⑴ 污水處理過程中,我們要檢測HP,SS,溫度,CODcr,BOD,BOD5,總鎳的濃度,磷酸鹽的含量,石油類,LAS等等。
我是BFMS工藝設備銷售員,下面是我下栽的
水污染物
PH氫離子濃度指數,即 pH值。這個概念是1909年由丹麥生物化學家Søren Peter Lauritz Sørensen提出。p代表德語Potenz,意思是力量或濃度,H代表氫離子。
pH實際上是水溶液中酸鹼度的一種表示方法。平時我們經常習慣於用百分濃度來表示水溶液的酸鹼度,如1%的硫酸溶液或1%的鹼溶液,但是當水溶液的酸鹼度很小很小時,如果再用百分濃度來表示則太麻煩了,這時可用pH來表示。pH的應用范圍在0-14之間,當pH=7時水呈中性;pH<7時水呈酸性,pH愈小,水的酸性愈大;當pH>7時水呈鹼性,pH愈大,水的鹼性愈大。
pH值的計算公式如下:
C(H)為H離子濃度
-lg(C(H)),例如HCL溶液,-lg(10^-2)=2
鹼性溶液中
14-lg(C(OH))
世界上所有的生物是離不開水的,但是適宜於生物生存的pH值的范圍往往是非常狹小的,因此國家環保局將處理出水的pH值嚴格地規定在6-9之間。
水中pH值的檢測經常使用pH試紙,也有用儀器測定的,如pH測定儀。
生化需氧量和化學需氧量的比值能說明水中的有機污染物有多少是微生物所難以分解的。微生物難以分解的有機污染物對環境造成的危害更大。
COD(化學需氧量,ChemicalOxygenDemand)區別:COD,化學需氧量是以化學方法測量水樣中需要被氧化的還原性物質的量。水樣在一定條件下,以氧化1升水樣中還原性物質所消耗的氧化劑的量為指標,折算成每升水樣全部被氧化後,需要的氧的毫克數,以mg/L表示。它反映了水中受還原性物質污染的程度。該指標也作為有機物相對含量的綜合指標之一。
BOD(Biochemical Oxygen Demand的簡寫):生化需氧量或生化耗氧量。
BOD,生化需氧量(BOD)是一種環境監測指標,主要用於監測水體中有機物的污染狀況。一般有機物都可以被微生物所分解,但微生物分解水中的有機化合物時需要消耗氧,如果水中的溶解氧不足以供給微生物的需要,水體就處於污染狀態。BOD才是有關環保的指標!
表示水中有機物等需氧污染物質含量的一個綜合指示。
它說明水中有機物由於微生物的生化作用進行氧化分解,使之無機化或氣體化時所消耗水中溶解氧的總數量。其單位ppm成毫克/升表示。其值越高說明水中有機污染物質越多,污染也就越嚴重。
為了使檢測資料有可比性,一般規定一個時間周期,在這段時間內,在一定溫度下用水樣培養微生物,並測定水中溶解氧消耗情況,一般採用五天時間,稱為五日生化需氧量,記做BOD5。數值越大證明水中含有的有機物越多,因此污染也越嚴重。
生化需氧量的計算方式如下:
BOD(mg / L)=(D1-D2) / P
D1:稀釋後水樣之初始溶氧(mg / L)
D2:稀釋後水樣經 20 ℃ 恆溫培養箱培養 5 天之溶氧(mg / L)
P=【水樣體積(mL)】 / 【稀釋後水樣之最終體積(mL)】
懸浮物
指懸浮在水中的固體物質,包括不溶於水中的無機物、有機物及泥砂、黏土、微生物等。水中懸浮物含量是衡量水污染程度的指標之一。懸浮物是造成水渾濁的主要原因。水體中的有機懸浮物沉積後易厭氧發酵,使水質惡化。中國污水綜合排放標准分3級,規定了污水和廢水中懸浮物的最高允許排放濃度,中國地下水質量標准和生活飲用水衛生標准對水中懸浮物以渾濁度為指標作了規定。
總磷是水樣經消解後將各種形態的磷轉變成正磷酸鹽後測定的結果,以每升水樣含磷毫克數計量。正磷酸鹽的常用測定方法有3種:①釩鉬磷酸比色法。此法靈敏度較低,但干擾物質較少。②鉬-銻-鈧比色法。靈敏度高,顏色穩定,重復性好。③氯化亞錫法。雖靈敏但穩定性差,受氯離子、硫酸鹽等干擾。水中磷可以元素磷、正磷酸鹽、縮合硫酸鹽、焦磷酸鹽、偏磷酸鹽和有機團結合的磷酸鹽等形式存在。其主要來源為生活污水、化肥、有機磷農葯及近代洗滌劑所用的磷酸鹽增潔劑等。磷酸鹽會干擾水廠中的混凝過程。水體中的磷是藻類生長需要的一種關鍵元素,過量磷是造成水體污穢異臭,使湖泊發生富營養化和海灣出現赤潮的主要原因。我國地面水環境質量標准規定總磷容許值如下。
氨氮:動物性有機物的含氮量一般較植物性有機物為高。同時,人畜糞便中含氮有機物很不穩定,容易分解成氨。因此,水中氨氮含量增高時指以氨或銨離子形式存在的化合氨。
氨氮主要來源於人和動物的排泄物,生活污水中平均含氮量每人每年可達2.5~4.5公斤。
雨水徑流以及農用化肥的流失也是氮的重要來源。
另外,氨氮還來自化工、冶金、石油化工、油漆顏料、煤氣、煉焦、鞣革、化肥等工業廢水中。
當氨溶於水時,其中一部分氨與水反應生成銨離子,一部分形成水合氨,也稱非離子氨。
非離子氨是引起水生生物毒害的主要因子,而氨離子相對基本無毒。 國家標准Ⅲ類地面水, 非離子氨的濃度≤0.02毫克/升。
氨氮是水體中的營養素,可導致水富營養化現象產生,是水體中的主要耗氧污染物,對魚類及某些水生生物有毒害。。
測試方法
納氏試劑比色法
1 原理
碘化汞和碘化鉀的鹼性溶液與氨反映生成淡紅棕色膠態化合物,其色度與氨氮含量成正比,通常可在波長410~425nm范圍內測其吸光度,計算其含量.
本法最低檢出濃度為0.025mg/L(光度法),測定上限為2mg/L.採用目視比色法,最低檢出濃度為0.02mg/L.水樣做適當的預處理後,本法可用於地面水,地下水,工業廢水和生活污水中氨氮的測定.
2 儀器
2.1 帶氮球的定氮蒸餾裝置:500mL凱氏燒瓶,氮球,直形冷凝管和導管.
2.2 分光光度計
2.3 pH計
3 試劑
配製試劑用水均應為無氨水
3.1 無氨水可選用下列方法之一進行制備:
3.1.1 蒸餾法:每升蒸餾水中加0.1mL硫酸,在全玻璃蒸餾器中重蒸餾,棄去50mL初餾液,按取其餘餾出液於具塞磨口的玻璃瓶中,密塞保存.
3.1.2 離子交換法:使蒸餾水通過強酸型陽離子交換樹脂柱.
3.2 1mol/L鹽酸溶液.
3.3 1mol/L氫氧化納溶液.
3.4 輕質氧化鎂(MgO):將氧化鎂在500℃下加熱,以出去碳酸鹽.
3.5 0.05%溴百里酚藍指示液:pH60.~7.6.
3.6 防沫劑,如石蠟碎片.
