⑴ 化學水處理車間在熱電廠的作用有哪些
化學水處理的作用就是通過化學的方法處理水質,通過向鍋爐內加入一定數量的軟水劑,一般是加混凝劑(包括絮凝劑、助凝劑)和殺菌劑,使水質軟化,從而保證為鍋爐提供的水不產生結垢,不腐蝕鍋爐。這是熱電廠都要採取化學水處理的原因。也是當前熱電廠不可缺少的一個重要環節。
⑵ 通過學習化學水汽質量做為一名化學人員今後應該怎麼做
摘要 處理調試,水汽調試,直至機組順利並網發電,經72+24小時驗收後投入 商業運行,現已在汽水監督崗位上已能獨立操作。一分耕耘就會有一份收獲,通 過近一年的學習與實踐,不僅認識到了化學工作在發電廠的重要性,初步了解了 熱力設備的整體運行方式及規范,而且掌握了化學專業的水汽流程,監督項目及 指標,試驗方法和具體工作運行操作。在實踐中,更加認識到,只有理論聯系實 踐,才能掌握真知識真技能,才能更好地利用理論知識指導實際工作,使工作能 駕輕就熟。 雖然培訓時能認識到化學水處理在發電廠的重要性,明白只有對水進行適當 的凈化處理和嚴格的監督汽水質量,才能防止造成熱力設備的結垢、腐蝕,避免 爆管事故;才能防止過熱器和汽輪機的積鹽,以免汽輪機出力下降甚至造成事故 停機,從而保證發電廠的安全經濟運行。但是,在思想上這樣認識遠遠不夠,重 要的是要在行動上重視起來,認真、慎重對待化學水處理工作,否則就無法切實 保證發電廠熱力設備的安全經濟運行。 化學水處理工作比較細致、繁瑣,每一項每一步都要認真操作,不能有一絲 馬虎、僥幸心理,這是作為化學值班員的基本要求。水處理包括補給水處理和汽 水監督工作,補給水處理,也就是爐外水處理,是凈化原水,制備熱力系統所需 合格質量的補給水,是鍋爐合格水質的第一項保障。接著是汽水監督工作,它具 有同等重要地位,是改善鍋爐運行工況、防止汽水循環不良的安全保障
⑶ 什麼樣的電廠需要水處理
所有發電廠都需要水處理。除了原水進來經過處理變成生活水,工業版水以外,最重要的是權對鍋爐補給水進行處理,過去稱為「軟化水」,現在是用「除鹽水」(有一級除鹽,二級除鹽,陰陽離子塔,混床,覆蓋等工序),根據鍋爐的大小和參數,大鍋爐高參數對水質要求較高。
⑷ 電廠海水淡化和化學水處理目的和區別,兩者處理後的水都是什麼樣的
海水淡化是脫鹽制淡水
化學水處理是去除水中的鈣、鎂等離子和其他雜質。
⑸ 電廠化學 簡答題 學習水處理技術的目的是什麼
學習水處理技術的目的是培養學生具有給水處理系統運行操作、維護、管理及施工的能力,具有解決一般技術問題的初步能力和繼續鑽研水處理技術的理論基礎。
⑹ 化學水處理車間在熱電廠的作用有哪些
一般熱電廠化水車間就是對原水進行處理制出合格的除鹽水,滿足鍋爐和汽機的用水要求;對排放的廢水進行必要的處理。防止熱力設備腐蝕、積鹽和環境污染,保證設備安全經濟運行。這個環節上就用到反滲透。
⑺ 電廠化學水處理流程余錄進入離子交換器有什麼影響
化學水處理系統
一.從給水品質標准看化學水處理的必要性
下表是鍋爐給水品質標准。
總
硬
度
(
μ
mol/L)
溶解氧
(
μ
g/L)
電導率
(
μ
s/cm)
二氧化硅
(
μ
g/L)
PH
值
(25
℃
)
二氧化碳
(μg/L)
標准
≤
30
≤
50
10
≤
20
8.8
~
9.2
≤
20
我國北方多採用深井水源,其水質超標最嚴重的是總硬度,總硬度是指溶液中鈣離子(
Ca2
+)和鎂離子(
Mg2
+)摩爾濃度的平均值。所謂摩爾濃度指每升溶液中溶質含量的毫摩爾
數。
例如
Ca
的原子量為
40
,
1mol Ca2
+的質量是
80g
(其化學意義是:
1mol Ca2
+內含
6.02
×
1023
個鈣離子)
。如果
1L
溶液中含有
1g Ca2
+,那麼它的摩爾濃度是
1/80
=
0.0125mol/L
=
12.5mmol/L
。
給水水質不良,特別是鈣、鎂、鈉、硅酸根離子超標,會給熱力
設備造成如下危害:
1.
