率而無法轉化,導致出水總氮超標。下面「上海甘度環境」小編介紹一下,總氮超標都有哪些原因,應該如何解決。
1、總氮超標可能是因為水中的碳源不足所導致的情況,在總氮超標時需要檢測一下水中的COD的進出水指標是多少,一般總氮和COD「C:N:P=100:5:1」,COD中含有多少BOD?BOD約等於0.7*COD值。通過以上的方式算出水水碳源是否足夠,如何不足,那麼就考慮補充碳源問題。如果是不足那麼就需要考慮補充碳源了。目前碳源有麵粉或者葡萄糖或者甲醇做為碳源,由於每個所含碳源的量不同,所投加的具體數量也需要計算好。
2、總氮超標需要考慮廢水在池子中的停留時間是否充足,如果水停留的時間不充足,那麼導致生化反應不能有效進行,也會出現總氮偏高的情況。水停留的時間最佳是7-8個小時為最佳的時間,具體如何算停留時間可以咨詢「上海甘度環境」。
3、在以上情況都不是的前提下就需要考慮,池子中的生化性的問題了,池子的生化性不好那麼池子對廢水的處理能力就是非常的有限。如何判斷生化性,就非常簡單了,直接測試進水有機氮和出水有機氮的多少,通過數據對比就可以判斷廢水經過生化池的生化性問題了。
4、如果工藝系統存在著缺陷也會出現總氮處理不好的問題。我們就遇到過客戶是AO系統,上面的情況都實驗了還是處理不好。通過咨詢我們,我們通過一一詢問知道客戶原來是沒有打迴流,如果廢水沒有打迴流,那麼亞鹽和硝酸鹽就處理不好,脫總氮也不能進行。
② 污水處理廠出水總氮超標怎麼回事
城市污水處理廠出水氮磷超標因素分析及對策摘要:脫氮除磷工藝越來越多的應用到城市污水處理廠當中,但是在實際運行過程中,出水氮磷含量超標的情況常常困擾著水廠的工作人員。因此,釐清脫氮除磷工藝的重要參數並加以控制,能夠很好的保證系統的正常運行,出水氮磷含量達標。關鍵詞:城市污水處理廠,脫氮除磷,對策分析1概述近年來污水處理的主要工藝已發生變化,從常規二級處理逐漸變為重視脫氮除磷的深度處理上來。但是在實際運行過程中,由於工藝復雜性及參數的變化性,導致常常出水氮磷含量超標,影響著水廠的運行。因此,釐清脫氮除磷工藝的重要參數並加以控制,能夠很好的保證系統的正常運行。2污水氮含量超標原因及控制方法2.1氨氮超標2.1.1污泥負荷與污泥齡生物硝化屬低負荷工藝,F/M一般在0.05~0.15kgBOD/kgMLVSS?d。負荷越低,硝化進行得越充分,NH3-N向NO3--N轉化的效率就越高。與低負荷相對應,生物硝化系統的SRT一般較長,因為硝化細菌世代周期較長,若生物系統的污泥停留時間過短,污泥濃度較低時,硝化細菌就培養不起來,也就得不到硝化效果。SRT控制在多少,取決於溫度等因素。對於以脫氮為主要目的生物系統,通常SRT可取11~23d。2.1.2迴流比與水力停留時間生物硝化系統的迴流比一般較傳統活性污泥工藝大,主要是因為生物硝化系統的活性污泥混合液中已含有大量的硝酸鹽,若迴流比太小,活性污泥在二沉池的停留時間就較長,容易產生反硝化,導致污泥上浮。通常迴流比控制在50~100%。生物硝化曝氣池的水力停留時間也較活性污泥工藝長,至少應在8h以上。這主要是因為硝化速率較有機污染物的去除率低得多,因而需要更長的反應時間。2.1.3BOD5/TKNBOD5/TKN越大,活性污泥中硝化細菌所佔的比例越小,硝化速率就越小,在同樣運行條件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。很多城市污水處理廠的運行實踐發現,BOD5/TKN值最佳范圍為2~3左右。