3.7 吸收液:
3.7.1 硼酸溶液:稱取20g硼酸溶於水,稀釋至1L.
3.7.2 0.01mol/L硫酸溶液.
3.8 納氏試劑:可選擇下列方法之一制備:
3.8.1 稱取20g碘化鉀溶於約100mL水中,邊攪拌邊分次少量加入二氯化汞(HgCl2)結晶粉末(約10g),至出現朱紅色沉澱不易溶解時,改寫滴加飽和二氯化汞溶液,並充分攪拌,當出現微量朱紅色沉澱不再溶解時,停止滴加二氯化汞溶液.
另稱取60g氫氧化鉀溶於水,並稀釋至250mL,冷卻至室溫後,將上述溶液徐徐注入氫氧化鉀溶液中,用水稀釋至400mL,混勻.靜置過夜將上清液移入聚乙烯瓶中,密塞保存.
3.8.2 稱取16g氫氧化納,溶於50mL水中,充分冷卻至室溫.
另稱取7g碘化鉀和碘化汞(HgI2)溶於水,然後將此溶液在攪拌下徐徐注入氫氧化納溶液中,用水稀釋至100mL,貯於聚乙烯瓶中,密塞保存.
3.9 酒石酸鉀納溶液:稱取50g酒石酸鉀納KNaC4H4O6•4H2O)溶於100mL水中,加熱煮沸以除去氨,放冷,定容至100Ml.
3.10 銨標准貯備溶液:稱取3.819g經100℃乾燥過的優級純氯化銨(NH4Cl)溶於水中,移入1000mL容量瓶中,稀釋至標線.此溶液每毫升含1.00mg氨氮.
3.11 銨標准使用溶液:移取5.00mL銨標准貯備液於500mL容量瓶中,用水稀釋至標線.此溶液每毫升含0.010mg氨氮.
4 測定步驟
4.1 水樣預處理:取250mL水樣(如氨氮含量較高,可取適量並加水至250mL,使氨氮含量不超過2.5mg),移入凱氏燒瓶中,家數滴溴百里酚藍指示液,用氫氧化納溶液或演算溶液調節至pH7左右.加入0.25g輕質氧化鎂和數粒玻璃珠,立即連接氮球和冷凝管,導
管下端插入吸收液液面下.加熱蒸餾,至餾出液達200mL時,停止蒸餾,定容至250mL.
採用酸滴定法或納氏比色法時,以50mL硼酸溶液為吸收液;採用水楊酸-次氯酸鹽比色法時,改用50mL0.01mol/L硫酸溶液為吸收液.
4.2 標准曲線的繪制:吸取0,0.50,1.00,3.00,7.00和10.0mL銨標准使用液分別於50mL比色管中,加水至標線,家1.0mL酒石酸鉀溶液,混勻.加1.5mL納氏試劑,混勻.放置10min後,在波長420nm處,用光程20mm比色皿,以水為參比,測定吸光度. 由測得的吸光度,減去零濃度空白管的吸光度後,得到校正吸光度,繪制以氨氮含量(mg)對校正吸光度的標准曲線.
4.3 水樣的測定:
4.3.1分取適量經絮凝沉澱預處理後的水樣(使氨氮含量不超過0.1mg),加入50mL比色管中,稀釋至標線,家0.1mL酒石酸鉀納溶液.以下同標准曲線的繪制.
4.3.2 分取適量經蒸餾預處理後的餾出液,加入50mL比色管中,加一定量1mol/L氫氧化納溶液,以中和硼酸,稀釋至標線.加1.5mL納氏試劑,混勻.放置10min後,同標准曲線步驟測量吸光度.
4.4 空白實驗:以無氨水代替水樣,做全程序空白測定.
5 計算
由水樣測得的吸光度減去空白實驗的吸光度後,從標准曲線上查得氨氮量(mg)後,
按下式計算:
氨氮(N,mg/L)=m/V×1000
式中:m——由標准曲線查得的氨氮量,mg;
V——水樣體積,mL.
6 注意事項:
6.1 納氏試劑中碘化汞與碘化鉀的比例,對顯色反應的靈敏度有較大影響.靜置後生成的沉澱應除去.
6.2 濾紙中常含痕量銨鹽,使用時注意用無氨水洗滌.所用玻璃皿應避免實驗室空氣中氨的玷污.
⑵ 詳細說明氯化汞的危害!
氯化汞的危害在於汞的危害,汞俗稱水銀,銀白色,易流動,是在常溫下唯一的液體金屬。常溫下汞不易被氧化,但易蒸發,汞蒸氣有毒!加熱時氧化為氧化汞。汞有溶解許多金屬的能力,所構成的合金統稱汞齊。汞不溶於水,易溶於硝酸,也溶於熱濃硫酸,但與稀硫酸、鹽酸、鹼等都不起作用。焙燒含汞礦石可提煉出金屬汞。汞的用途很廣:在化學工業中用汞作陰極電解食鹽溶液製取氯氣和燒鹼;用汞製造水銀燈、真空泵、物理儀表(如氣壓計、溫度計、血壓計等);製造各種含汞葯品、試劑、農葯、炸葯等;用汞齊法提取金銀等貴重金屬;工藝品或寺廟用金汞齊鍍金或鎦金。
事故案例
1953年日本的水俁市發生嚴重的汞中毒事件,造成41人死亡。經過調查,查明是當地一家化工廠常年向水俁灣排放含汞廢水。汞在水體中經微生物作用生成甲基汞。甲基汞易在魚、貝殼等海產品體內富集,體內形成很高濃度的甲基汞。人或動物食用了含有甲基汞的海產品,引起甲基汞中毒。由於中毒事件發生在日本的水俁市,而且當時中毒原因不清,故稱「水俁病」。至1974年,日本的水俁病有1400餘人。據日本媒體報道,在水俁市及其他地區,目前仍有尚未被發現的水俁病患者。
1982年9月18日,吉林某電石廠機修車間有8人用氣焊切割管內殘留有汞泥的廢舊冷卻器列管時,管中的汞受熱蒸發,也有汞珠流到地上,造成5人重度急性汞中毒,3人輕度急性汞中毒。
職業危害
接觸機會
在化學工業中水銀法燒鹼以汞為陰極,使用大量汞;採用乙炔法生產氯乙烯以氯化汞做催化劑,用大量氯化汞;乙炔法生產乙醛以硫酸汞做催化劑,消耗大量汞;油漆業用氧化汞做多種油漆的添加劑;多種汞鹽試劑如硫酸汞、硝酸汞、碘化汞、溴化汞等生產、精製、包裝都接觸大量汞;農葯如醋酸苯汞、氯化乙基汞、磷酸乙基汞,醫葯如氧化汞、水楊酸汞、汞撒利、氯汞脲等的生產都要接觸汞;化工儀表如流量計、液面計、壓力計等的生產、使用、維修都接觸汞。此外,冶金業汞礦開采、冶煉汞;金礦、銀礦用汞提取金、銀;電氣業製造水銀燈、X線球管、水銀電池、汞整流器等;國防工業生產雷汞和製造雷管;原子工業鈈反應堆以汞做冷卻劑。
以上接觸汞的工業都會有汞中毒發生,而且汞一旦灑落可形成無數小汞珠,吸附在地板、牆面、器具上,擴大了揮發面,形成二次污染。
中毒表現
急性汞中毒:全身症狀為頭痛、頭暈、乏力、底度發熱,睡眠障礙,情緒激動,易興奮等;呼吸道症狀表現為胸痛、胸悶、氣促、劇烈咳嗽、咳痰、呼吸困難;口腔炎可在早期出現,有流涎、口渴、齒齦紅鍾、疼痛,在齦緣可見「汞線」,口腔粘膜腫脹、糜爛、潰瘍,牙齒松動、脫落;胃腸道症狀為惡心、嘔吐、食慾不振、腹痛,有時出現腹瀉,水樣便或大便帶血。汞對腎臟損傷,可造成腎小管上皮細胞壞死。出現浮腫、腰痛、尿少,甚至尿閉。尿蛋白陽性,尿中有紅細胞、脫落上皮細胞和管型等。少數病人可出現皮炎,如紅色丘疹,水庖疹,重症者形成膿庖或糜爛。尿汞明顯增高。