熱力設備的結垢:如果進入鍋爐或其它熱交換器的水質不良,則經過一段時間運
行
後,在和水接觸的受熱面上,會生成一些固體附著物
,
這種現象稱為結垢,這些固體附著物
稱為水垢。
因為水垢的導熱性比金屬差幾百倍,
而這些水垢又極易在熱負荷很高的鍋爐爐管
中生成,所以結垢對鍋爐
(或熱交換器)
的危害性很大;
它可使結垢部位的金屬管壁溫度過
高,引起金屬強度下降,這樣在管內壓力的作用下
,
就會發生管道局部變形、產生鼓包,甚
至引起爆管等嚴重事故。
結垢不僅危害安全運行,
而且還會大大降低發電廠的經濟性。
例如,
熱力發電廠鍋爐的省煤器中
,
結有
1mm
厚的水垢時,其燃料用量就比原來的多消耗
1.5
%~
2.0%
。因此有效防止或減少結垢,將會產生很大的經濟效益。另外,循環水的水質不良,
在汽輪機凝汽器內結垢會導致凝汽器真空度降低
,
從而使汽輪機的熱效率和出力下降;過熱
器的結垢會使蒸汽溫度達不到設計值,使整個熱力系統的經濟性降低。熱力設備結垢以後
,
必須及時進行清洗工作,
這就要停運設備,減少了設備的年利用小時數;此外,還要增加檢
修工作量和費用等。
2.
熱力設備及其系統的腐蝕:
發電廠熱力設備的金屬經常和水接觸,
若水質不良
,
則會引起金
屬腐蝕,如給水管道,省煤器、蒸發器、加熱器、過熱器和汽輪機凝汽器的換熱管,都會因
水質不良而腐蝕。
腐蝕不僅要縮短設備本身的使用期限,
造成經濟損失;
而且腐蝕產物轉入
水中,
使給水中雜質增多,
從而加劇在高熱負荷受熱面上的結垢過程,
結成的垢又會加速爐
管的垢下腐蝕。此種惡性循環,會迅速導致爆管等事故。
3.
