㈠ 怎樣的技術污水脫氮效果更好
針對水污染抄現狀,本文簡單介紹了引起水體污染和富營養化的氮素來源及其主要危害,並簡單對物理化學脫氮法和生物脫氮法的反應原理和優缺點進行了對比介紹,其中生物脫氮法具有成本低、操作簡單、處理效果好、不造成二次污染等特點而被廣泛應用。在此基礎上介紹了目前國內外使用較多的幾種生物脫氮工藝,最後對污水脫氮的發展趨勢做了簡要說明。
㈡ 污泥處理污水中如何去除氨氮
根據廢水中氨氮濃度的不同,可將廢水分為3類:
高濃度氨氮廢水(NH3-N>500mg/l);
中等濃度氨氮廢水(NH3-N:50-500mg/l);
低濃度氨氮廢水(NH3-N<50mg/l)。
然而高濃度的氨氮廢水對微生物的活性有抑製作用,制約了生化法對其的處理應用和效果,同時會降低生化系統對有機污染物的降解效率,從而導致處理出水難以達到要求。
去除氨氮的主要方法有:物理法、化學法、生物法。物理法有反滲透、蒸餾、土壤灌溉等處理技術;化學法有離子交換、氨吹脫、折點加氯、焚燒、化學沉澱、催化裂解、電滲析、電化學等處理技術;生物法有藻類養殖、生物硝化、固定化生物技術等處理技術。
目前比較實用的方法有:折點加氯法、選擇性離子交換法、氨吹脫法、生物法以及化學沉澱法。
1.折點氯化法除氨氮
折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮廢水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。
折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。1mg殘留氯大約需要0.9~1.0mg的二氧化硫。在反氯化時會產生氫離子,但由此引起的pH值下降一般可以忽略,因此去除1mg殘留氯只消耗2mg左右(以CaCO3計)。折點氯化法除氨機理如下:
Cl2+H2O→HOCl+H++Cl-
NH4++HOCl→NH2Cl+H++H2O
NHCl2+H2O→NOH+2H++2Cl-
NHCl2+NaOH→N2+HOCl+H++Cl-
折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時使廢水達到消毒的目的。對於氨氮濃度低(小於50mg/L)的廢水來說,用這種方法較為經濟。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,常將此法與生物硝化連用,先硝化再除微量殘留氨氮。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。
2.選擇性離子交換化除氨氮
離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用,它是一類硅質的陽離子交換劑,成本低,對NH4+有很強的選擇性,能成功地去除原水和二級出水中的氨氮。
沸石離子交換與pH的選擇有很大關系,pH在4~8的范圍是沸石離子交換的最佳區域。當pH<4時,H+與NH4+發生競爭;當pH>8時,NH4+變為NH3而失去離子交換性能。用離子交換法處理含氨氮10~20mg/L的城市污水,出水濃度可達1mg/L以下。離子交換法具有工藝簡單、投資省去除率高的特點,適用於中低濃度的氨氮廢水(<500mg/L),對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。但再生液為高濃度氨氮廢水,仍需進一步處理。
3.空氣吹脫法與汽提法除氨氮
空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣的方法。該方法適宜用於高濃度氨氮廢水的處理。吹脫是使水作為不連續相與空氣接觸,利用水中組分的實際濃度與平衡濃度之間的差異,使氨氮轉移至氣相而去除廢水中的氨氮通常以銨離子(NH4+)和游離氨(NH3)的狀態保持平衡而存在。將廢水pH值調節至鹼性時,離子態銨轉化為分子態氨,然後通入空氣將氨吹脫出。吹脫法除氨氮,去除率可達60%~95%,工藝流程簡單,處理效果穩定,吹脫出的氨氣用鹽酸吸收生成氯化銨可回用於純鹼生產作母液,也可根據市場需求,用水吸收生產氨水或用硫酸吸收生產硫酸銨副產品,未收尾氣返回吹脫塔中。但水溫低時吹脫效率低,不適合在寒冷的冬季使用。用該法處理氨氮時,需考慮排放的游離氨總量應符合氨的大氣排放標准,以免造成二次污染。低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣污染。
汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,處理機理與吹脫法一樣是一個傳質過程,即在高pH值時,使廢水與氣體密切接觸,從而降低廢水中氨濃度的過程。傳質過程的推動力是氣體中氨的分壓與廢水中氨的濃度相當的平衡分壓之間的差。延長氣水間的接觸時間及接觸緊密程度可提高氨氮的處理效率,用填料塔可以滿足此要求。塔的填料或充填物可以通過增加浸潤表面積和在整個塔內形成小水滴或生成薄膜來增加氣水間的接觸時間汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與吹脫法類似,對氨氮的去除率可達97%以上。但汽提塔內容易生成水垢,使操作無法正常進行。
吹脫和汽提法處理廢水後所逸出的氨氣可進行回收:用硫酸吸收作為肥料使用;冷凝為1%的氨溶液。
4.生物法除氨氮
生物法去除氨氮是指廢水中的氨氮在各種微生物的作用下,通過硝化和反硝化等一系列反應,最終形成氮氣,從而達到去除氨氮的目的。生物法脫氮的工藝有很多種,但是機理基本相同。都需要經過硝化和反硝化兩個階段。
硝化反應是在好氧條件下通過好氧硝化菌的作用將廢水中的氨氮氧化為亞硝酸鹽或硝酸鹽,包括兩個基本反應步驟:由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應。由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應。亞硝酸菌和硝酸菌都是自養菌,它們利用廢水中的碳源,通過與NH3-N的氧化還原反應獲得能量。反應方程式如下:
亞硝化:2NH4++3O2→2NO2-+2H2O+4H+
硝化:2NO2-+O2→2NO3-
硝化菌的適宜pH值為8.0~8.4,最佳溫度為35℃,溫度對硝化菌的影響很大,溫度下降10℃,硝化速度下降一半;DO濃度:2~3mg/L;BOD5負荷:0.06-0.1kgBOD5/(kgMLS•d);泥齡在3~5天以上。
在缺氧條件下,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從廢水中逸出由於兼性脫氮菌(反硝化菌)的作用,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程,稱為反硝化。反硝化過程中的電子供體是各種各樣的有機底物(碳源)。以甲醇為碳源為例,其反應式為:
6NO3-+2CH3OH→6NO2-+2CO2+4H2O
6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-
反硝化菌的適宜pH值為6.5~8.0;最佳溫度為30℃,當溫度低於10℃時,反硝化速度明顯下降,而當溫度低至3℃時,反硝化作用將停止;DO濃度<0.5mg/L;BOD5/TN>3~5。生物脫氮法可去除多種含氮化合物,總氮去除率可達70%~95%,二次污染小且比較經濟,因此在國內外運用最多。其缺點是佔地面積大,低溫時效率低。
常見的生物脫氮流程可以分為3類:
⑴多級污泥系統
多級污泥系統通常被稱為傳統的生物脫氮流程。此流程可以得到相當好的BOD5去除效果和脫氮效果,其缺點是流程長,構築物多,基建費用高,需要外加碳源,運行費用高,出水中殘留一定量甲醇;
⑵單級污泥系統
單級污泥系統的形式包括前置反硝化系統、後置反硝化系統及交替工作系統。前置反硝化的生物脫氮流程,通常稱為A/O流程。與傳統的生物脫氮工藝流程相比,該工藝特點:流程簡單、構築物少,只有一個污泥迴流系統和混合液迴流系統,基建費用可大大節省;將脫氮池設置在缺氧池,降低運行費用;好氧池在缺氧池後,可使反硝化殘留的有機污染物得到進一步去除,提高出水水質;缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。此外,後置式反硝化系統,因為混合液缺乏有機物,一般還需要人工投加碳源,但脫氮的效果高於前置式,理論上可接近100%的脫氮效果。交替工作的生物脫氮流程主要由兩個串聯池子組成,通過改換進水和出水的方向,兩個池子交替在缺氧和好氧的條件下運行。它本質上仍是A/O系統,但利用交替工作的方式,避免了混合液的迴流,其脫氮效果優於一般A/O流程。其缺點是運行管理費用較高,必須配置計算機控制自動操作系統;