慢性汞中毒:
神經衰弱癥候群 頭昏、頭痛、失眠、多夢、記憶力明顯減退,全身乏力等。
易興奮症 局促不安、憂郁、害羞、膽怯、易激動、厭煩、急躁、恐懼、喪失自信心、注意力不集中、思維紊亂,甚至出現幻覺、幻視、幻聽,哭笑無常等。
植物神經功能紊亂 心悸、多汗、血壓不穩、臉紅。皮膚劃紋征陽性。性慾減退、陽痿、月經失調等。
口腔炎及消化道症狀 口腔內金屬味,齒齦可有深藍色的汞線,流涎、口渴、齒齦充血、腫脹,溢膿、潰瘍、疼痛,牙齒松動易脫落。惡心、食慾不振、噯氣、腹瀉或便秘。
汞毒性震顫 手指、舌、眼瞼震顫。多為意向性,當注意力集中和精神緊張時震顫加重,難以完成精細動作。重症者可出現粗大震顫。語言不靈活,出現口吃,甚至飲食和行走困難。
其他 少數病人可有蛋白尿、管型,全身浮腫等腎臟損害。有的病人可有鼻炎、上呼吸道炎表現。少數病人眼晶狀體出現「汞性」晶體炎。亦有末梢神經炎表現,如手套、襪套樣感覺減退或過敏等。
急性中毒現場處理
患者應及時脫離汞作業現場,淋浴清洗頭發,更換干凈衣服。若口服汞鹽者應及時用溫鹽水及0.2%活性炭交替洗胃,而後灌入牛奶或蛋清,服入15克硫酸鎂導瀉。
⑶ 中學化學實驗室廢水處理
中學化學實驗室廢水處理
一、有機物類廢水
以中學化學實驗室現有的條件,較簡便的金屬回收方法是將金屬離子以氫氧化物的形式沉澱分離。各種金屬離子的排放形式:鉻(重鉻酸鉀,硫酸鉻);汞(氯化汞,氯化亞汞);鉛(EDTA合鉛(II));銅(EDTA合銅,硫酸銅),等等。其中,氯化汞和硫酸鉻屬於共同排放。總的來說,沉澱回收法的原理較為簡單,可操作性也很強,對污染的消除效果相當不錯。
酸或鹼:對於含酸或鹼類物質的廢液,如濃度較大時,可利用廢酸或廢鹼相互中和,再用pH試紙檢驗,若廢液的pH值在5.8—8.6之間,如此廢液中不含其它有害物質,則可加水稀釋至含鹽濃度在5% 以下排出。
鉻:含鉻廢液中加入還原劑,如硫酸亞鐵、亞硫酸鈉、鐵屑,在酸性條件下將六價鉻還原成三價鉻,然後加入鹼,如氫氧化鈉、氫氧化鈣碳酸鈉等,使三價格形成Or(OH),沉澱,清液可排放。沉澱乾燥後可用焙燒法處理,使其與煤渣一起焙燒,處理後可填埋。
汞:廢液中汞的最高容許排放濃度為0.05mg/L(以Hg計)。可以採用硫化物共沉澱法:先將含汞鹽的廢液的pH值調至8—1O,然後加入過量的Na2S,使其生成Hgs沉澱。再加入FeSO(共沉澱劑),與過量的S:一生成FeS沉澱,將懸浮在水中難以沉澱的HgS微粒吸附共沉澱.然後靜置、分離,再經離心、過濾濾液的含汞量可降至0.05mg/L以下。
氰化物:少量的含氰廢液可加入NaOH調至pH=10以上。再加入幾克高錳酸鉀使CN一氧化分解。量大的含氰廢液鹼液氯化法處理,先用鹼調至pH=10以上,再加人次氯酸鈉或漂白粉,使CN一氧化成氰酸鹽,並進一步分解為CO 和N 。放置24小時排放。或加入氫氧化鈉使呈礆性後再倒入硫酸亞鐵溶液中(按質量計算:1份硫酸亞鐵對1份氫氧化鈉),生成無毒的亞鐵氫化鈉再排人下水管道。含氰化物物質,也不得亂倒或與酸混合,生成揮發性氰化氫氣體有劇毒。
砷:在含砷廢液中加入FeCI~,使Fe/As達到5O,然後用消石灰將廢液的pH值控制在8一lO。利用新生氫氧化物和砷的化合物共沉澱的吸附作用,除去廢液中的砷。放置一夜,分離沉澱,達標後,排放廢液。
鎘:在含鎘的廢液中投加石灰,調節pH值至10.5以上,充分攪拌後放置,使鎘離子變為難溶的Cd(OH):沉澱.分離沉澱,將濾液中和至pH值約為7,然後排放。
鉛:在廢液中加入消石灰,調節至pH值大於11,使廢液中的鉛生成Pb(OH) 沉澱.然後加入 (s0 ),(凝聚劑),將pH值降至7—8,則Pb(OH):與^J(OH),共沉澱,分離沉澱,達標後,排放廢液。
重金屬離子:最有效和最經濟的方法是加鹼或加Na2S把重金屬離子變成難溶性的氫氧化物或硫化物而沉積下來,從而過濾分離,少量殘渣可埋於地下。混合廢液:互不作用的廢液可用鐵粉處理。調節廢液PH3— 4,加入鐵粉,攪拌半小時,用鹼調節PH 9左右,攪拌1O分鍾。加入高分子混凝劑(聚合氯化鋁和聚合氧化鐵)沉澱,清液可排放,沉澱物作為廢渣處理。廢酸鹼可中和處理。
二、有機物類廢水
對有機酸或元機酸的酯類,以及一部份有機磷化合物等容易發生水解的物質,可加入氫氧化鈉或氫氧化鈣,在室溫或加熱下進行水解。水解後,若廢液無毒害時,把它中和、稀釋後,即可排放。如果含有有害物質時,用吸附等適當的方法加以處理。如廢液包括:苯、已烷、二甲苯、甲苯、煤油、輕油、重油、潤滑油、切削油、機器油、動植物性油脂及液體和固體脂肪酸等物質的廢液。對其可燃性物質,用焚燒法處理。對其難於燃燒的物質及低濃度的廢液,則用溶劑萃取法或吸附法處理。
三氯甲烷:將三氯甲烷廢液一次用水、濃硫酸(三氯甲烷量的十分之一)、純水、鹽酸羥胺溶液(O.5% AR)洗滌。用重蒸餾水洗滌兩次,將洗好的三氯甲烷用污水氯化鈣脫水,放置幾天,過濾,蒸餾。蒸餾速度為每秒l~2滴,收集沸程為6o一62攝氏度的餾出液(標框下),保存於棕色試劑瓶中(不可用橡膠塞)。CC14:反應式:Na2SO3+I2+H2O=Na2SO『+2HI具體操作:在碘一CC1 溶液中加入Na2SO3,直至把I2轉化為I一離子(檢查:用澱粉試紙或澱粉溶液檢查是否還存在有I2,然後轉移到分液漏斗,加少量蒸餾水,振盪,分液(用AgN03,檢查水樣溶液是否有I2,若有黃色或白色沉澱,再用水洗滌ccl,溶液)。
酚:酚的處理主要有吸附法、萃取法、液膜分離法、扭捏及蒸餾氣提法、生物法等,但對於實驗室來說,以上的方法都不實用。低濃度含酚廢液可加入次氯酸鈉或漂白粉,使酚氧化水和二氧化碳。高濃度可使用丁酸乙脂萃取,在用少量氫氧化鈉溶液反復萃取。調解PH後,進行重蒸餾,提純後使用。或利用二氧化氯(C10:,強氧化消毒劑)水溶液進行苯酚廢水處理,不僅方便、安全,操作也十分簡單,直接將其按一定量加入廢水中,攪拌均勻,維持一定的處理時間,即可達到良好的處理效果,不存在二次污染。