過熱器和汽輪機流通部分的積鹽:水質不良還會使蒸汽溶解和攜帶的雜質(主要是
Na
+
和
HSiO3
-離子)增加,
這些雜質會沉積在蒸汽的流通部位,如過熱器和汽輪機,這種現象
稱為積鹽。
過熱器管內積鹽會引起金屬管壁過熱甚至爆管;
閥門會因積鹽而關閉不嚴;
汽輪
機內積鹽會大大降低汽輪機的出力和效率,即使少量的積鹽也會顯著增加蒸汽流通的阻力,
使汽輪機的出力下降。當汽輪機積鹽嚴重時
,
還會使推力軸承負荷增大,隔板彎曲,造成事
故停機。
總之,給水硬度高,表示鈣、鎂離子含量大,易造成鍋爐各受熱面、汽包以及管道內壁結垢
及腐蝕,
輕則影響熱量的傳導,
重則引起鍋爐爆管;
水中雜質經蒸汽攜帶到過熱器和汽輪機,
則會引起蒸汽通流部位積鹽,造成進一步危害。
⑻ 電廠說的化水是干什麼的
化水的主要工作是通過一定的處理使水質合格,送往鍋爐產生蒸汽,推動汽輪機帶動發電機內發電。容
1、電廠化水是對電廠各種用水進行化學處理,一般操作工對專業知識要求不高,當然具有化學知識可以更好的掌握工藝流程。
2、主要是:水的成分,原水的澄清,加葯去除水中的硅含量,陰陽離子處理,混床,覆蓋等。
⑼ 電廠化學水處理
1 化學廢水集中處理現狀
電廠的化學廢水有經常性廢水和非經常性廢水兩部分,2×600 MW機組的廢水排放量如表1所示。
表1 化學廢水排放量
500)this.style.width=500;" onmousewheel="return bbimg(this)">screen.width-333)this.width=screen.width-333" border=0>
由表1可知全廠廢水排放量約為經常性:(24+80)t/h(連續),非經常性:22000 t/a(平均)
1.1 廢水處理主要流程
化學廢水→廢水貯存槽→氧化槽→反應槽→pH調整槽→混合槽→凝聚澄清池→清凈水槽(水質監控)→煤灰用水系統。
澄清池底部排泥經濃縮池濃縮後送至泥渣脫水機脫水,泥餅用汽車運到干灰場貯存。清水返回廢水貯存池。
1.2 存在問題
1.2.1 容量方面
上述流程將鍋爐酸洗廢水、鍋爐排污水、鍋爐補給水處理系統所排廢水、凝結水精處理系統廢水等全廠所有化學廢水,都集中至化學廢水集中處理站處理。這樣,集中處理系統的容量大、佔地多、造價高。
1.2.2 處理設施方面
傳統的貯存槽主要是貯存廢水,兼有部分粗調功能。但廢水的氧化、反應、pH調整和混合,分別在氧化槽、反應槽、pH調整槽和混合槽中進行。這些槽上設有各種攪拌、加酸、加鹼設施,且池內防腐、池上蓋房(或棚)。這樣,廢水處理系統流程復雜、處理設施繁多、投資大、運行管理不便。
1.3 主要設備及其技術數據
廢水貯存槽:V=1 000 m3 6座
氧化槽、反應槽、pH調整槽、混合槽:V=600 m 31套
澄清池:Q=100m3/h 2座
濃縮池:Q=20m3/h 1座
脫水機:Q=10m3/h 2台
清凈水槽:8 m×6m×3m 2座
廢水貯存池用排水泵: H=0.23MPa,Q=50m3/h 12台
葯品儲存、計量系統設備:1套
2 簡化後的化學廢水集中處理系統
2.1 處理系統主要流程
化學廢水→廢水貯存槽A→廢水貯存槽(該槽兼有貯存、氧化、反應、pH調整和混合五種功能)→凝聚澄清池→清凈水槽(水質監控)→煤灰用水系統。
澄清池底部排泥處理方法與傳統方式相同。
2.2 優點
2.2.1 容量方面
鍋爐補給水處理系統和凝結水處理系統的反沖洗水,主要是懸浮物不合乎排放標准,將其直接排入工業下水道,由工業廢水處理系統處理。