2.1.4溶解氧硝化細菌為專性好氧菌,無氧時即停止生命活動,且硝化細菌的攝氧速率較分解有機物的細菌低得多,如果不保持充足的氧量,硝化細菌將「爭奪」不到所需要的氧。因此,需保持生物池好氧區的溶解氧在2mg/L以上,特殊情況下溶解氧含量還需提高。2.1.5溫度與pH硝化細菌對溫度的變化也很敏感,當污水溫度低於15℃時,硝化速率會明顯下降,當污水溫度低於5℃時,其生理活動會完全停止。因此,冬季時污水處理廠特別是北方地區的污水處理廠出水氨氮超標的現象較為明顯。硝化細菌對pH反應很敏感,在pH為8~9的范圍內,其生物活性最強,當pH<6.0或>9.6時,硝化菌的生物活性將受到抑制並趨於停止。因此,應盡量控制生物硝化系統的混合液pH大於7.0。2.2 總氮超標2.2.1污泥負荷與污泥齡由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得高效而穩定的的反硝化。因而,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。2.2.2內、外迴流比生物反硝化系統外迴流比較單純生物硝化系統要小些,這主要是入流污水中氮絕大部分已被脫去,二沉池中NO3--N濃度不高。另一方面,反硝化系統污泥沉速較快,在保證要求迴流污泥濃度的前提下,可以降低迴流比,以便延長污水在曝氣池內的停留時間。運行良好的污水處理廠,外迴流比可控制在50%以下。而內迴流比一般控制在300~500%之間。2.2.3缺氧區溶解氧對反硝化來說,希望DO盡量低,最好是零,這樣反硝化細菌可以「全力」進行反硝化,提高脫氮效率。但從污水處理廠的實際運營情況來看,要把缺氧區的DO控制在0.5mg/L以下,還是有困難的,因此也就影響了生物反硝化的過程,進而影響出水總氮指標。2.2.4BOD5/TKN反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。由於目前許多污水處理廠配套管網建設滯後,進廠BOD5低於設計值,而氮、磷等指標則相當於或高於設計值,使得進水碳源無法滿足反硝化對碳源的需求,也導致了出水總氮超標的情況時有發生。2.2.5溫度與pH反硝化細菌對溫度變化雖不如硝化細菌那麼敏感,但反硝化效果也會隨溫度變化而變化。溫度越高,反硝化速率越高,在30~35℃時,反硝化速率增至最大。當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。反硝化細菌對pH變化不如硝化細菌敏感,在pH為6~9的范圍內,均能進行正常的生理代謝,但生物反硝化的最佳pH范圍為6.5~8.0。3 污水生物除磷總磷超標原因及對策3.1 污泥負荷與污泥齡厭氧-好氧生物除磷工藝是一種高F/M低SRT系統。當F/M較高,SRT較低時,剩餘污泥排放量也就較多。因而,在污泥含磷量一定的條件下,除磷量也就越多,除磷效果越好。對於以除磷為主要目的生物系統,通常F/M為0.4~0.7kgBOD5/kgMLSS•d,SRT為較大,選擇價廉,易得的填料也是需要考慮的一個重要因子。3.2 填料的種類生物滴濾常用的填料都是一些惰性材料。從天然的卵石、粗碎石、木炭到人工合成的陶粒、陶瓷、聚丙烯小球、塑料、不銹鋼、APC微粒、炭素纖維、海綿等品種繁多。目前應用於生物滴濾塔中的填料主要有以下幾種。3.2.1 陶粒陶粒是由人工用粘土燒制而成,其形狀是不規則的球形實體,內部或外部有大量微小的孔隙,其具有較大的比表面積,孔隙率高吸附性大,造價低,但氣阻大,容易形成壁流,填料的中央易產生厭氧區。