1. 污水處理控制排泥量各種計算公式
1剩餘污泥量計算方法
在活性污泥工藝中,為維持生物系統的穩定,每天需不斷有剩餘污泥排出。它們主要由兩部分構成,一是由降解有機物BOD所產生的污泥增殖,二是進水中不可降解及惰性懸浮固體的沉積。因此,剩餘干污泥量可以用式(1)計算:
ΔX=(Y1+Kdθc)Q(BODi-BODo)+fPQ(SSi-SSo)(1)
式中ΔX———系統每日產生的剩餘污泥量,kgMLSS/d;
Y———污泥增殖率,即微生物每代謝1kgBOD所合成的MLVSSkg數;
Kd———污泥自身氧化率,d-1;
θc———污泥齡(生物固體平均停留時間),d;
Y1+Kdθc———污泥凈產率系數,又稱表觀產率(Yobs);
Q———污水流量,m3/d;
BODi,BODo———進、出水中有機物BOD濃度,kgBOD/m3;
fP———不可生物降解和惰性部分佔SSi的百分數;
SSi,SSo———進、出水中懸浮固體SS濃度,kgSS/m3。
德國排水技術協會(ATV)制訂的城市污水設計規范中給出了剩餘污泥量的計算表達式[1]。此式與式(1)本質相同,只是更加細致,考慮了活性污泥代謝過程中的惰性殘余物(約占污泥代謝量的10%左右)及溫度修正。綜合污泥產率系數YBOD(以BOD計,包含不可降解及惰性SS沉積項)寫作:
YBOD=0 6×(1+SSiBODi)-(1-fb)×0 6×0 08×θc×FT1+0 08×θc×FT(2)
FT=1 702(T-15)(3)
式中fb———微生物內源呼吸形成的不可降解部分,取值0 1;
FT———溫度修正系數。
比較(1),(2)兩式,可知在ATV標准中動力學參數Y,Kd分別取值0.6和0.08d-1,進水中不可降解及惰性懸浮固體(fP部分)占總進水SS的60%。由於剩餘污泥中揮發性部分所佔比例與曝氣池中MLVSS與MLSS的比值大體相當,因此剩餘干污泥量也可以表示成下式:
ΔX=YobsQ(BODi-BODo)f(4)
式中f=MLVSSMLSS;其他符號意義同前。
式(4)與式(1)是一致的,均需確定Yobs。
2. 污水處理中ALK是什麼指標
鹼度
水中所含與強酸定量作用的物質的總稱
常用於評價水體的緩沖能力及金屬在其中的溶解性和毒性
除特殊工業廢水外,在污水處理的活性污泥工藝中,主要用於判斷硝化的一個參數。
3. 污水氨氮的超標原因有哪些
可為污水氨氮超標發生該類異常現象的污水處理廠提供參考。
1、出水氨氮異常時系統工藝數據的變化
該廠在運行穩定的情況下,出水氨氮往往能保持較低的水平,但硝化菌一旦受損,出水氨氮濃度短期內將迅速上升。出水數據監測往往受監測頻次、監測速度等影響,數據結果反饋滯後。藉助硝化效果短期內急劇變化的特點,分析各項表徵硝化影響因素的工藝數據,以此判斷系統的健康度,進而及時採取相關補救措施。
1.1 氧濃度變化判斷耗氧速率快慢
在忽略細菌自身同化作用的條件下,硝化過程分兩步進行:氨氮在亞硝化菌的作用下被氧化成亞硝酸鹽氮,亞硝酸鹽氮在硝化菌的作用下被氧化成硝酸鹽氮。根據硝化反應公式每去除1g NH4+-N需消耗4.57g O2。利用上述結論,王建龍等人通過測量OUR表徵硝化活性來了解反應器中的硝化狀態。在曝氣量固定,進水負荷變化不大的情況下,硝化是否完全直接影響生化池內溶解氧濃度的高低,因此發現出水氨氮異常時,操作人員需充分利用中控系統好氧池實時DO曲線的變化規律,根據氧消耗情況來判斷硝化效果,短期內DO曲線呈明顯上升趨勢的需積極採取措施,防止系統的進一步惡化。
1.2 出水pH變化鹼度消耗快慢
生物在硝化反應進行中伴隨大量H+,消除水中的鹼度。每1g氨被氧化需消耗7.14g鹼度(以CaCO3計)。反之,隨著硝化效果的減弱,鹼度的消耗會有所下降。因此可以通過對出水在線pH的變化情況判斷氧化溝的硝化效果。在線pH計,數據准確可靠,實時反饋,在實際運行中尤為有效。
2、常見原因
2.1 客觀因素影響
上海屬亞熱帶季風氣候,每年梅雨季節和汛期雨水尤為充沛。收集范圍越廣,短時間內污水處理廠進水水量變化系數越大,水量過度負荷,縮短了硝化停留時間。此外,溫度也對硝化的影響明顯,在低溫條件下硝化細菌的繁殖速度降低,體內酶活力受到抑制,代謝速度較慢。一般低於15℃硝化速率降低,12~14℃下活性污泥中硝酸菌活性受到更嚴重的抑制。每年12月至次年2月,上海氣溫最低。該廠氧化溝水溫最低僅12℃,因此冬季容易造成氨氮超標現象。