⑷ 廢水的PH值對COD有影響么
廢水的PH值過高或者過低都可能使廢水中的COD值偏離正常范圍。COD是在一定的條件下,採用一定的強氧化劑處理水樣時,所消耗的氧氣的量。它是表示水中還原性物質多少的一個指標。
水中的還原性物質有各種有機物、亞硝酸鹽、硫化物、亞鐵鹽等。但主要的是有機物。因此,化學需氧量(COD)又往往作為衡量水中有機物質含量多少的指標。化學需氧量越大,說明水體受有機物的污染越嚴重。
(4)廢水氯化汞濃度073什麼概念擴展閱讀:
COD值的測定注意事項:
1、使用0.4g硫酸汞絡合氯離子的最高量可達40mg,如取用20.00mL水樣,即最高可絡合2000mg/L氯離子濃度的水樣。若氯離子的濃度較低,也可少加硫酸汞,使保持硫酸汞:氯離子=10:1(W/W)。若出現少量氯化汞沉澱,並不影響測定。
2、對於化學需氧量小於50mg/L的水樣,應改用0.0250mol/L重鉻酸鉀標准溶液。回滴時用0.01mol/L硫酸亞鐵銨標准溶液。
3、水樣加熱迴流後,溶液中重鉻酸鉀剩餘量應為加入量的1/5~4/5為宜。水樣在一定條件下,以氧化1升水樣中還原性物質所消耗的氧化劑的量為指標,折算成每升水樣全部被氧化後,需要的氧的毫克數,以mg/L表示。它反映了水中受還原性物質污染的程度。該指標也作為有機物相對含量的綜合指標之一。
4、用鄰苯二甲酸氫鉀標准溶液檢查試劑的質量和操作技術時,由於每克鄰苯二甲酸氫鉀的理論CODCr為1.176g,所以溶解0.4251g鄰苯二甲酸氫鉀於重蒸餾水中,轉入1000mL容量瓶,用重蒸餾水稀釋至標線,使之成為500mg/L的CODcr標准溶液;用時新配。
5、每次實驗時,應對硫酸亞鐵銨標准滴定溶液進行標定,室溫較高時尤其注意其濃度的變化。一般測量化學需氧量所用的氧化劑為高錳酸鉀或重鉻酸鉀,使用不同的氧化劑得出的數值也不同,因此需要註明檢測方法。為了統一具有可比性,各國都有一定的監測標准。
⑸ 剩餘氯化汞水溶液咋處理
由於各種價態汞的毒性都很強,
在對含汞廢液處理時,
不能將含汞廢液經簡單化
學處理後直接排入下水道.
只能採取將離子態汞還原為單質汞後純化再用的方法。
廢液中汞的最高容許排放濃度為
0.05mg/L(
以
Hg
計)常用的處理方法有:
1.
硫化物共沉澱法:
含汞鹽的廢液先調至
pH8
~
10
,
加入過量硫化鈉,
使其生
成硫化汞沉澱,
再加入共沉澱劑硫酸亞鐵,生成的硫化鐵將水中的懸浮物硫化
汞微粒吸附而共沉澱,排出清液,殘渣用焙燒法回收汞、或再製成汞鹽。
2.
還原法:用銅屑、鐵屑、鋅粒、硼氫化鈉等作還原劑,可以直接回收金屬汞。
3.
將
5mol/L
的硫酸溶液加入剩餘的二氯化汞(或溶液)中,生成硫酸汞和鹽酸
(注意在通風櫃中進行),待反應完後,在反應後溶液中加入鐵,生成硫酸鐵和
汞,將汞回收即可。
具體反應方程如下:
HgCl2+H2SO4=HgSO4+2HCl
HgSO4+Fe=FeSO4+Hg
(回收)
4.
為了避免含汞廢液造成對環境的污染,應將廢液中的汞進行處理。方法是:
將廢液收集在塑料桶中,
當廢水容量達到
20L
左右時,
以曝氣方式混勻廢液,
同
時加入
50ml
氫氧化鈉
(
400g/L
)
溶液,
再加入
50g
硫化鈉
(Na2S·9H2O)
,
10min
後,慢慢加入
200ml
市售過氧化氫,靜置
24h
後,抽取上清液棄去。
⑹ 求問【求助】水質保存用的氯化汞濃度是多少怎麼配置
水質采樣規范上好像
沒有要求
加
二氯化汞
的,一般都是加酸,
揮發酚
好像是加naoh或者用磷酸和
硫酸銅
,生物分析的是用無菌瓶,
⑺ 污水處理前和處理後cod的濃度是怎麼得到的
通過取污水處理前和處理後的水樣,做測試獲得數值。
附:COD的測定方法
COD(Chemical Oxygen Demand)(化學需氧量)是水中有機物消耗氧的含量,是反應廢水污染程度的重要指標之一,是水質監測的重中之重,與我們的生活息息相關。化學需氧量COD是在一定的條件下,採用一定的強氧化劑處理水樣時,所消耗的氧化劑量。它是表示水中還原性物質多少的一個指標。水中的還原性物質有各種有機物、亞硝酸鹽、硫化物、亞鐵鹽等。但主要的是有機物。因此,化學需氧量(COD)又往往作為衡量水中有機物質含量多少的指標。化學需氧量越大,說明水體受有機物的污染越嚴重。 化學需氧量(COD)的測定,隨著測定水樣中還原性物質以及測定方法的不同,其測定值也有不同。目前應用最普遍的是酸性高錳酸鉀氧化法與重鉻酸鉀氧化法。高錳酸鉀(KMnO4)法,氧化率較低,但比較簡便,在測定水樣中有機物含量的相對比較值及清潔地表水和地下水水樣時,可以採用。重鉻酸鉀(K2Cr2O7)法,氧化率高,再現性好,適用於廢水監測中測定水樣中有機物的總量。 有機物對工業水系統的危害很大。含有大量的有機物的水在通過除鹽系統時會污染離子交換樹脂,特別容易污染陰離子交換樹脂,使樹脂交換能力降低。有機物在經過預處理時(混凝、澄清和過濾),約可減少50%,但在除鹽系統中無法除去,故常通過補給水帶入鍋爐,使爐水pH值降低。有時有機物還可能帶入蒸汽系統和凝結水中,使pH降低,造成系統腐蝕。在循環水系統中有機物含量高會促進微生物繁殖。因此,不管對除鹽、爐水或循環水系統,COD都是越低越好,但並沒有統一的限制指標。在循環冷卻水系統中COD(KMnO4法)>5mg/L時,水質已開始變差。
COD的測定方法
一、重鉻酸鉀標准法(也稱為迴流法)
(一)、原理:
在水樣中加入一定量的重鉻酸鉀和催化劑硫酸銀,在強酸性介質中加熱迴流一定時間,部分重鉻酸鉀被水樣中可氧化物質還原,用硫酸亞鐵銨滴定剩餘的重鉻酸鉀,根據消耗重鉻酸鉀的量計算COD的值。 缺點:
1、 耗時太多,每測定一個樣需迴流2個小時;
2、 迴流設備佔用的空間大,使批量測定出現困難;
3、 分析費用較高,特別是硫酸銀(500.00元/百克);
4、 測定過程中,迴流水的浪費驚人;
5、 毒性的汞鹽易造成二次污染;
6、 試劑用量大,耗材成本高;
7、 測試過程復雜,不宜於推廣
(二)、設備
1. 250mL全玻璃迴流裝置.