⑶生物膜系統
將上述A/O系統中的缺氧池和好氧池改為固定生物膜反應器,即形成生物膜脫氮系統。此系統中應有混合液迴流,但不需污泥迴流,在缺氧的好氧反應器中保存了適應於反硝化和好氧氧化及硝化反應的兩個污泥系統。
常規生物處理高濃度氨氮廢水是要存在以下條件:
為了能使微生物正常生長,必須增加迴流比來稀釋原廢水;
硝化過程不僅需要大量氧氣,而且反硝化需要大量的碳源,一般認為COD/TKN至少為9。
5.化學沉澱法除氨氮
化學沉澱法是根據廢水中污染物的性質,必要時投加某種化工原料,在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。
化學沉澱法處理NH3-N主要原理是NH4+、Mg2+、PO43-在鹼性水溶液中生成沉澱。在氨氮廢水中投加化學沉澱劑Mg(OH)2、H3PO4與NH4+反應生成MgNH4PO4•6H2O(鳥糞石)沉澱,該沉澱物經造粒等過程後,可開發作為復合肥使用。整個反應的pH值的適宜范圍為9~11。pH值<9時,溶液中PO43-濃度很低,不利於MgNH4PO4•6H2O沉澱生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反應將在強鹼性溶液中生成比MgNH4PO4•6H2O更難溶於水的Mg3(PO4)2的沉澱。同時,溶液中的NH4+將揮發成游離氨,不利於廢水中氨氮的去除。利用化學沉澱法,可使廢水中氨氮作為肥料得以回收。
㈢ 廢水中總氮該怎麼去除
污水中的有機氮,,如果採用生物脫氮,則包括氨化、硝化和反硝化三個階段。在氨化過程中,水中有機氮在微生物作用下轉化為氨氮。硝化過程中,首先在亞硝化桿菌的作用下,氨氮轉化為亞硝酸鹽氮,然後在硝化桿菌作用下,亞硝酸鹽氮進一步被氧化成硝酸鹽氮。反硝化過程中,硝酸鹽氮轉化為氮氣,釋放到空氣中,也正是在這個過程中,水中的氮被徹底去除了。氨氮超標一般原因是因為進水負荷大,或者曝氣量和污泥活性及污泥濃度有關,首先,查看近期進水有沒有大的波動,包括進水量及各個和指標,可以使用氨氮去除劑,JS-203氨氮去除劑主要用於去除廢水中的氨氮,投加後使廢水中的氨氮部分生成不溶於水的氮氣、二氧化氮、一氧化氮及水,該產品中的催化成分將廢水中離子狀態的氨氮轉化成游離狀態,並有輔助去除COD及脫色效果。
㈣ 污水中氨氮去除的最好方法是什麼
您好,很高興為您解答:
廢水中氨氮的去除的方法
吹脫法
氨汽提技版術將水的pH值提高到權10.5~11.5的范圍,在汽提塔內反復形成水滴。通過塔內大量空氣循環,氣體與水接觸,氨逸出。該方法廣泛應用於處理中高濃度氨氮廢水,經常需要加入石灰,吹走後可以回收氨。
離子交換法
離子交換實際上是不溶離子化合物(離子交換劑)上的可交換離子與溶液中其他同性離子之間的交換反應。用離子交換法去除氨氮時,常用離子交換劑沸石、活性炭等,也研究採用合成樹脂。
生物處理法
目前,生物生物方法是目前在實際應用中應用最廣泛的方法,在處理低濃氨氨氮廢水的低濃氨氮廢水的實際應用中應用最廣泛的方法。生物脫氮是在微生物的作用下,將有機氮和氨氮轉化為N2和NxO氣體的過程,包括硝化和反硝化。
膜處理法
膜分析是用膜分離水溶液中某些物質的總稱。隨著膜技術的成熟,膜吸收法、液膜法和膜生物法處理氨氮廢水的研究不斷取得進展。
化學法
在污水處理過程中,直接添加氨氮去除劑,這種去除劑是一種具有特殊骨架結構的大分子無機化合物,能去除90%以上的氨氮,不會造成二次污染。
㈤ 污水處理如何脫氮
污水中的氨氮、總磷是分別兩種指標同時存在的,因此在處理的時候應該分開來處理。因為有部分客戶以為一種葯劑就可以同時處理氨氮和總磷,但是根據我司多年來的案例分析及研究,如果一種葯劑同時處理兩種超標,效果是會大打折扣的。就好像我們生病一樣,不同的病狀需要不同的葯物來處理的道理是一樣的。 那麼我們指的污水處理脫氮除磷葯劑是什麼呢?