2.2 進水濃度過高
該廠進水包括精細化工廢水,常受高濃度的廢水及進水CODcr、氨氮、有機氮等高濃度的沖擊。CODcr對工藝過程中硝化段的影響主要體現在異養菌與硝化菌對氧的競爭方面。CODcr高時利於異氧菌生長,異養菌占優勢,硝化菌少從而導致硝化效果不好。有機氮在經過水解酸化後可轉化成氨氮,對硝化的影響等同於氨氮。氨氮負荷過高對活性污泥系統有巨大的沖擊作用。此外,過高的氨氮會導致游離氨濃度的增加,游離氨對亞硝酸轉化為硝酸的抑制性影響是很明顯的,因為游離氨的升高導致亞硝酸氮的積累。
2.3 其它因素
除此之外,還有很多因素影響著硝化作用。例如:pH值過高會影響微生物的正常生長,增加水中游離氨的濃度抑制硝化菌。硝化菌還對重金屬、酚、氰化物等有毒物質特別敏感。因此,可對水樣進行硝化菌毒性試驗來判斷廢水是否對硝化菌有抑製作用。
3、發現氨氮異常情況時的控制措施:
若主體生化處理單元,若出現 NH4-N有上升態勢,針對不同的原因,可選擇如下應急措施防止水質的進一步惡化。
3.1 減小進水氨氮負荷
減少進水氨氮負荷,一是降低進水氨氮濃度,二是減少進水水量。由於該廠接納部分化工廢水,容易受氨氮(或有機氮)的沖擊,因此在線儀顯示有高濃度氨氮進入時需及時啟用應急調節池,同時加大對排污企業的抽樣監測力度,從源頭控制進水氨氮濃度。減少進水水量是促進硝化菌恢復的強有效手段,但實際運行中,受調節池停留時間、外部管網外溢風險等制約,僅可實施幾小時。平日需積累各泵站輸送規律,合理調度爭取減負時間。
3.2 維持硝化必須的鹼度量
氨氮的氧化過程消耗鹼度,pH值下降,從而影響硝化的正常進行,因此溶液中必須有充足的鹼度才能保證硝化的順利進行。實驗研究表明,當ALK/N<8.85時,鹼度將影響硝化過程的進行,鹼度增加,硝化速率增大。但當ALK/N≥9.19(鹼度過量30)以後,繼續增加鹼度,硝化速率增加甚微,甚至會有所下降。過高的鹼度會產生較高的pH值,反而會抑制硝化的進行。故控制ALK/N在8-10較為合理。在實際工程中,可向氧化溝內投加溶解完成的碳酸鈉以提高鹼度。
3.3 合理控制氧濃度
氨氮氧化需要消耗溶解氧,但氧濃度並非越高越好。由氧氣在水中的傳質方程可知,液相主體中的DO濃度越高,氧的傳質效率越低。綜合考慮氧在水中的傳質效率和微生物的硝化活性,調控好氧段的DO在2.5mg/L左右可以在不浪費能量的情況下最大限度地提高對氨氮的去除效率。
3.4 投加消化促進劑
硝化促進劑是利用微生物營養與生理學方法進行合理配方,根據微生物營養生理及污水處理的共代謝原理,促進硝化細菌發生作用,提高污水處理的氨氮去除效率。筆者嘗試在硝化效果減弱,氨氮逐步上升階段投加,效果顯著。但系統喪失硝化能力時投加,效果不明顯,且該類產品往往價格昂貴,對處理大水量的系統實用性不強。
3.5 其它工藝上的微調
①減少氧化溝排泥量。一是因為硝化菌世代周期長,較長的SRT有利於硝化菌的生長;二是硝化效果降低時,大量的硝化菌被流失,排泥會加速硝化菌的流失。
②增加氧化溝內、外迴流。前者是為系統提供更長的好氧時間,有利於硝化菌的生長。後者一方面可維持生化單元相對較高的污泥濃度,提高系統的抗沖擊能力;另一方面可降低進入氧化溝的氨氮濃度,進而減少高濃度氨氮或游離氨對硝化菌的抑製作用。
③加大取樣化驗分析頻次, 檢驗所採取的應急措施對出水水質的改善效果, 否則應更換其他方法或多種方法聯用,盡量縮短處理系統的恢復時間。
4. 污水中T-H(CaCO3)和M-Alk(CaCO3)分別指什麼
分別指碳酸鈣的兩種表現形式。
碳酸鈣是一種無機化合物,化學式為CaCO_,俗稱灰石、石灰石、石粉等。碳酸鈣呈鹼性,基本上不溶於水,溶於鹽酸(與鹽酸反應)。它是地球上常見物質之一,存在於霰石、方解石、白堊、石灰岩、大理石、石灰華等岩石內,亦為某些動物骨骼或外殼的主要成分。碳酸鈣也是重要的建築材料,工業上用途甚廣。
白色微細結晶粉末,無味、無臭。
5. 污水處理ALK是什麼
好像是鹼度吧,呵呵
6. VFA 和ALK 在廢水化學分析中中文是什麼意思