2. 加熱裝置(電爐).
3. 25mL或50mL酸式滴定管,錐形瓶,移液管,容量瓶等.
(三),試劑
1.重鉻酸鉀標准溶液(c1/6K2Cr2O7=0.2500mol/L)
2.試亞鐵靈指示液
3.硫酸亞鐵銨標准溶液[c(NH4)2Fe(SO4)2·6H2O≈0.1mol/L](使用前標定)
4.硫酸-硫酸銀溶液 重鉻酸鉀標准法
(四).測定步驟
硫酸亞鐵銨標定 :准確吸取10.00mL重鉻酸鉀標准溶液於500mL錐形瓶中,加水稀釋至110mL左右,緩慢加入30mL濃硫酸,搖勻.冷卻後,加入3滴試亞鐵靈指示液(約0.15mL),用硫酸亞鐵銨溶液滴定,溶液的顏色由黃色經藍綠色至紅褐色即為終點.
(五).測定:
取20mL水樣(必要時酌情少取加水至20或稀釋後再取),加入10mL的重鉻酸鉀,插上迴流裝置,再加入30mL硫酸硫酸銀,加熱迴流 2h 冷卻後,用90.00mL水沖洗冷凝管壁,取下錐形瓶. 溶液再度冷卻後,加3滴試亞鐵靈指示液,用硫酸亞鐵銨標准溶液滴定,溶液的顏色由黃色經藍綠色至紅褐色即為終點,記錄硫酸亞鐵銨標准溶液的用量. 測定水樣的同時,取20.00mL重蒸餾水,按同樣操作步驟作空白實驗.記錄滴定空白時硫酸亞鐵銨標准溶液的用量. 重鉻酸鉀標准法
(六),計算
CODCr(O2,mg/L)=[8×1000(V0-V1)·C]/V
(七)、注意事項
1、使用0.4g硫酸汞絡合氯離子的最高量可達40mg,如取用20.00mL水樣,即最高可絡合2000mg/L氯離子濃度的水樣。若氯離子的濃度較低,也可少加硫酸汞,使保持硫酸汞:氯離子=10:1(W/W)。若出現少量氯化汞沉澱,並不影響測定。
2、本方法測定COD的范圍為50—500mg/L。對於化學需氧量小於50mg/L的水樣,應改用0.0250mol/L重鉻酸鉀標准溶液。回滴時用0.01mol/L硫酸亞鐵銨標准溶液。對於COD大於500mg/L的水樣應稀釋後再來測定。
3、水樣加熱迴流後,溶液中重鉻酸鉀剩餘量應為加入量的1/5—4/5為宜。
4、用鄰苯二甲酸氫鉀標准溶液檢查試劑的質量和操作技術時,由於每克鄰苯二甲酸氫鉀的理論CODCr為1.176g,所以溶解0.4251g鄰苯二甲酸氫鉀(HOOCC6H4COOK)於重蒸餾水中,轉入1000mL容量瓶,用重蒸餾水稀釋至標線,使之成為500mg/L的CODcr標准溶液。用時新配。
5、CODCr的測定結果應保留四位有效數字。
6、每次實驗時,應對硫酸亞鐵銨標准滴定溶液進行標定,室溫較高時尤其注意其濃度的變化。(也可在滴定後的空白中再加入10.0ml重鉻酸鉀標准溶液,用硫酸亞鐵銨滴定至終點.)
7、水樣應保證新鮮,盡快測定。
二、快速消解分光光度法
(一)、原理
試樣加入已知量的重鉻酸鉀溶液,在強硫酸介質中,以硫酸銀作為催化劑,經高溫消解後,用光度法設備測定COD值。 由於此方法測定時間短、二次污染小、試劑量小費用低,所以目前大部分實驗室都採用此種方法,但此方法儀器成本較高,使用成本較低,適合於長期需要檢測COD單位使用。
(二)、設備
組成部分
1: 在線COD儀器 組成部分 加熱模塊,測定模塊
A: 加熱模塊:兩種方法,有150攝氏度,加熱2個小時,有165攝氏度加熱10分鍾 不同的加熱模塊可以稱呼:傳統國標法微循環加熱法,快速消解法
B: 測定模塊:利用不同的波長測定相關的吸光度,所以需要一個可見光分光光度計 C: 試劑,主要成分重鉻酸鉀(飲用水高錳酸鉀),硫酸,.硫酸汞,硫酸銀,.水
2:在線COD分析儀品牌
HACH ,WTW,默克,HANNA,國產
(三)、測定步驟
取2.5ml試樣-----加入試劑-----消解10分鍾-----冷卻2分鍾-----倒入比色皿-----設備顯示屏直接顯示試樣COD濃度。
(四)、注意事項
1、高氯水樣應採用高氯試劑。
2、廢液10ml左右,但酸性較大,應集中回收處理。
3、保證比色皿的透光面清潔。
⑻ 水質指標在污水處理中有什麼作用
一、感官性狀和一般化學指標
1、色度
天然水經常顯示各種不同的顏色,水的色度通常來自植物界。工業廢水的污染,可使水體產生多種顏色。地面水的色度變化很大,它與匯水的土嚷、植被情況有關。
水色可分為真色和外表色兩種。水中懸浮物質完全移去後所呈現的顏色稱為真色,它主要來源於溶解在水中的腐植質和水生物。水中存在的各種有機物或無機物的雜質,如植物的落葉,樹根及泥土中的一些物質、泥沙、礦物質等,稱為外表色,或稱虛色、假色。
沼澤水由於含腐植質而呈黃色,低鐵化合物使水成為淡蘭綠色,高鐵化合物及四價錳化物使水呈黃色,水中大量藻類存在時顯亮綠色。
水色的的存在,使飲用者有外觀不快的感覺。色度不一定都對人體有害,但會使工業尤其對一些輕工業品如食品、造紙、紡織、飲料工業等產品質量降低。色度是主要的污染指標之一,一些國家的水質標准,要求的色度都在5~20度之間,現標准規定色度不超過15度鉑鈷單位,並不得呈現其它異色。優質水最好在10度以內。
2、渾濁度
水的渾濁度,是指水中懸浮物和膠體雜質對光線透過時所發生的阻礙程度。它和水中雜質含量,顆粒大小、形狀和表面反射性有關。測定濁度的方法比較簡便,一般都用來間接反映水中懸浮和膠體雜質的數量。1升水中含有1毫克白陶土(或高嶺土)時產生的渾濁程度,稱為1度或1毫克/升。渾濁度是衡量水質污染程度的重要標志之一,它與河岸性質、水流速度、工業廢水的污染有關,並隨氣候、季節變化而變動。
低濁度的水,對限制某些有害物質有積極的衛生學意義。水的渾濁度過高會影響消毒效果,增加消毒劑用量。根據各地反映,渾濁度達10毫克/升時已使人感到水質渾濁,因此水廠應盡最大努力,以求出廠水的渾濁度不超過3度,特殊情況下不超過5度。
新標准要求不超過1度,條件或技術限制時不超過3度。
3、嗅和味
