導航:首頁 > 廢水知識 > 廠區廢水處理站設計方案

廠區廢水處理站設計方案

發布時間:2022-05-27 00:02:40

『壹』 污水處理設計方案怎麼做

中國環保頻道網有點
我是BFMS工藝設備銷售員,下面是我們的建議書(圖片粘帖不上)
BFMS水處理工藝技術
20000噸/日市政污水處理技術建議書

1、工程概況
污水處理廠的日處理能力為20000噸/日,設計出水水質達到一級B標准(暫)
2、工程規模
正常處理量:20000噸/日
峰值處理量:24000噸/日
3、設計進出水水質
1)進水水質(需業主提供實際數據)
PH=6~9;CODcr≤500mg/L;BOD5≤280mg/L;
懸浮物≤300mg/L;總磷≤5.0mg/L;氨氮≤40.0mg/L

2)出水水質(需業主提供出水標准,暫定為一級B)
PH=6~9;CODcr≤60mg/L;BOD5≤20mg/L;
懸浮物≤20mg/L;總磷≤1.0mg/L;氨氮≤15.0mg/L;
總氮≤20.0mg/L;糞大腸桿菌≤10000/L。
4、載入絮凝磁分離(簡稱BFMS)工藝原理和優勢
BFMS技術是在傳統的絮凝工藝中,加入磁粉,以增強絮凝的效果,形成高密度的絮體和加大絮體的比重,達到高效除污和快速沉降的目的。磁粉的離子極性和金屬特性,作為絮體的核體,大大地強化了對水中懸浮污染物的絮凝結合能力,減少絮凝劑用量,在去除懸浮物,特別是在去除磷、細菌、病毒、油、重金屬等方面的效果比傳統工藝要好。由於磁粉的比重高達5.0×10³kg/m³,大約是砂子的兩倍,混有磁粉的絮體比重增大,絮體快速沉降,速度可達20米/時以上,整個水處理從進水到出水可在10分鍾左右完成。污泥中的磁粉,利用磁粉本身的特性使用磁鼓進行分離後回收並在系統中循環使用。高梯度磁過濾器捕集流過水中的殘余微小顆粒,磁過濾器依照設定的要求被自動清洗,以達到高度凈化出水的目的。根據在美國採用BFMS作深度水處理的報告,磁過濾器可達到去除26納米病菌的結果。下面圖示說明了BFMS工藝的處理過程。

BFMS Process 載入絮凝磁分離工藝

絮凝/ + 載入絮凝+ 沉澱分離+磁過濾
Coagulation+Baiiasted Flocculation+Solids Separation+Magnetic Separation

該工藝以前在工程中應用很少,原因是磁種的回收技術一直沒有很好的解決,而現在這一技術難點已成功地被突破,磁種的回收率達到99%以上,該工藝技術在美國也進行了項目示範和商業項目運行。我們公司已在國內申請多項專利,形成了公司的自主知識產權。在過去三年中,我們公司用250噸/日的中試車已在城市污水處理、中水回用、地表水和地下水以及自來水處理、江水、湖水、河道水處理、高磷廢水處理、造紙廢水處理、采礦廢水處理、煉油和油田廢水處理方面成功的做了多項不同運行參數的試驗,取得很好的結果;10000噸/日的中試車已於2007年5月在青島李村河入海口的城市污水投入運行一個月,運行良好。在北京金源經開污水處理廠的出水進行除高磷深度處理運行月余,處理效果佳。作為奧運會應急城市污水處理工程,在北京清河污水廠安裝了4×10000噸/日和2×5000噸/日共6組BFMS系統,綜合處理效果好。該技術在勝利油田應用於處理採油廢水的東營勝利油田一期工程(5000噸/日)已經投入使用,油田500噸/日地下水BFMS項目和30000噸/日採油水BFMS項目也在實施中。