鍋爐補給水處理系統和凝結水處理系統的再生廢水,主要是pH值不合乎排放標准,此部分水就地調pH值排放。如將此部分水用泵送入化學廢水集中處理站,處理方法仍是調pH值。
鍋爐酸洗廢水、鍋爐排污水等化學廢水,因其量大、懸浮物高、pH值也不符合排放標准要求,就地處理困難大,故集中起來處理較方便。
循環水弱酸處理站廢水,含有硫酸鈣易沉物,雖然目前環保對排水的含鹽量沒有限制,但懸浮物超標不能排;另外,如只將此水就地調pH值,而不去除其中的硫酸鈣就排入自流下水道,長此以往,有污堵下水道的隱患。這部分廢水進行集中處理。通過以上劃分,系統的容量可大大減小。設計流量由100 m3/h降至80 m3/h。
2.2.2 處理設施方面
取掉了傳統廢水處理流程中的氧化槽、反應槽、pH調整槽和混合槽五種設施,以及五種設施上的各種配套設備、管道和廠房(或棚)。雖然取消了五種設施,但這五種設施的處理功能並沒取消,而是在廢水貯槽B中進行,因為傳統的貯存槽本身具有粗調水質的功能,現將其轉換成細調功能即行。
2.2.3 廢水貯存槽方面
傳統工藝的廢水儲存槽有1000 m3的池子6座。每座都設有2台耐腐蝕輸送泵、加葯管道、空氣攪拌管道、檢測裝置等。
系統簡化後貯存槽總容量從6000m3縮小為 m3,且分為A型和B型。廢水貯存槽A只有1座3000 m3的池子,廢水貯存槽B有2座1000m3的池子。
廢水貯存槽A,用來儲存廢水,並輸送廢水到廢水貯存槽B,沒有調整廢水水質的功能;這座池上只設有2台輸送泵和空氣攪拌管道,沒有加葯管道和檢測裝置。
2座廢水貯存槽B,開始用來儲存廢水,儲滿後一池用來調整(氧化、反應、pH調整和混合)廢水,另一池輸送已調整好的廢水至澄清池,兩池倒換使用;這兩池上各設有輸送泵、加葯管道、空氣攪拌管道和檢測裝置。
2.3 主要設備及其技術數據
廢水貯存槽A:V=3 000 m3 1座
廢水貯存槽B:V=1 000 m3 2座
澄清池:Q=80 m3/h 2座
濃縮池:Q=15 m3/h 1座
脫水機:Q=10 m3/h 2台
清凈水槽:6 m×6 m×3 m 2座
廢水貯存池用排水泵:H=0.23 MPa、Q=40 m3/h 6台
葯品儲存、計量系統設備: 1套
3 兩種處理方案的主要經濟指標比較
詳見表2。
表2 兩種處理方案的主要經濟指標
500)this.style.width=500;" onmousewheel="return bbimg(this)">screen.width-333)this.width=screen.width-333" border=0>
⑽ 電廠化學水處理
1 化學廢水集中處理現狀
電廠的化學廢水有經常性廢水和非經常性廢水兩部分,2×600 MW機組的廢水排放量如表1所示。
表1 化學廢水排放量
500)this.style.width=500;" onmousewheel="return bbimg(this)">screen.width-333)this.width=screen.width-333" border=0>
由表1可知全廠廢水排放量約為經常性:(24+80)t/h(連續),非經常性:22000 t/a(平均)
1.1 廢水處理主要流程
化學廢水→廢水貯存槽→氧化槽→反應槽→pH調整槽→混合槽→凝聚澄清池→清凈水槽(水質監控)→煤灰用水系統。
澄清池底部排泥經濃縮池濃縮後送至泥渣脫水機脫水,泥餅用汽車運到干灰場貯存。清水返回廢水貯存池。
1.2 存在問題
1.2.1 容量方面
上述流程將鍋爐酸洗廢水、鍋爐排污水、鍋爐補給水處理系統所排廢水、凝結水精處理系統廢水等全廠所有化學廢水,都集中至化學廢水集中處理站處理。這樣,集中處理系統的容量大、佔地多、造價高。