潔凈的水是無嗅無味的,污染的水才會產生嗅和味。藻類的某些浮游生物、有機物、溶解氣體、礦物質、工業廢水的污染,加氯消毒、水溫、水中溶解氧的含量等等都會使水中帶有嗅和味。水溫越低,河水越渾濁,常有泥腥土臭、味澀;溶解氧較多,味略甜;蘭綠藻類原生動物會發出草腥臭等更多污水處理技術文章參考易凈水網資料庫http://www.ep360.cn/qita/。
溶解於水中的化合物,一般要到一定的濃度,才能引起味覺。含氯化物在150毫克/升以上帶苦鹹味,含鐵在0.3毫克/升以上帶澀味,含過量的礦物質的水味澀或咸。含有嗅和味的水,飲用者產生不願飲的感覺,對很多種工業生產用水也不利,使工業產品質量降低,因此標准規定自來水應保證無異嗅和異味。
4、肉眼可見物
飲用水不應含有沉澱物、肉眼可見的水生物及令人嫌惡的物質。
5、PH值
PH值表示水中所含活性氫離子的濃度,以代替氫離子的活度。水的PH值是描述水呈酸鹼性的一個指標,凡水中PH值低於7.0時,水呈酸性,而PH值高於7.0則水帶鹼性,當PH值為7.0時水為中性。水在凈化處理過程中,由於投加混凝劑和石灰等,可使水的PH值下降或升高,但過低可腐蝕管道,影響水質,過高又可析出溶解性鹽類並降低氯消毒的效果。標准規定在6.5~8.5之間。
6、總硬度
水的硬度是指沉澱肥皂的程度,使肥皂沉澱的原因,主要由於天然水中含有鈣鹽和鎂鹽。地下水的硬度往往比較高,地面水的硬度隨地理、地質情況等因素而變,地面水的硬度一般不會太高。
硬水不宜於工業方面使用,鍋爐用水切忌硬水,否則會生成鍋垢,浪費燃料。硬水也不宜於生產飲用,洗衣服會浪費肥皂,衣服染成斑點或不均勻的顏色;對健康不利,能引起暫時性的胃腸功能紊亂。據國內報道,飲用總硬度為707~935毫克/升(CaCO3計)的水,第二天人們就出現不同程度的腹脹、腹瀉和腹痛等胃腸道症狀,持續一周左右開始好轉,20天後恢復正常。顯然,人們對硬度的接受程度相差很大。
根據我國各地的調查,飲用水的硬度都不超過425毫克/升(CaCO3計),人們對該硬度的水反應也不大。
此外,水的硬度過高,可在配水系統中形成水垢,並需消耗過量的肥皂。
至於高硬度地區的水是否要採取必要的處理措施,可的根據當地居民的習慣和要求,由供水單位與衛生部門協商決定。為與多數國家取得一致,將原來按氧化鈣計的總硬度單位,改為按碳酸鈣計,經折算,並考慮其它因素將原來的硬度不應超過250毫克/升(以氧化鈣計)改為不應超過450毫克/升(按碳酸鈣計)。
7、鐵
鐵在天然水中普遍存在,是人類必需營養素,人體組織中含鐵達3~5克,是合成血液中血紅蛋白和氧化酶等所必需的元素,每人每日所需的鐵質約6~12毫克。因此飲用水中含有少量的鐵並無害處,食物中可以攝入。水中含量在0.3~0.5毫克/升時無任何異味,當達到1毫克/升時便有明顯的金屬味,含鐵量為0.3毫克/升時色度約為20度,在0.5毫克/升時色度可大於30度。為了防止衣服、器皿的染色和形成令人反感的沉澱或異味,標准規定飲用水中鐵含量不應超過0.3毫克/升。
8、錳
錳是人體需要的微量元素之一,每人每日需錳4毫克,主要從食物中攝入。水中錳可來自自然環境或工業廢水污染。錳在水中不易被氧化,在凈化處理過程中較難去除,水中有微量錳時,呈黃褐色。錳的氧化物能在水管內壁上逐步沉積,在水壓波動時可造成"黑水"現象。一些地區曾發生過這種情況。
錳和鐵對水感官性狀的影響類似,兩者經常共存於天然水中。當水中錳濃度超過0.5毫克/升時,能使衣服和固定設備染色,在較高濃度時使水產生不良味道。錳的毒性較小,在飲水中引起中毒的事例未見記載。
為防止對衣服、食具及白瓷器等產生色斑和滿足水質感官性方面的要求,標准規定飲用水中含錳量不應超過0.1毫克/升。
9、銅
銅是人體中需要的主要微量元素之一,在新陳代謝中參與細胞的生長、增殖和某些酶系統的活化過程。成年人每天需銅約2毫克,小孩需銅量比成年人高,嬰兒缺乏銅可發生營養性貧血。天然水中含銅量較少,而工業廢水的污染可大大增加地面水的含銅量。
銅的毒性小,但過多則對人體有害。如口服1000毫克/日,則可引起惡心、腹痛,長期攝入引起肝硬化。
根據現有資料,水中含銅量達 1.5毫克/升時,即有明顯的金屬味;含銅量超過1.0毫克/升時,可使衣服及白瓷器染成綠色。根據感官性狀的要求,標准規定飲用水中含銅量不超過1.0毫克/升。
10、鋅
天然水中的鋅含量很少,鋅主要來源於工礦廢水和鍍鋅金屬管道。鋅是人體必需的元素,是酶的組成部分,參與新陳代謝。學齡前兒童每天需要鋅約為0.3毫克/公斤,成年人每天攝取量平均為10~15毫克。但攝入過多,則能刺激胃腸道和產生惡心,口服1克的硫酸鋅可引起嚴重中毒。調查表明,飲水中含鋅23.8~40.8毫克/升或泉水含鋅50毫克/升均未見有害作用。但據報道,飲水中含鋅30毫克/升,會引起惡心。水中含鋅10毫克/升時呈現渾濁,5毫克/升有金屬澀味。我國各地水中含鋅量一般都很低。根據感官性狀要求,標准規定飲用水中鋅含量不應超過1.0毫克/升
11、揮發酚類(發苯酚計)
酚類化合物中能與氯結合形成氯酚臭的,主要是苯酚、甲酚苯、苯二酚等在水質檢驗中能被蒸餾出和檢出的酚類化合物。水中含酚主要來自工業廢水污染,特別是煉焦和石油工業廢水,其中以苯酚為主要成分。揮發酚類有蓄積性,對人體和漁業生產的危害均很大,並且是緩慢而持久的。苯酚能使細胞蛋白質發生變性和沉澱,小劑量時有類似水楊酸的作用,能刺激呼吸中樞,引起高鐵血紅蛋白症,其口服致死量約2~15克。當水體含酚量達9~15毫克/升時,魚類不能生存。苯的的中毒症狀為苯醉、昏睡、刺激眼和呼吸道,而主要危害在神經系統。酚的中毒表現為胃腸炎、呼吸道病變,能引起血壓降低、體溫下降、呼吸中樞麻痹。
酚具有惡臭,對飲水進行加氯消毒時,能形成臭味更強烈的氯酚,往往引起飲用者的反感。根據感官性狀的要求,標准規定飲用水中揮發酚類含量不應超過0.002毫克/升。