3.2.2 拉西環常用的拉西環為外徑與高度相等的圓環,在強度允許的條件下,壁厚應盡量薄,以提高空隙率及降低堆積密度。為了增加強度可以在環內增加隔板形成θ環和十字格環,其優點是,形狀簡單易成型,但與其它填料相比,氣體阻力大,通量小,溝流、壁流嚴重。3.2.3 鮑爾環在普通拉西環側壁上開有兩排方形窗孔,開孔時只斷開四邊形中的三條邊,另一邊保留,使被切開的環壁呈舌狀穹入環內,這些舌片在環中心幾乎對接起來,這樣可以使氣、液進入環內,使氣體阻力大為降低,液體分布可以改善,但與拉西環一樣,具有比表面積小,空隙率低,不易掛膜等缺點。3.2.4 階梯環環高是直徑的5/8,且一端向外翻喇叭口,這種填料孔隙率大,而且填料個體之間呈點接觸,可以使液膜不斷更新,具有壓降小,傳質效率高等特點。具體參見更多相關技術文檔。3.2.5 塑料多孔球形填料該填料的外部輪廓為球形,由縱橫交錯的幾個大小不等的圓或半圓形成球,中間有填充物,以增加比表面積有利於掛膜,特點是質輕,強度大,不易老化,並且比表面積和空隙率容易協調,水流、氣流通暢。3.2.6 活性炭該填料是一種新型開發填料,有巨大的比表面積,對臭氣有很大的吸附量,對微生物也極易固定,但造價昂貴,氣阻大且易發生堵塞。除上述填料外,還有以固定化生物顆粒作填料作為脫臭填料。也有將粉末活性炭熔到PVA粒子表面,作為生物填充塔的填料,將去除不同臭氣的微生物分到不同的區域,最大限度發揮了每一類群微生物的代謝活動,這一處理系統可以很好的滿足對住宅區內的臭味控制。(中國市政工程西北設計研究院有限公司)污水處理廠出水總氮超標怎麼回事?
③ 污水處理中引起總氮超標有哪些因素
在實際生產過程中,總氮指標超標不外乎以下幾點:
1.原水不穩定,2.生物的可生化性差,3.缺少c元素
④ 我們污水處理廠老是總磷,總氮超標,請問下具體是什麼原因和有什麼好的解決方法沒有 (我們用的是CASS工藝)
除了推薦答案外,我說幾句。
各個污水處理廠的實際情況不同,面對處版理的問題,需要尋求權適合自身的解決之道。
這個需要的是工作人員的長期探索。
我提供一個方案,在理論上有可行的可能,在實際中還沒實踐過。
就是在最後的沉澱池處,認為引起水華現象。
我們知道,水體富營養化會引起水華,水體富營養化主要是氮磷過高。而水體富營養化的危害又體現在藻類等水生植物的死亡之後。所以,認為引起的水華會讓水生植物大量吸取氮磷元素,同事,加大清理藻類的頻次,讓它們在未死亡之前就被打撈出來。
這個是我聽一個污水處理廠工程師講的,具體是否可行,你有條件,可以試驗一下。
⑤ 總氮超標什麼原因
工業廢水處理中,各行業有關總氮的問題不少,總氮包括有機氮、氨氮、硝態氮,每種成分都可能存在問題。隨著人們對污水總氮處理問題的研究,有大量的新型脫氮工藝涌現,但由於工藝不成熟,大部分污水處理廠仍然採用傳統的生物脫氮法。
傳統的生物脫氮工藝基本原理是在生物處理過程中,先將有機氮轉化為氨氮,再通過硝化菌和反硝化菌的作用將氨氮轉化為亞硝態氮和硝態氮,最終通過反硝化作用將硝態氮轉化為氮氣完成脫氮。總氮處理中硝化與反硝化反應的進行存在相互制約的關系,在有機物大量存在的情況下,自養硝化菌對氧氣和營養物的競爭力不如好養異養菌;反硝化需要有機物作為電子供體,但是硝化過程去除了大量的有機物,導致反硝化過程中缺乏碳源,所以為了得到良好的總氮處理效果,發展出了各種生物脫氮方法相結合的工藝,如A/O工藝、A2/O工藝等等。
經過組合的工藝在總氮處理中,要對硝化菌和反硝化菌的反應環境分別控制,從而均衡兩者之間的矛盾加大了運行成本。在我們實際污水處理過程中,氨氮超標是很容易避免和解決的,難解決的是硝態氮超標導致的總氮超標問題,也就是說反硝化反應的控制,因此這里提出硝態氮處理的解決辦法。