VFA表示的是厭氧處理系統內的揮發性有機酸的含量,ALK則表示的是厭氧處理系統內的鹼度。
衡量能否獲進料量和縮短進料時間的化驗指標定控制發揮性脂肪酸VFA不大於500mg/L,當VFA超過500-1000mg/L,厭氧反應器呈現酸化狀態,超過1000mg/L則表明已經酸化,需立即採取措施:
停止進料,進行菌種馴化,適當投加碳源(碳、氮、磷=比值300~500:5:1)。一般來講第二段到第三段也需30-40d時間。
7. 請問污水檢測聯合滴定法測VFA、ALK,為何要先將樣品PH調到6.5,然後再調到3.0呢為什麼要分兩步調呢
兩步的差值也就是體抄積差值乘以濃度,再除以樣品體積數才是VFA值,否則分子只有濃度不能計算VFA。也就是消耗的NaOH體積得有個pH變化范圍作為界定條件。否則,沒法算出消耗的NaOH體積值,因為初始和末端pH你沒界定。
8. 生活污水裡的石油類含量大於動植物油
含油污水對於生態環境的破壞十分巨大,如果不能及時處理,其中存在的致癌物質還會隨著污水污染周圍植物或者動物,對人體造成影響。今天和大家探討下含油廢水的具體危害和處理步驟。
含油污水的危害主要體現在這幾個方面:對於江河湖海的污染。科學研究表明,含油污水的密度低於水的密度,如果含油污水排入江河湖泊之後會覆蓋水面,從而隔絕了水體中氣
體和大氣之間的交換,導致水體中氧含量急劇下降。而水體中氧含量的減少會對水生物的生長造成直接的影響,導致水中動植物的死亡,造成水體質量的下降,直接影響到水資源
的利用。更加嚴重的是,如果含油污水直接污染到飲用水源,將會導致大規模的人體疾病,甚至直接引起群體性的食物中毒,危害巨大。每當游輪泄露石油時,總會引起社會各界的關注。
此外,當含油污水不經處理傾倒在地面,也會對土壤造成污染,油污會附著在植物的葉片上,阻隔植物進行正常的光合作用;含油污水的沉澱物會影響植物根系的正常生長會導致植物大面積的死亡。
目前對於含油污水的處理工藝逐步在完善,含油廢水處理,大致可分為三個階段。
1、要對於含油污水中的水和油進行初次的分離處理。這一階段在實際操作中要根據含油污水的特點施加相應的處理工藝。比如對於顆粒較小的含油污水可以採用油水過濾器來進行水油分離;顆粒較大、凝固點較高的含油污水通過加熱保溫的方式來處理;
2、在初次油水分離後要在加入絮凝劑、混凝劑等催化污水的絮化,減少對設備的堵塞的基礎上採取氣浮收油裝置、濾罐過濾、微生物反應這幾種方式來進行進一步的水油分離。
3、完成了兩步的水油分離操作之後,還需要對處理後的污水進行檢測,如未達到相應的排放標准,則需要重復進行處理,重復處理時不排除使用石英砂過濾罐或者活性炭過濾罐對水體進行進一步的過濾,直到達到排放標准後再進行排放。
含油污水因為其來源較多、處理工藝復雜,因此在水污染處理中是比較重要的一項。因此,在對含油污水的處理過程中,必須對含油污水的來源、成分以及其所處的存在方式、對生態環境的危害有充分的分析和認識。
9. 陰離子表面活性劑的舉例
陰離子聚丙烯醯胺(APAM)是水溶性的高分子聚合物, 主要用於各種工業廢水的絮凝沉降,沉澱澄清處理,如鋼鐵廠廢水,電鍍廠廢水,冶金廢水,洗煤廢水等污水處理、污泥脫水等。還可用於飲用水澄清和凈化處理。由於其分子鏈中含有一定數量的極性基團,它能通過吸附水中懸浮的固體粒子,使粒子間架橋或通過電荷中和使粒子凝聚形成大的絮凝物,故可加速懸浮液中粒子的沉降,有非常明顯的加快溶液澄清,促進過濾等效果。
功能特點
陰離子聚丙烯醯胺,由於它具有:
1、 澄清凈化作用;
2、 沉降促進作用;
3、 過濾促進作用;
4、 增稠作用及其它作用。
在廢液處理、污泥濃縮脫水、選礦、洗煤、造紙等方面,能夠充分滿足各種領域的要求。
洗煤廢水處理方案:選煤廠對煤泥水的處理一般情況下採用「旋流器-濃縮機-壓濾機(煤泥沉澱池)」處理工藝。一般情況下都是采購機高分子絮凝劑(聚丙烯醯胺)。高分子絮凝劑與煤泥微粒或煤泥膠體接觸作用,中和了煤泥表面的電性,降低表面能,使煤泥微粒凝聚沉澱。聚丙烯醯胺的分子量一般在百萬之間,不同粒度組成的煤泥水要選用不同分子量的絮凝劑。聚丙烯醯胺可以分為陰離子型聚丙烯醯胺,陽離子聚丙烯醯胺和非離子型聚丙烯醯胺三種類型。在使用聚丙烯醯胺進行水處理的時候,要保證類型與煤泥水的pH值相吻合,陰離子聚丙烯醯胺的適於偏鹼性煤泥水,陽離子聚丙烯醯胺的適於偏酸性煤泥水,陰離子型和陽離子型聚丙烯醯胺混合使用,煤泥水絮凝沉澱效果更好。