分別針對氨氮和總磷的兩種葯劑(即氨氮去除劑和除磷劑)。
一、「污水處理脫氮除磷」之 「氨氮去除劑」特點:
反應速度快,6分鍾左右即可完成反應過程;
去除效率達96%以上;
無2次污染產生,真正的環保葯劑
無需設備,直接投加,操作方便。
不改變原有工藝。
現場使用方法:
1、氨氮葯劑投加點氨氮葯劑的反應非常迅速,可在6分鍾左右完成反應,可以直接對氨氮超標的廢水進行處理,因此在沉澱池之後的砂濾池或者回調池進行投加即可,為了確保反應完全,需要有曝氣或者攪拌。
2、投加量由於廢水(原水)的氨氮值高低不一樣,因此投加量會因氨氮高低而不同;廢水的投加量建議通過實驗確定,並最終在使用中進行調整。
二、「污水處理脫氮除磷」之 「除磷劑」特點:
使用范圍廣,針對各種鋁氧化、化學拋光、塗裝、磷化等高含磷廢水;
具有除磷、混凝、調PH等多重功效,是一種多功能高效除磷劑;
使用pH值范圍廣;
除磷徹底,出水清澈。
現場使用方法:
1、投加方法:可配成5%-20%的溶液後投加,也可直接投加;
2、現場使用:可根據現有的處理流程,在反應池工序投加;3、使用條件:PH值使用范圍為3-6。
㈥ 污水生物脫氮的原理是什麼
首先你要明確反硝化的原理:硝態氮——亞硝態氮——no——n20——n2,因為你無法得到回亞氮之答後的數據,所以你可以間接的以亞氮的數據去分析n2o的數值。
但從你得到的數據來看,想把你原來的課題講清楚看來是很難的,參照你現在得到的實驗數據你可以和你老是商量下,分析反硝化過程中亞氮積累對反硝化的影響還是可以說清楚的,比如講你的亞氮很低,這就說明反硝化過程沒有亞氮的積累,說明反硝化效果是好的,如果你的亞氮比較多,說明你反硝化的進程不好,存在抑制因素。
我只提下我的建議,希望有幫助。還有,本科答辯不比過多再議,能把事情說清楚就可以了,沒要必要非做出來什麼效果。
㈦ 污水脫氮除磷的新工藝有哪些 比較其優缺點
AN/O
優點:①在耗氧前去除BOD,節能;②硝化前產生鹼度;③前缺氧具有選擇池的作用
缺點:①脫氮效果受內循環比影響;②可能存在諾卡氏菌的問題;③需要控制循環混合液的DO
AP/O
優點:①工藝過程簡單;②水力停留時間短;③污泥沉降性能好;④聚磷菌碳源豐富,除磷效果好
缺點:①如有硝化發生除磷效果會降低;②工藝靈活性差
A2/O
優點:①同時脫氮除磷;②反硝化過程為硝化提供鹼度;③反硝化過程同時除去有機物;④污泥沉降性能好
缺點:①迴流污泥含有硝酸鹽進入厭氧區,對除磷效果有影響;②脫氮受內迴流比影響;③聚磷菌和反硝化菌都需要易降解有機物
倒置A2/O
優點:①同時脫氮除磷;②厭氧區釋磷無硝酸鹽的影響;③無混合液迴流,流程簡單,節能;④反硝化過程同時除去有機物;⑤好氧吸磷充分;⑥污泥沉降性能好
缺點:①厭氧釋磷得不到優質降解碳源;②無混合液迴流時總氮去除效果不高
側流除磷工藝脫氮除磷工藝