針對傳統工藝的反硝化反應問題,採用總氮處理富增集成裝備IDN-BMP,對原有池體進行優化改造,達到高效反硝化的目的。
IDN-BMP總氮處理裝備提升脫氮效率的原因如下:
第一,採用特殊定製的填料,超細纖維絲在改性葯劑內經浸洗-連續編織,形成具有親水性的膨脹性生物巢,能夠快速富集大量優質反硝化菌;
第二,採用湛清環保耐毒/耐鹽菌株 IDN-B5反硝化脫氮菌,環境適應性強,能夠在 5d 內復甦並發揮作用;
第三,該裝備中採用了特殊的脫氣裝置,結合 CFD 模擬模擬技術,強化了微生物在空間內的分布狀態。
眾所周知,反硝化脫氮菌在反硝化反應中起著非常重要的作用,選用活性高、適應能力強的菌種就是促進反硝化系統的快速進行,提升脫氮能力。
⑥ 污水處理廠出水總氮超標怎麼回事
污水處理廠出水總氮超標原因:
1.內、外迴流比生物反硝化系統外迴流比較單純生物硝化系統要小。
2.反硝化系統污泥沉速較快。
3.缺氧區溶解氧DO過高。
4.溫度調控不當,當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。
5.BOD5/TKN 因為反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。
6.污泥負荷與污泥齡由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得高效而穩定的的反硝化。因而,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。
(6)為什麼污水處理中總氮不達標擴展閱讀:
污水處理廠出水總氮超標解決辦法:
一、污泥負荷與污泥:由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得高效而穩定的的反硝化。因此,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。
二、內、外迴流:生物反硝化系統外迴流比較單純生物硝化系統要小些,這主要是入流污水中氮絕大部分已被脫去,二沉池中NO3--N濃度不高。相對來說,二沉池由於反硝化導致污泥上浮的危險性已很小。
另一方面,反硝化系統污泥沉速較快,在保證要求迴流污泥濃度的前提下,可以降低迴流比,以便延長污水在曝氣池內的停留時間。運行良好的污水處理廠,外迴流比可控制在50%以下。而內迴流比一般控制在300~500%之間。
三、反硝化速率:反硝化速率系指單位活性污泥每天反硝化的硝酸鹽量。反硝化速率與溫度等因素有關,典型值為0.06~0.07gNO3--N/gMLVSSd。
四、缺氧區溶解氧:對反硝化來說,希望DO盡量低,zui好是零,這樣反硝化細菌可以「全力」進行反硝化,提高脫氮效率。但從污水處理廠的實際運營情況來看,要把缺氧區的DO控制在0.5mg/L以下,還是有困難的,因此也就影響了生物反硝化的過程,進而影響出水總氮指標。
五、BOD5/TKN 因為反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。
由於目前許多污水處理廠配套管網建設滯後,進廠BOD5低於設計值,而氮、磷等指標則相當於或高於設計值,使得進水碳源無法滿足反硝化對碳源的需求,也導致了出水總氮超標的情況時有發生。
六、pH:反硝化細菌對pH變化不如硝化細菌敏感,在pH為6~9的范圍內,均能進行正常的生理代謝,但生物反硝化的有效pH范圍為6.5~8.0。