特點:
1、 水溶性好,在冷水中也能完全溶解。
2、 添加少量本陰離子聚丙烯醯胺產品,即可收到極大的絮凝效果。一般只需添加0.01~10ppm(0.01~10g/m3),即可充分發揮作用。
3、 同時使用陰離子聚丙烯醯胺產品和無機絮凝劑(聚合硫酸鐵,聚合氯化鋁,鐵鹽等),可顯示出更大的效果。
用途
1)用於污泥脫水根據污泥性質可選用本產品的相應型號,可有效在污泥進入壓濾之前進行污泥脫水,脫水時,產生絮團大,不粘濾布,壓濾時不散,流泥餅較厚,脫水效率高,泥餅含水率在80%以下。
2)用於生活污水和有機廢水的處理,本產品在酸性或鹼性介質中均呈現陽電性,這樣對污水中懸浮顆粒帶陰電荷的污水進行絮凝沉澱,澄清很有效。如生產糧食酒精廢水,造紙廢水,城市污水處理廠的廢水,啤酒廢水,味精廠廢水,製糖廢水,有機含量高 廢水、飼料廢水,紡織印染廢水等,用陽離子聚丙烯醯胺要比用陰離子、非離子聚丙烯醯胺或無機鹽類效果要高數倍或數十倍,因為這類廢水普遍帶陰電荷。
3)用於以江河水作水源的自來水的處理絮凝劑,用量少,效果好,成本低,特別是和無機絮凝劑復合使用效果更好,它將成為治長江、黃河及其它流域的自來水廠的高效絮凝劑。
4)造紙用增強劑及其它助劑。提高填料、顏料等存留率、紙張的強度。
5)用於油田經學助劑,如粘土防膨劑,油田酸化用稠化劑。
6)用於紡織上漿劑、漿液性能穩定、落漿少、織物斷頭率低、布面光潔。
包裝與貯存
陰離子聚丙烯醯胺包裝、貯運及注意事項:
採用25Kg襯塑編織袋或紙塑復合袋包裝,也可根據用戶要求包裝。貯運時,注意防熱、防潮,防止包裝破損,乾粉產品長期露置會吸潮結塊。堆碼層數不得超過20層。有效儲存期為2年。本產品粒度為20-80目,亦可根據用戶要求生產。 綜述
是親水基為羧基的陰離子表面活性劑,包括高級脂肪酸的鉀、鈉、銨鹽以及三乙醇銨鹽。在水中電離後起表面活性作用的部分是脂肪酸根陰離子。如:
電離
RCOONa ——>RCOO-+Na+
脂肪酸鹽表面活性劑是歷史上開發最早的陰離子表面活性劑,也是重要的洗滌劑,目前仍是皮膚清潔劑的重要品種。
主要特性
⑴肥皂是最常見的脂肪酸鹽陰離子表面活性劑 肥皂的主要性能特點是它的水溶液的pH在9.0~9.8,呈弱鹼性,它有良好的潤濕、發泡、去污等作用而被廣泛用作洗滌劑。
肥皂的缺點是耐硬水性能差,在硬水中使用肥皂不僅洗滌力差,同時生成的鈣皂污垢在 酸水中懸浮並且粘附在衣物上很難去除。肥皂與硬水中的鈣、鎂等離子反應生成皂垢,不但增加肥皂的耗費,而且粘結在衣物上產生的斑點會使衣物發硬。含有皂垢的布在印染加工時會造造成染色不勻。
肥皂在pH低於7的酸性介質中會轉變成不溶於水的游離脂肪酸,會使皂液變混濁並粘附在衣物上不易被除去。因此肥皂只能在中性和鹼性介質中使用。通常使用肥皂時常配合加入適量純鹼以保持皂液pH在10左右,其目的為防止肥皂水解和提高洗滌效果。注意在去除酸性污垢或在酸性媒液中不能使用肥皂。
軟脂酸鹽和硬脂酸鹽水溶性差,要充分發揮它們的洗滌能力往往需要在較高溫度條件下使用,而含有不飽和鍵的油酸鹽比較適合在較低溫度的洗滌場合。以上的高碳脂肪酸鹽 隘由於在水中溶解度太低,但油溶性好,所以適合作摻水乾洗溶劑中的表面活性劑(變性皂),脂肪酸的有機胺鹽和二乙醇胺、三乙醇胺鹽大多表現為油溶性的,常用作乳化劑、潤濕劑,如三乙醇胺肥皂常在有機溶劑中作乳化劑。
⑵親油基通過牛間鍵與羧基相連的羧酸鹽(雷米邦A) 脂肪酸鹽除了常見的肥皂外,還有這種形式的羧酸鹽,如用多肽混合物與脂肪醯氯發生縮合反應製成的N—烷醯基多肽。其中用油醯氯與脫脂皮屑等廢蛋白的水解產物縮合製成的表面活性劑,商品名為雷米邦A (Lamepon A),國內商品名為613洗滌劑,化學名稱為N—油醯基多縮氨基酸鈉(或N—油醯基多肽)。其合成反應式為:
產品介紹
油醯氯 多縮氨基酸鈉 雷米邦A
(其中R'、R」是含有1~6個碳原子的烴基)