與其他工藝相比,磁分離技術具有以下優點:
1) BFMS工藝能應用於城市污水的一級、二級、三級、中水和各種工業污水以及飲用水。
2) 處理效果好,其出水質與超濾膜出水相媲美,BFMS工藝能有效地從水中除去微粒污染物、微生物污染物和部分已溶解於水中的污染物,如:COD、BOD、懸浮物、總磷、色度、濁度等,特別是對磷有強大的去除效果。也能結合生物工藝非常有效和經濟地脫氮。
3) 耐沖擊負荷能力強,對水質的沖擊有獨特的耐沖擊能力。當前段工序出現故障時,或其他有害金屬離子進入污水處理系統,污水可直接進入磁分離系統,系統仍然能夠保持較高的去除效果,大幅度去除水中污染物。
4) 佔地極小,20000噸/日BFMS系統的佔地約為400㎡左右,另加走道、加葯及操作設施總佔地約700㎡左右。
5) 投資低,比膜處理有明顯的優勢。
6) 運行成本低,設備使用壽命長,除了正常的維護外,不用更換部件而造成高昂的二次投資。
7) 運行管理方便,啟動快捷,運行管理簡單。

5、污水處理廠工藝設計建議
根據工程運行經驗,去除污水中的漂浮物和泥砂,保證污水廠的連續運行,進入BFMS系統的污水進行預處理是必備的。依據BFMS系統的工作原理,常規預處理即可,即粗、細格柵和沉澱池。預處理也可考慮採用污水粉碎泵。
BFMS技術具有強大除磷和懸浮物能力,同時對其他指標(氮除外)也有較強的去除能力。對處理城市污水,因BFMS技術脫氮能力較差,建議後續的生化工藝(如BAF、SBR、A/O等)僅按氨氮負荷進行設計,通過調整BFMS系統的加葯量即可保證剩餘的CODcr和BOD5達到排放要求。因生化脫氮需要必須的碳源,若BFMS系統去除率太高會導致生化系統的碳源不足,微生物生長緩慢,脫氮能力達不到,因此建議對污泥貯池鋪設備用管道系統,迴流污泥作為備用碳源。

6、工藝流程
考慮市政污水的水質特點,結合BFMS技術的工藝優點,綜合考慮投資和運行效果,建議污水處理廠的工藝流程如下:

市政污水

定期外運

達標排放

BFMS技術是污水廠處理工藝的重要部分,對BFMS系統排除的剩餘污泥必須進行處理。

下圖僅為BFMS工藝流程圖:

污水廠來水 出水

污泥脫水系統

BFMS系統平面圖布置如下:

7、BFMS系統設計
1)BFMS系統共2套,單套處理量10000噸/日。
2)其他
(1)BFMS系統建議放在室內,設備空間要求L30×W20×H10米,採用輕鋼結構形式。
(2)污泥處理建議不採用濃縮池,直接採用污泥貯池和污泥濃縮脫水一體機,處理BFMS系統排出的剩餘污泥。在正常運行時BFMS系統排除的污泥的含水率在98-99%。
(3)配套電壓為380V,每套BFMS系統裝機容量為61KW(不含進水泵),運行負荷為40KW。總裝機容量為122KW,總運行負荷為80KW。
(4)每套BFMS系統配套操作人員每班1人,4班3運轉,均應經過上崗培訓。
(5)污泥產量:0.4kgGS/m³廢水。
8、BFMS系統水處理成本
1)直接運行成本:0.2446元/噸污水
A葯劑:
絮凝劑乾粉(29%純度):2500元/噸;投加濃度以20ppm(AL2O3)計,成本為0.17元/噸污水;
PAM晶體:25000元/噸;投加濃度以1ppm計,成本為0.025元/噸污水.
B電耗
0.041度/噸污水,電費以0.57元/度計,則成本為0.0234元/噸污水.
C人工:0.014元/噸污水
D維修、維護0.012元/噸污水
2)總成本:0.3244元/噸污水
A直接運行成本:0.252元/噸污水
B固定資產折舊(平均年限法)15年:0.052元/噸污水
C經營管理及其他費用:0.031元/噸污水
9、20000噸/日BFMS系統投資
本工程共需2套10000噸/日BFMS系統,20000噸/日BFMS系統投資為********元(包括設計、安裝、調試及系統設備)。
10、說明:
*由於對實際污水狀況不了解,未進行水的測試,故BFMS系統的運行費用只是估算,具體數據需待做試驗後再確定。
*本文內容僅供內部使用。