1.2.2 處理設施方面
傳統的貯存槽主要是貯存廢水,兼有部分粗調功能。但廢水的氧化、反應、pH調整和混合,分別在氧化槽、反應槽、pH調整槽和混合槽中進行。這些槽上設有各種攪拌、加酸、加鹼設施,且池內防腐、池上蓋房(或棚)。這樣,廢水處理系統流程復雜、處理設施繁多、投資大、運行管理不便。
1.3 主要設備及其技術數據
廢水貯存槽:V=1 000 m3 6座
氧化槽、反應槽、pH調整槽、混合槽:V=600 m 31套
澄清池:Q=100m3/h
2座
濃縮池:Q=20m3/h
1座
脫水機:Q=10m3/h
2台
清凈水槽:8 m×6m×3m 2座
廢水貯存池用排水泵: H=0.23MPa,Q=50m3/h 12台
葯品儲存、計量系統設備:1套
2 簡化後的化學廢水集中處理系統
2.1 處理系統主要流程
化學廢水→廢水貯存槽A→廢水貯存槽(該槽兼有貯存、氧化、反應、pH調整和混合五種功能)→凝聚澄清池→清凈水槽(水質監控)→煤灰用水系統。
澄清池底部排泥處理方法與傳統方式相同。
2.2 優點
2.2.1 容量方面
鍋爐補給水處理系統和凝結水處理系統的反沖洗水,主要是懸浮物不合乎排放標准,將其直接排入工業下水道,由工業廢水處理系統處理。
鍋爐補給水處理系統和凝結水處理系統的再生廢水,主要是pH值不合乎排放標准,此部分水就地調pH值排放。如將此部分水用泵送入化學廢水集中處理站,處理方法仍是調pH值。
鍋爐酸洗廢水、鍋爐排污水等化學廢水,因其量大、懸浮物高、pH值也不符合排放標准要求,就地處理困難大,故集中起來處理較方便。
循環水弱酸處理站廢水,含有硫酸鈣易沉物,雖然目前環保對排水的含鹽量沒有限制,但懸浮物超標不能排;另外,如只將此水就地調pH值,而不去除其中的硫酸鈣就排入自流下水道,長此以往,有污堵下水道的隱患。這部分廢水進行集中處理。通過以上劃分,系統的容量可大大減小。設計流量由100 m3/h降至80 m3/h。
2.2.2 處理設施方面
取掉了傳統廢水處理流程中的氧化槽、反應槽、pH調整槽和混合槽五種設施,以及五種設施上的各種配套設備、管道和廠房(或棚)。雖然取消了五種設施,但這五種設施的處理功能並沒取消,而是在廢水貯槽B中進行,因為傳統的貯存槽本身具有粗調水質的功能,現將其轉換成細調功能即行。
2.2.3 廢水貯存槽方面
傳統工藝的廢水儲存槽有1000 m3的池子6座。每座都設有2台耐腐蝕輸送泵、加葯管道、空氣攪拌管道、檢測裝置等。
系統簡化後貯存槽總容量從6000m3縮小為 m3,且分為A型和B型。廢水貯存槽A只有1座3000 m3的池子,廢水貯存槽B有2座1000m3的池子。
廢水貯存槽A,用來儲存廢水,並輸送廢水到廢水貯存槽B,沒有調整廢水水質的功能;這座池上只設有2台輸送泵和空氣攪拌管道,沒有加葯管道和檢測裝置。
2座廢水貯存槽B,開始用來儲存廢水,儲滿後一池用來調整(氧化、反應、pH調整和混合)廢水,另一池輸送已調整好的廢水至澄清池,兩池倒換使用;這兩池上各設有輸送泵、加葯管道、空氣攪拌管道和檢測裝置。
2.3 主要設備及其技術數據
廢水貯存槽A:V=3 000 m3
1座
廢水貯存槽B:V=1 000 m3
2座
澄清池:Q=80 m3/h
2座
濃縮池:Q=15 m3/h
1座
脫水機:Q=10 m3/h
2台
清凈水槽:6 m×6 m×3 m
2座
廢水貯存池用排水泵:H=0.23 MPa、Q=40 m3/h 6台
葯品儲存、計量系統設備:
1套
3 兩種處理方案的主要經濟指標比較
詳見表2。