雷米邦A在毛紡、絲綢、合成纖維及印染工業等紡織部門常做洗滌劑、乳化劑、擴散劑,也可做金屬清洗劑和皮膚清潔劑,由於它結構中的多肽部分化學結構與蛋白質相似,對皮膚刺 、激性低,可形成良好的保護膠體,因此也適用於頭發用品和香波中或用於護膚香脂中。用它洗滌絲、毛等蛋白質類纖維織品,有洗後柔軟、富有光澤、彈性的優點。它有很強的乳化力,如22份雷米邦A可乳化1000份植物油。並且它對鈣皂有很強的分散力。它在中性和鹼性介質中穩定,在鹼性介質中去污力更佳。但在pH值小於5的介質中會以沉澱形式析出。由於它的吸濕力強,通常不製成粉狀產品,商售為黃棕色粘稠狀液體產品,活性物含量為32%~40%。
製造雷米邦A的多膚部分的原料來自皮屑、蠶蛹、豬毛、雞毛、骨膠、豆餅、菜籽餅等蛋白質下腳料,經水解後得到水解蛋白液。油醯氯與水解蛋白液中的多縮氨基酸鈉縮合即得到雷米邦A。 介紹
把在水中電離後生成起表面活性作用陰離子為磺酸根(R--S03)者稱為磺酸鹽型陰離子表面活性劑,包括烷基苯磺酸鹽、α-烯烴磺酸鹽、烷基磺酸鹽、α-磺基單羧酸酯、脂肪酸磺烷基酯、琥珀酸酯磺酸鹽、烷基萘磺酸鹽、石油磺酸鹽、木質素磺酸鹽、烷基甘油醚磺酸鹽等多種類型,其中比較重要和常用作洗滌劑的有下列幾種。
重要產品
⑴烷基苯磺酸鈉(LAS或ABS) 烷基苯磺酸鈉通常是一種黃色油狀液體,通式為CnH2n+1HC6H4SO3Na,其疏水基為烷基苯基,親水基為磺酸基。
其早期產品為四聚丙烯苯磺酸鈉(ABS),曲於烷基部分帶有支鏈,所以生物降解性差,60年代各國相繼改為生產以正構烷烴為原料的直鏈烷基苯磺酸鈉(LAS)。烷基苯磺酸鹽不是純化合物;烷基組成部分不完全相同,因此烷基苯磺酸鹽性質受烷基部分碳原子數、烷基鏈支化度、苯環在烷基鏈的位置、磺酸基在苯環上的位置及數目以及磺酸鹽反離子種類影響而發生很大變化。
烷基苯磺酸鹽是陰離子表面活性劑中最重要的一種品種,也是中國合成洗滌劑的主要活性成分。烷基苯磺酸鈉去污力強、起泡力和泡沫穩定性以及化學穩定性好、而且原料來源充足、生產成本低,在民用和工業用清洗劑中有著廣泛的用途。
①支鏈烷基苯磺酸鹽(ABS) 當高級烯烴(如十二碳烯)與苯發生反應時,生成支鏈烷基苯,再與濃硫酸發生磺化反應,得到支鏈型烷基苯磺酸,與鹼(NaOH)中和後得到支鏈型烷基苯磺酸鈉鹽,其中十二烷基苯磺酸鈉是最常見的產品。
作用原理
十二烷基苯磺酸鈉是一種性能優良的合成陰離子表面活性劑,它比肥皂更易溶於水,是一種黃色油狀液體。易起泡由於它的泡沫粘度低所以泡沫易於消失。它有很好的脫脂能力並有很好的降低水的表面張力和潤濕、滲透和乳化的性能。它的化學性質穩定,在酸性或鹼性介質中以及加熱條件下都不會分解。與次氯酸鈉過氧化物等氧化劑混合使用也不會分解。它可以用烷基苯經過磺化反應制備,原料來源充足,成本低,製造工藝成熟,產品純度高。因此自1936年由美國國家苯胺公司開始生產烷基苯磺酸鈉以來,迄今歷經60多年一直受到使用者的歡迎和生產者的重視,成為消費量最大的民用洗滌劑,在工業清洗中也得到廣泛應用。
其不足之處是用它洗過的纖維手感不好。皮膚與它長時間接觸會受到刺激。它易在洗滌物體表面形成吸附膜殘留在物體上,這種吸附膜在低溫下不易被水沖洗去除。它起泡性好,因此在不希望產生泡沫的情況下又是不受歡迎的。
十二烷基苯磺酸鈉特別容易與其他物質產生協同作用(把兩種物質混合後能產生比原來各自性能更好的使用效果叫協同作用),因此它常與非離子表面活性劑和無機助洗劑復配使用,以提高去污效果。
它在硬水中不會像肥皂那樣生成鈣皂沉澱,但生成的烷基苯磺酸鈣不易溶於水,只能分散在水中使它的洗滌能力降低。使用時如果與三聚磷酸鈉等絡合劑復配,把鈣、鎂離子絡合,就可以在硬水中使用而不影響它的洗滌效果。
支鏈結構的烷基苯磺酸鈉由於難被微生物降解,對環境污染嚴重,所以從60年代中期,逐漸被直鏈烷基苯磺酸鈉代替。
②直鏈烷基苯磺酸鈉(LAS) 直鏈烷基苯磺酸鹽是由直鏈烷烴與苯在特殊催化劑作用下合成直鏈烷基苯,再經過磺化,中和反應製得的。典型代表結構為(對位)直鏈十二烷基苯磺酸鈉,它的性能與支鏈烷基苯磺酸鈉相同,其優點是易於被微生物降解,從環境保護角度看是性能更優良的產品。目前使用的烷基苯磺酸鈉已全部是直鏈烷基結構的了。