七、溫度:反硝化細菌對溫度變化雖不如硝化細菌那麼敏感,但反硝化效果也會隨溫度變化而變化。溫度越高,反硝化速率越高,在30~35℃時,反硝化速率增至zui大。當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。
因此,在冬季要保證脫氮效果,就必須增大SRT,提高污泥濃度或增加投運池數。
參考資料來源:人民網—生態環境部部署固定污染源氮磷污染防治攻堅工作
⑦ 為什麼污水處理廠出水指標一般使用氨氮而不使用總氮
氨氮是氮元素的一種存在形式,多在污水中出現。污水處理廠出水標准中有氨氮版標准,也有總氮標權准。由於氨氮去除比較容易,總氮去除比較難,國家或有關部門現階段重點關注氨氮指標,對總氮指標要求不嚴格,可能過倆年國家就會重視總氮指標了。氨氮的去除基本是轉化成其它形態的氮,並未真正從水中脫出,對水體富營養化治理的效果不徹底。
⑧ 什麼是污水總氮,總氮高如何解決
污水總氮所指的主要意思是,污水整體的氮含總量比較高,超出了標準的范圍和要求,所以這個時候一定要採用,專業的技術和方式對它進行合理的處理,才可以達到更環保的程度。
⑨ 廠里的廢水氨氮達標,總氮超標是為什麼
樓主您好,來我來為您解答下,如果總源氮超標的話,需要檢測總氮中哪種氮存在超標現象(氨氮、有機氮、硝態氮、亞硝態氮)。
超標現象之一:氨氮超標,說明好氧硝化系統存在問題,這時候需要檢測和核算系統中的鹼度、溶解氧、停留時間是否合理,調整後再進行下一步分析。這是第一步。
超標現象之二:硝態氮超標,這中情況說明反硝化存在問題,需要核算系統的迴流量,碳源是否合理(新爾特研究的反硝化菌碳氮比是5:1才能良好進行,5是碳源,1是硝態氮和亞硝態氮,不是其它的總氮,否則不準確)。
超標現象之三:有機氮超標,一般有兩種原因,一是該有機氮非常穩定,難以破解,而是生化系統存在嚴重問題,不能把有機氮分解開來。
樓主,涉及到技術點和工況較多,因此需要具體問題具體分析,有需要可以聯系,希望對您有幫助。
新爾特生物為您提供。
⑩ 如何處理工業廢水中總氮
硝化液迴流進行前置反硝化工藝硝化液迴流至前端缺氧區,同時投加碳源,通過反硝化菌將硝基氮進行反硝化轉化為氮氣,無需新增處理設施,無需新增佔地,僅需在現有的好氧段的末端安裝內迴流泵,將硝化液迴流至前置反硝化區。此方案從理論上可行,但存在如下問題:1) 如需將總氮達到一級A標,需將硝基氮降至10mg/L以下,通過計算,硝化液迴流比將在150-200%,即2倍於進水水量的富含溶解氧的硝化液(DO約4mg/L)迴流至缺氧段將直接改變缺氧段的溶解氧環境(0.2mg/L≤DO≤0.5mg/L),影響反硝化效率的一個重要指標即嚴格的缺氧環境,如此大的迴流比導致的溶氧升高和缺氧停留時間減少將會嚴重影響反硝化效率和反應時間,進而出水總氮無法達到很低的水平,但減少迴流比則無法完成總氮的反硝化數量,亦會影響出水總氮達標。2) 如進行反硝化反應,反硝化菌必定會利用一定的碳源,從進水C/N比和出水的C/N比分析,該廠如進行反硝化需補加碳源,如在前端補充甲醇作為碳源,則存在反硝化菌和其他菌種的競爭關系,從微生物學的角度分析,反硝化在此條件下並非優勢菌種,因此前端投加的大量碳源會被浪費,導致運行費用升高,如過量補充則又會導致後端處理負荷的增加。根據不同水質需求對生化脫氮的不同環節進行設計與優化,比如IDN-BMP總氮去除裝備就是從反硝化階段入手,加強菌種的選擇與馴化,優化反應器結構,從而增強反應器的的脫氮效率。