12、陰離子合成洗滌劑
目前,國產合成洗滌劑以陰離子的十二烷基苯磺酸鹽為主,其化學性質穩定,不易降解和消除。人體攝入少量洗滌劑,很少表現有害作用。但是,當水中濃渡為0.5毫克/升時要產生泡沫,超過0.5毫克/升時有異味,進入腸胃後有刺激粘膜的作用,甚至引起腹瀉、腹痛。根據嗅覺閾及泡沫形成的閾限度和大劑量的毒理作用,標准規定飲用水中陰離子合成洗滌劑含量不應超過0.3毫克/升,而作為優質水,則不能檢出陰離子合成洗滌劑。
13、硫酸鹽
硫酸鹽是人體需要的大量元素之一,天然水中普遍含有硫酸鹽,並作為主要礦化成份之一。硫酸鹽與鈣離子結合生成堅硬的鍋垢,加劇鍋爐的腐蝕,當水中硫酸鹽含量達到400毫克/升時,使人產生飢餓感,水具有苦澀味。
硫酸鹽是瀉葯,當含量超過750毫克/升時,可刺激腸胃引起腹痛、腹瀉,含量再高,可招致便血,當水中硫酸鹽與鎂共存時,作用加劇,而低於600毫克/升則無此作用。基於硫酸鹽對水味的影響和具有輕瀉作用,標准規定飲用水硫酸鹽含量不超過250毫克/升。
14、氯化物
地面水和地下水中通常都含有氯化物,它主要以鈉、鈣、鎂的鹽類存在於水中,氯化物在水中含量不多,對人體無害。飲用水中氯化物濃度過高(當為上千毫克/升)時,飲用後人體感到全身無力,口腔無味,水呈鹹味或苦澀味,有時可引起腹瀉。
水中存在氯化物,其鈣、鎂離子對鍋爐有腐蝕作用,含量超過200毫克/升時,可加速金屬管道的腐蝕。人攝入氯化物的主要來源為含鹽食品,每天平均攝入量約為6克(氯離子)。根據味覺考慮,標准規定飲用水中氯化物含量不應超過250毫克/升。
15、溶解性總固體(礦化度)
水中溶解性總固體主要包括無機物,主要成份為鈣、鎂、鈉的重碳酸鹽、氯化物和硫酸鹽。當其濃度高時,可使水產生不良的味道,並能損壞配水管道和設備。
據國外報道,濃度低於600毫克/升時,一般認為水味尚好,而高於1200毫克/升,會影響水味,但是長期飲用可能適應。基於對水味的影響,標准規定飲用水溶解性總固體不應超過1000毫克/升。
二、毒理學標准
16、氟化物 F
氟化物在自然界廣泛存在,又是人體正常組織成分之一,人每日自食物及飲水中攝取一定量的氟。攝入量過多對人體有害,可致急、慢性中毒(主要表現為牙斑釉或氟骨症)。飲用水中氟含量達3~6毫克/升時出現氟骨症,超過10毫克/升時會引起殘廢。
綜合考慮水中氟含量為1.0毫克/升時對牙齒的輕度影響,以及對我國廣大的高氟區飲水進行除氟或更換水源所付的經濟代價,標准規定飲用水中氟含量不得超過1毫克/升。原《標准》中規定適宜濃度0.5~1.0毫克/升,根據各地意見,以不訂下限值為宜。因為許多地區飲用水中氟含量低於0.5毫克/升,而關於"加氟"措施,國內外均有爭議,尚無法定論。我國幅員遼闊,各地氣候條件很不一致,各地的特殊問題應與當地衛生部門具體商定解決。特別是高氟地區,從飲用水以外其他途徑攝入的氟較高,故應盡量使用低氟水源。
17、氰化物過 CN
氰是水中主要的有毒物質之一,氰化物主要來自工業廢水,有劇毒。作用於某些呼吸酶,引起組織內窒息。首先影響呼吸中樞及血管舒縮中樞。慢性氰中毒時,甲狀腺激素生成量減少。
氰化物使水呈杏仁氣味,其嗅覺濃渡為0.1毫克/升,口服氰化氫0.06克即可致死。氰化鈉的致死量0.15~0.2克,口服苦杏仁40~60粒則可引起中毒甚至死亡,水體中含氰化物0.03毫克/升時,對魚類有中毒作用,到0.3毫克/升時影響水體生物凈化的作用。
考慮到氰化物毒性很強,採用較大安全系數,標准規定飲用水中氰化物的含量不得超過0.05毫克/升(以游離氰根計)。
18、砷 AS
天然水中含微量的砷;水中含砷量高,除地質因素外,主要來自工業廢水和農葯的污染。國內現場調查表明,某地深井水含砷量為1.0-2.5毫克/升,自1930年至1961年中發生慢性中毒病例多起,表現為皮膚出現白斑,後逐步變黑。角化肥厚呈橡皮狀;發生龜裂性潰瘍。國內調查表明,在供水中砷含量為0.05毫克/升,未見任何有害影響。飲用含砷量大於0.12毫克/升的飲用水,相當一部分居民發生砷增高,但未見任何中毒表現。一些國家報道,水中砷含量過高,長期飲用時引起皮膚癌發病率增高。基於上述資料將,原標准中規定的飲用水砷含量不得超過0.04毫克/升,改為0.05毫克/升。
19、硒
硒是人體必需元素之一,但硒的化合物在人體內積蓄過量就會引起急性中毒,它的表現為食慾不振,四肢乏力,出現黃膽貧血症。水中含硒除地質因素外,大都來自工業廢水的污染,應從食物中限制攝入硒的含量。
標准規定飲用水中硒的含量,不得超過0.01毫克/升。
20、汞
汞即水銀,是銀白色發光液體。有機汞的毒物主要由有機汞農葯造成,它是農業殺菌劑的一種,我國已規定不準使用有機汞農葯。無機汞中以氯化汞和硝酸汞的毒性較高,小鼠口服氯化汞的最小致死量為0.81~0.88毫克。有機汞的毒性比無機汞大,小鼠口服氯化乙基汞的最小致死量為0.60~0.65毫克。
水中的汞主要來自工業用水和廢渣。地面水中的無機汞,在一定條件下可轉化為有機汞,並在水生生物(如魚、貝類等)體內富集。人食用這些魚、貝類後,可引起慢性中毒,如日本所稱的"水俁病"的公害,即是無機汞毒害所致。 據報道,長期每天攝入約0.25毫克甲基汞,可導致神經損傷。但是,飲用水中汞濃度幾乎均低於0.001毫克/升。基於汞的毒性,標准規定飲用水中汞的含量不得超過0.01毫克/升。
21、鎘
鎘是銀白色的金屬,耐腐蝕。鎘在工業、農業上的應用日益廣泛,含鎘廢水是危害最嚴重的重金屬用水之一。鎘是累積性毒物,能蓄積於體內軟細胞組織中,鎘在腎臟中可經腎排出,但持續時間很長,使人生病潛伏期可達10~40年,病程也長,引起腎臟病變,並導致鎘污染的骨痛病。內服硫酸鎘30毫克可致死;鍍鋅管中會溶解出鎘,魚類可以測出鎘,含鎘0.2毫克/升的水對魚類有毒害作用。