⑵α-烯烴磺酸鹽(AOS) 是α-烯烴與SO3在適當條件下反應,然後中和、水解得到的具有表面活性陰離子的混合物,成分較復雜,隨工藝條件和投料量不同成分有變化。其主要成分是烯基磺酸鹽(R--CH==CH--(CH2)—pSO3Na)、羥烷基磺酸鹽(RCH--(CH20)—pSO3Na)和少量二磺酸鹽(R'—CH=CH—CH-(CH2)-SO3Na)或R'—CH—(CH2)—xCH—(CH2)—ySO3Na。其商品名為。—烯烴磺酸鹽,縮寫AOS。
α—烯烴磺酸鹽是一種性能優良的洗滌劑,尤其是在硬水中和有肥皂存在時具有很好的起泡力和優良的去污力。由於它的毒性低對皮膚刺激性小以及性能溫和的優點,在家庭和工業、清洗中均有廣泛的用途。常用作個人保護、衛生用品、手洗餐具清洗劑、重垢衣物洗滌劑、毛羽,毛清洗劑、洗衣用合成皂、液體皂以及家庭用和工業用硬表面清洗劑的主要成分。
⑶烷基磺酸鹽(AS和SAS) 烷基磺酸鹽的通式為RSO3M(M為鹼金屬或鹼土金屬),R為C12~C20范圍的烷基,其中以十六烷基磺酸鹽性能最好。其中正構烷基在、引發劑作用下與SO2、O2反應得到的磺酸鹽,分為伯烷基磺酸鹽(AS)和仲烷基磺酸鹽(SAS)兩類。其中仲烷基磺酸鹽結構式為R--CH--R',縮寫名稱為SAS,國內商品名為601洗滌劑,是一種具,有很好水溶性、潤濕力、除油力的洗滌劑。烷基碳原子一般為C14~C18,以C15~C16去污能力最強。其去污能力與直鏈烷基苯磺酸(LAS)相似,發泡力稍低,是配製重垢液體洗滌劑的主要原料。它的毒性和對皮膚的刺激性都比iLAS低,生物降解性好。使用時常與醇醚硫酸(AES),α—烯基磺酸鹽(AOS)復配,以彌補SAS在硬水中泡沫性差的缺點。可做個人衛生盥洗製品、各種洗衣物以及硬表面清洗劑。
⑷α—磺基單羧酸及其衍生物(MES) 它們的結構式為CH2一COOR', (R為長鏈烴基或金屬離子)。α-磺基單羧酸本身不具有表面活性,但通過酯化或醯胺化生成的衍生物具有表面活性,如CH2—C--OC12H25等。其中以脂肪酸甲酯為原料經磺化中和後得到的商品稱為α-磺基脂肪酸甲酯,簡稱MES,通式為R--CH--COOCH3。
MES是近年來開發生產的一種由天然油脂為原料的陰離子表面活性劑。它有良好的生物降解性,有利於環境保護,使用安全而且去污力強。其去污力隨水硬度增加下降較少,因此在硬水中有很好的去污力,如在洗衣粉配方中用MES取代蚝LAS則在低濃度高硬度水中的去污力明顯高於只用LAS的配方。它還是優良的鈣皂分散劑,它與肥皂配合使用可彌補肥皂不耐硬水會形成皂垢的缺點,因此它是液體皂的主要成分。MES起泡能力好。它對鹼性蛋白酶、鹼性脂肪酶的活性影響小,適合配製加酶洗衣粉。它對油污有很強的加溶能力,而且毒性低安全性好,因此是一種應用前景良好的新品種。但應防止其在鹼性介質中水解失效。
⑸脂肪酸磺烷基酯(1geponA)和脂肪酸磺烷基醯胺(1gepon T) 商品名為伊捷邦A(1gepon A,洗凈劑210)的陰離子表面活性劑典型代表物是油醯氧基乙磺酸鈉
CH3(CH2)7CH=CH--(CH2)7—C—O CH2SO3Na。商品名為伊捷邦f(1gepon T又稱FX洗滌劑,胰加漂T,萬能皂,洗滌之王,209洗滌劑)的陰離子表面活性劑的典型代表物是N—油醯基N-甲基牛磺酸鈉,其分子式為CH3(CH2)7CH-=CH(CH2)7C-CH2CH2SO3N。
Igepon A是由羥乙基磺酸鈉與脂肪酸或脂肪醯氯反應生成的:
R一C—Cl+HOCH2CH2— SO3Na——>O CH2CH2SO3Na+HCl 其通式為R1—C--O R2S03M。
Igepon T是由N—甲基牛磺酸鈉與脂肪酸或脂肪醯氯反應生成的:
R—C—c1+HN一CH2CH2S03Na—>Rc—CH2CH2SO3Na+HCl 通式為R1c—N—R3SO3M
當改變通式中R1、R2、R3、M四個可變因素時,表面活性劑的乳化、泡沫、潤濕、洗滌性能會發生相應改變。
脂肪酸磺烷基酯(1gepon A)和脂肪酸磺烷基醯胺(1gepon T)最初是做紡織助劑使用的,特別是Igepon T系列產品具有對硬水不敏感、有良好去污能力、潤濕力和對纖維柔軟作用,並可在酸性介質中使用,所以在紡織工業中有廣泛用途。其中N—油醯基—N甲基牛磺酸鈉是最重要的一種,用於粗羊毛、合成纖維以及染色布料的清洗,而且對纖維有很好的柔軟作用。磺烷基酯和磺烷基醯胺兩類產品是重垢精細紡織品洗滌劑,手洗、機洗餐具洗滌劑,各種香波、泡沫浴,香皂的重要配方成分。通常用的是椰子油脂肪酸和牛油脂肪酸的磺烷基酯或磺烷基醯胺。其物理性質及表面活性見表7—7和表,7—8。