此工藝是一種變型的UCT工藝,UCT工藝設計原理是基於對聚磷菌所需環境條件的工程強化,而側流除磷工藝的開發是為了從工藝角度創造DPB的富集條件。根據反硝化除磷機理,在單一活性污泥系統中,宜設置前置反硝化段(前缺氧段),從好氧段末端流出的富含硝酸鹽的活性污泥迴流到前置反硝化段。
生物除磷的發展方向:
開發不同營養類型微生物獨立生長的新工藝,主要體現在不同工藝之間的相互組合
在新的微生物學和生物化學理論基礎上開發出的新型工藝。
基於處理設施高度簡化的新工藝。
生物脫氮除磷工藝也理應結合可持續污水處理的理念,最大程度地減少COD氧化,降低二氧化碳釋放,減小剩餘污泥產量,實現富磷污泥有效利用和處理水回用,這將是今後污水處理領域發展的方向更多除磷劑知識http://www.chulinji.com/望採納。
㈧ 污水採用生物脫氮工藝處理必須滿足哪些技術條件說明 目前較成熟生物脫氮工藝及適用范圍 考研急需謝謝
污水硝化—反硝化脫氮處理是一種利用硝化細菌和反硝化細菌的污水微內生物脫氮處容理方法。
此法分為硝化和反硝化兩個階段,在好氧條件下利用污水中硝化細菌將氮化物轉化為硝酸鹽,然後在缺氧條件下(溶解氧<0.5mg/L)利用污水中反硝化細菌將硝酸鹽還原成氣態氮。硝化反應可採用一級硝化或兩級硝化。一級硝化中,同時也進行碳氧化過程;二級硝化中,碳化和硝化過程可分池進行。硝化池可採用曝氣池的形式。兩段生物脫氮法是污水微生物脫氮的有效方法,作為標准生物脫氮法已得到較廣泛應用
首先要滿足生化的條件 : 水質水合採用生化bod/cod大於0.3以上 或通過預處理達到水質適宜生化處理。
而進行生物脫氮,需要控制: PH 溶解氧 溫度 碳氮比 污泥齡 有毒有害物質
容積負荷 混合液迴流比 這幾個大項
A/O工藝 sbr工藝 現在都有廣發應用 在生活污水 工業污水都可用
㈨ 在生活污水處理,化工污水處理過程中,如何脫氮除磷
眾所復周知,氮和磷是生物制的重要營養源,那為什麼在生活污水處理和化工污水處理過程中,進行脫氮除磷呢?又需要用什麼方法來進行脫氮除磷?
氮和磷是生物的重要營養源,這是沒錯,但是如果排放的生活污水或化工污水中的氮、磷含量過高,沒經過處理的污水排放到天然水體中去,直接導致天然水體中的氮和磷含量升高,水體中藍藻、綠藻大量繁殖,水體缺氧並產生毒素,使水質惡化,對水生生物和人體健康產生很大的危害。赤潮就是由於水中氮和磷含量過高而導致的水體富營養化現象。那在生活污水處理過程和化工污水處理過程中,要如何去除氮和磷呢?
一:A2O工藝
A2O工藝也被稱作活性污泥法。在該工藝流程內,BOD5、SS和以各種形式存在的氮和磷將一一被去除。A2O生物脫氮除磷系統的活性污泥中,菌群主要由硝化菌和反硝化菌、聚磷菌組成。在好氧段,硝化細菌
將入流中的氨氮及有機氮氨化成的氨氮,通過生物硝化作用,轉化成硝酸鹽;在缺氧段,反硝化細菌將內迴流帶入的硝酸鹽通過生物反硝化作用,轉化成氮氣逸入到大氣中,從而達到脫氮的目的;在厭氧段,聚
磷菌釋放磷,並吸收低級脂肪酸等易降解的有機物;而在好氧段,聚磷菌超量吸收磷,並通過剩餘污泥的排放,將磷除去。