標准規定飲用水中含鎘量不得超過0.01毫克/升。
22、鉻
六價鉻化合物的毒性比三價鉻大100倍,二價鉻和金屬鉻的毒性最小,它們都能溶解於水。天然水中鉻含量較少,地面水含量一般為2~2.6微克/升,由於工業用水的污染,使水體中含鉻量增加。
鉻是人體內需要的極微量元素,而六價鉻卻是水中的主要有毒物質之一。六價鉻有很大的刺激和腐蝕作用,對人的致死量為5克。當六價鉻含量超過0.1毫克/升時,就可能對人體產生毒害,引起皮膚、粘膜、肝臟、胃腸、口腔、血液的疾患,有導致肺癌的可能。六價鉻在體內有沉積作用。優質水的六價鉻含量最好為零,標准規定不超過0.05毫克/升。
23、鉛
鉛並非機體所必須的元素,常隨飲水和食物進入人體,攝入量過高可引起中毒。
世界糧農組織和世界衛生組織專家委員會,於1972年確定每人每周攝入鉛的總耐受量為3毫克。兒童、嬰兒、胎兒和妊娠婦女對環境中的鉛較成人和一般人群敏感,在確定飲用水中鉛的標准值時應將該組人群考慮在內。
研究證實,飲用水中鉛含量為0.1毫克/升時,可能引起大量兒童血鉛濃渡超過30毫克/100毫升,這是推薦兒童血鉛上限值。因此,飲用水中鉛含量為0.1毫克/升,對兒童來講是過高的。對成人而言,如果每日從食物中攝入鉛量大於230微克,則每周從食物和水中攝入的鉛量就會超過總耐受量。考慮到飲用水中鉛含量為0.1毫克/升時,能引起兒童血鉛含量增高,以及我國飲用水中現有的鉛濃渡水平,故將原《標准》中規定的鉛濃渡不得超過0.1毫克/升改為0.05毫克/升。
24、銀
在天然水或製成水中發現微量的銀,是由自然來源和工業廢水引起的。如銀是照相底片感光層的主要原料。吸入大劑量的膠體銀(500毫升以上)可以致死,死因是肺水腫。
一般在地面上水和井水中查得范圍只有0.1~40微克/升,在衛生標准0.05毫克/升以下。因此,可以不予考慮。
25、硝酸鹽
天然水中所有含氮物質都可轉化成硝酸鹽。飲用水中存在硝酸鹽會使嬰兒血液失調,誘發正鐵血紅蛋白血症,甚至可能形成致癌的亞硝酸,標准規定不得大於20微克/升。
26、氯仿(即三氯甲烷)
用於致冷劑和煙霧劑的發射劑以及合成氟化樹脂,也可作為殺蟲劑。通過實驗,對人的急性毒性表現為肝和腎的硬化和破壞。標准規定不得大於60微克/升。
27、四氯化碳(即四氯甲烷)
主要用於製造氯氟甲烷、滅火劑、清潔劑、熔劑等。美國環保局對自來水企業進行調查,證明四氯化碳並非加氯處理時的產物,而是來自工業廢水。四氯化碳可迅速被胃腸道吸收和通過肺部吸入,對兒童的致死劑量低達3毫升,但隨各人的易感性有很大的變化,腸的吸收可因脂肪、油類和酒精而增大。慢性接觸一般會使胃腸道不適,造成嘔吐,神經系統會覺得頭痛、睏倦。急性中毒可能發生肝癌,標准規定不得大於3微克/升。
28、苯並(a)蓖
苯並(a)蓖是一種普遍存在的多環芳香烴,是煤、石油、頁岩和煤油中的成分,是一種致癌物質。標准規定不得大於0.01微克/升。
29、滴滴涕(DDT)
滴滴涕(DDT),化學名氯苯乙烷,是一種有機氯殺蟲劑,不溶於水,能溶於煤油、苯等有機溶劑。對人體呼吸系統有刺激性,是一種中樞神經系統的抑制劑。標准規定不得大於1微克/升。
30、六六六
六六六化學名為六氯環乙烷,或叫六氯化苯,也是一種有機氯殺蟲劑,由苯和氯氣在光的作用下合成,殺蟲力極強。據國外研究報告,口服量2~10克使人致死。標准規定不得大於5微克/升。
三、細菌學指標
31、細菌總數
指1毫升水在普通瓊脂培養基中,在37℃溫度下,經過24小時培養後生長的所有菌菌落的總數。被污染的水,每毫升中細菌可達幾十萬個。經過凈化消毒處理後,病原菌被殺滅,普通的細菌也大為減少。一般認為,每毫升水中的細菌數不超過100個的水已基本良好。水質標准規定每毫升水中不超過100個(<100個/mL)。
32、大腸菌群
指一群在37℃,24小時能發酵乳糖、產酸、產氣、需氧和兼性厭氧革蘭氏陰性無牙孢桿菌,普遍存在於人畜糞便嚴重污染過的水中,大腸菌群每升可達幾萬個。大腸菌群本身不一定致病,但它同致病的腸道病菌,如傷寒、痢疾等桿菌是同屬。大腸菌群抗氯的能力要比腸道致病菌大(如傷寒、痢疾)。因此,通過氯消毒,大腸菌群指數達到飲用水質要求時,則致病菌基本殺死。水質標准規定,每升水中大腸菌群不得超過三個(<3個/L)。
33、游離性余氯
指生活飲用水在加氯消毒、經過30分鍾接觸時間、留在水中的游離性余氯。它具有持續殺菌能力,可防止管道中污染,保證供水質量。當出廠水游離氯在0.3毫克/升以上時,不僅對傷寒、痢疾等腸道致病菌有完全殺滅的效果,而且對傳染性肝炎、小兒麻弊症等腸道病毒也有一定的滅活作用,故水質標准中規定游離性余氯,在接觸30分鍾後應不低於0.3毫克/升;管網末梢水應不低於0.05毫克/升。
四、放射性指標(決α、總β放射性各一項)
放射性射線能使人及生物組織由於電離而受到損傷,引起放射病。遠期效應主要包括:
白血病和再生障礙性貧血、惡性腫瘤、白內障。放射性污染來自核工業及其它工業的廢水、廢氣、廢渣、核武器試驗的沉降物,以及放射性同位素的生產和應用。
34、總α放射性不得大於0.1貝柯/升。(Bq/L)
35、總β放射性不得大於1貝柯/升。
⑼ 5%的氯化汞溶液濃度是多少毫克每升
答:5% (g/g)= 0.05 g/g = 50 mg/ml = 50g/L = 50000 mg/L
⑽ 實驗室有毒的氯化汞如何處理
含汞鹽的廢液可先調節pH至8~10,加入過量硫化鈉,使其生成硫化汞沉澱,再加入硫酸亞鐵作為共沉澱劑,硫酸亞鐵將水中懸浮的硫化汞微粒吸附而共沉澱。清液可排放,殘渣集中處理。
氯化汞-國家標准
1.中國職業接觸限值(GBZ 2—2002)
最高容許濃度(MAC) 時間加權平均容許濃度(TWA)0.025 mg/m3 短時間接觸容許濃度(STEL) 0.075 mg/m3