物理特性
表7-7 脂肪酸磺烷基酯和磺烷基醯胺的物理性質
①在35℃測定。
②克拉夫特點(Krafft Point)。離子型表面活性劑在溫度較低時溶解度很小,但隨溫度升高而逐漸增加,當到達某一特定溫度時,溶解度急劇陡升,把該溫度稱為臨界溶解溫度(又稱克拉夫特點)以rk表示。
⑹石油磺酸鹽 是由天然石油餾分或化工反應所得高碳烴副產物經磺化、中和得到的,是多種烴磺化產物的混合物。石油磺酸鹽主要用作發動機潤滑油的清潔分散劑及起分污泥,保持金屬部件清潔,降低酸性抑制銹蝕的作用。作這種用途的石油磺酸鹽約占總產量60%。石油磺酸鹽配製的金屬清洗劑可有效地去除金屬部件上的油污。
⑺其他磺酸鹽型陰離子表面活性劑 包括以下幾種。
表7-8 脂肪酸磺烷基酯和磺烷基醯胺的表面活性
① 在35℃測定。
①琥珀酸酯磺酸鹽 按結構分為琥珀酸單酯磺酸鹽和雙酯磺酸鹽。
AerosolOT(滲透劑OT)是最早問世的一種琥珀酸雙酯磺酸鹽,是優良的工業用潤濕劑滲透劑。它是由脂肪醇聚氧乙烯醚和脂肪酸單乙醇醯胺與馬來酸酐生成的單酯經磺化得到的產品。它性能溫和對皮膚、眼睛刺激性低、袍沫性優良,在個人保護用品中應用日益廣泛。因原料充分、生產成本低並不產生三廢,近年來得到很大發展。
AerosolOT化學名稱為琥珀酸二異辛酯磺酸鈉。
②烷基萘磺酸鹽 典型產品如二丁基萘磺酸鈉,俗稱拉開粉,是紡織印染行業常用的一種滲透劑、乳化劑。
另有烷基萘磺酸鹽的甲醛縮合物,商品名稱為分散劑NNO。
③木質素磺酸鹽 是造紙工業中亞硫酸法制漿過程中廢水的主要化學成分。它的結構相當復雜,一般認為它是含有愈創木基丙基、紫丁香基丙基和對羥苯基丙基的多聚物磺酸鹽,相對分子質量200~10000,是以非石油化學製造的表面活性劑中重要的一類。由於價格低,具有低泡性,主要用作固體分散劑、O/W型乳狀液的乳化劑,染料、農葯、水泥等懸浮液的分散劑,可加在石油鑽井泥漿配方中控制鑽井泥漿的流動性,還可作礦石浮選劑或水處理劑。
④烷基甘油醚磺酸鹽(AGS) 其通式為ROCH2--CH—CH2SO-3M+,它具有良好的水溶性, OH對酸鹼穩定是有效的潤濕劑,泡沫劑和分散劑,但由於價格高,使應用和發展受到限制。
另外,磺酸鹽型陰離子表面活性劑還有,凈洗劑LS(凈洗劑MA),化學名稱為對甲氧基脂肪醯胺基苯磺酸鈉,結構為 是一種有優良凈洗、發泡、對鈣皂分散能力好的表面活性劑,易溶於水,耐酸鹼和硬水,可作羊毛和蠶絲的洗滌劑。 介紹
硫酸是一種二元酸與醇類發生酯化反應時可以生成硫酸單酯和硫酸雙酯。硫酸單酯和鹼中和生成的鹽叫硫酸酯鹽。
ROH+HOSO2--OH===RO--SO2--OH+H2O
(醇) (硫酸) (硫酸單酯)
RO--S02—OH+NaOH=RO--SO2--ONa+H20
(硫酸酯鹽)
R0一S02—0Na一般寫成R—OSO3Na形式,有的書上寫成RSO4Na並簡稱為烷基硫酸酯鹽。它與磺酸鹽結構的區別在於硫酸酯鹽中的硫原子不與烴基中的碳原子直接相連。它們性質上的最大區別在於硫酸酯鹽在酸性條件下可以發生水解:
分類
硫酸酯鹽型陰離子表面活性劑主要有脂肪醇硫酸酯鹽(又稱伯烷基硫酸酯鹽)和仲烷基硫酸酯鹽兩類。
⑴脂肪醇硫酸(酯)鹽(FAS或AS) 脂肪醇硫酸鹽的通式為:ROS0-3M+,R為烷基,M+為鈉、鉀、銨、乙醇胺基等陽離子,又名伯烷基硫酸鹽,英文簡寫為FAS或AS①。
FAS是肥皂之後出現的最早陰離子表面活性劑,是由椰子油氫解生成的C12~C14脂肪醇與硫酸酯化並中和製得。它有合適的溶解性、泡沫性和去污性。大量應用於潔齒劑、香波、泡沫浴和化妝品中,也是輕垢、重垢洗滌劑、地毯清洗劑、硬表面清洗劑配方中的重要組分。』如月桂基硫酸鈉(C12H25OSO3Na),商品名為K12的洗滌劑在潔齒劑中有潤濕、起泡和洗滌的作用;而月桂基硫酸酯的重金屬鹽有殺滅真菌和細菌的作用;用牛脂和椰子油製成的鈉肥皂與烷基硫酸酯的鈉、鉀鹽配製成的富脂香皂泡沫豐富、細膩,還能防止皂鈣的生成;高碳脂肪醇硫酸鹽與兩性離子表面活性劑復配製成的塊狀洗滌劑有良好的研磨性和物理性能,並具有調理作用。
高碳脂肪醇硫酸鹽可用作工業清潔劑、柔軟平滑劑、紡織油劑組分、乳液聚合用乳化劑等。它們的銨鹽和三乙醇胺鹽用於香波和溶劑中。
商品名為陰離子洗滌劑ASEA的表面活性劑成分為脂肪醇硫酸酯單乙醇胺鹽,結構為 ROS03NHaCH2CH20H。
⑵仲烷基硫酸鹽(Teep01) 它是由。—烯烴與硫酸反應生成的仲烷基硫酸酯,經中和後得到的產品,通式為R廠CH—o—SOaN,,商品名為梯波爾(Teep01)。
與伯烷基硫酸(酯)鹽不同,其硫酸酯鹽部分一(O—SO3Na)是與烷基鏈上的仲碳原子相連,烷基鏈的碳原子數為10~18。
梯波爾(Teep01)與FAS相似,也是一種性能良好的表面活性劑,但由於結構上的差異,它的溶解性和潤濕性更好。因製成粉狀產品易吸潮結塊,一般製成液體或漿狀洗滌劑。
⑶脂肪醇聚氧乙烯醚硫酸酯鹽(AES) 脂肪醇聚氧乙烯醚是一種非離.子表面活性劑,與硫酸酯化、中和得到硫酸酯鹽(AES)。實際上AES是非離子—陰離子型兩性混合表面活性劑,一般也將它歸在陰離子型硫酸酯鹽表面活性劑中。
脂肪醇聚氧乙烯醚硫酸酯鹽,簡稱醇醚硫酸鹽(AES)。由於它的溶解性能、抗硬水性能、
①AS可以是alk9nesul{。n9te,烷基磺酸鹽,也可以是alkancswlfatc伯烷基硫酸酯鹽的縮寫,此處為後者。起泡性;潤濕力均比脂肪醇硫酸鹽(AS)好且刺激性低,因此常作為AS的替代晶廣泛應用於香波、浴用品、剃須膏等盥洗衛生用品中,也是輕垢、重垢洗滌劑、地毯清洗劑、硬表面清洗劑的重要組分。
⑷脂肪酸衍生物的硫酸酯鹽 這類物質的通式為R一CXR'OSO-3M+ (X為氧原子、--N、-N、R',為烷基、亞烷基、羥烷基、烷氧基)。這類產品有良好的潤濕性和乳化性,通常用潤濕劑。如用硫酸處理含有羥基或不飽和鍵的油脂或脂肪酸酯,中和後得到的產品為油脂或脂肪酸酯的硫酸酯鹽。其中有代表性的是用蓖麻油酸化、中和得到的土耳其紅油(因適合做土耳其紅染料的勻染助劑而得名)。
⑸不飽和醇的硫酸酯鹽 當脂肪醇硫酸酯鹽結構中脂肪醇部分是含有雙鍵的不飽和醇時其性能有較大改變,如在低溫時仍呈透明狀,有較低表面張力和臨界膠束濃度,有良好的潤濕性能。其中油醇硫酸鹽[CH3(CH2)7CH=CH(CH2)7一CH2OS3Na]是一種重要的不飽:和醇硫酸鹽,它的起泡力好、去污力強並有良好的乳化能力和良好的鈣皂分散力,是目前正在研製開發的新產品。 烷基磷酸酯鹽包括烷基磷酸單、雙酯鹽,也包括脂肪醇聚氧乙烯醚的磷酸單雙酯鹽和烷基酚聚氧乙烯醚的磷酸單、雙酯鹽。常見的是烷基磷酸單、雙酯鹽。
⑴烷基磷酸單、雙酯鹽(AP) 這是烷基醇與磷酸酯化、中和後的產物。磷酸是三元酸可與脂肪醇酯化生成單酯、雙酯與三酯。形成單酯、雙酯的產物中仍含有顯酸性的氫離子可與鹼中和生成鹽。生成的烷基磷酸單、雙酯鹽具有表面活性。
工業上從降低成本考慮,產物通常為單酯鹽和雙酯鹽的混合物。從性能上看,烷基磷酸單酯鹽的去污力差,烷基磷酸雙酯鹽稍好,其中又以二癸基磷酸雙酯鹽較好,但起泡性能差。由於具有降低纖維間靜摩擦系數的作用,因此在紡織工業上常用作化纖產品的抗靜電劑。
⑵醇醚、酚醚的磷酸酯鹽 這是非離子表面活性劑烷基醇聚氧乙烯醚、烷基酚聚氧乙烯醚與磷酸發生酯化反應,經中和後得到的產物。
它們實際上是非離子—陰離子型兩性混合表面活性劑,但常歸之於陰離子表面活性劑中,由於含有聚氧乙烯鏈段,具有一些非離子表面活性劑的性質,因此與烷基磷酸酯鹽同類產品相比,去污、潤濕性能都有所改進。烷基醇聚氧乙烯醚磷酸酯鹽商品名為6503洗滌劑。 除上述四種陰離子表面活性劑外,還有其他的陰離子表面活性劑,如氨基酸鹽(R-CHNH2COO-)、酚鹽、烯醇鹽、酮基磺胺鹽([R-CO-N-SO2-R']-)及配位式陰離子鹽(如[ROCe(NO3)5]-)等。它們在不同的pH值下溶解度各有不同,陰離子表面活性劑在生產生活中發揮著很多作用。是生活中必不可少的一類物質。
10. VFA和ALK在廢水化學分析中中文是什麼意思
VFA表示的是厭氧處理系統內的揮發性有機酸的含量,ALK則表示的是厭氧處理系統內的鹼度