『貳』 誰有污水處理廠的設計說明書,越詳細越好

第一章 設計資料
一、自然條件
1、 氣候:該城鎮氣候為亞熱帶海洋季風性季風氣候,常年主導風向為東南風。
2、 水文:最高潮水位 6.48m(羅零高程,下同)
高潮常水位 5.28m
低潮常水位 2.72m
二、城市污水排放現狀
1、污水水量
(1)生活污水按人均生活污水排放量300L/人.d;
(2)生產廢水量按近期1.5萬m3/d,遠期2.4萬m3/d;
(3)公用建築廢水量排放系數按近期0.15,遠期0.20考慮;
(4)處理廠處理系數按近期0.80,遠期0.90考慮。
2、污水水質
(1) 生活污水水質指標為
CODcr 60g/人.d
BOD5 30g/人.d
(2) 工業污染源參照沿海開發區指標,擬定為:
CODcr 300mg/L;
BOD5 170mg/L
(3) 氨氮根據經驗確定為30md/L。
三、污水處理廠建設規模與處理目標
1、 建設規模
該污水處理廠服務面積為10.09km2, 近期(2000年)規劃人口為6.0萬人,遠期(2020年)規劃人口為10.0萬人。處理水量近期3.0萬m3/d,遠期6.0萬m3/d。
2、 處理目標
根據該城鎮環保規劃,污水處理廠出水進入的水體水質按國家3類水體標准控制,同時執行國家關於污水排放的規范和標准,擬定出水水質指標為
CODcr≤100mg/L; BOD5≤30mg/L; SS≤30mg/L ; NH3-N≤10mg/L
四、建設原則
污水處理工程建設過程中應遵從下列原則:污水處理工藝技術方案,在達到治理要求的前提下應優先選擇基建投資和運行費用少、運行管理簡便的先進的工藝;所用污水、污泥處理技術和其他技術不僅要求先進,更要求成熟可靠;和污水處理廠配套的廠外工程應同時建設,以使污水處理廠盡快完全發揮效益;污水處理廠出水應盡可能回用,以緩解城市嚴重缺水問題;污泥及浮渣處理應盡量完善,消除二次污染;盡量減少工程佔地。

第二章 污水處理工藝方案選擇
一、工藝方案分析
本項目污水以有機污染為主,BOD/COD=0.54 可生化性較好,重金屬及其他難以生物降解的有毒有害污染物一般不超標,針對這些特點,以及出水要求,現有城市污水處理技術的特點,以採用生化處理最為經濟。由於將來可能要求出水回用,處理工藝尚應硝化。
根據國內外已運行的大、中型污水處理廠的調查,要達到確定的治理目標,可採用「普通活性污泥法」或「氧化溝」法。
普通活性污泥法,也稱傳統活性污泥法,推廣年限長,具有成熟的設計運行經驗,處理效果可靠,如設計合理,運行得當,出水BOD5可達10-20mg/L,它的缺點是工藝路線長,工藝構築物及設備多而復雜,運行管理困難,運行費用高。
氧化溝處理技術是20世紀50年代有荷蘭人首創。60年代以來,這項技術在國外已被廣泛採用,工藝及構築物有了很大的發展和進步。隨著對該技術缺點(佔地面積大)的克服和對其優點的逐步深入認識,目前已成為普遍採用的一項污水處理技術。
氧化溝工藝一般可不設初沉池,在不增加構築物及設備的情況下,氧化溝內不僅可完成碳源的氧化,還可實行脫氮,成為A/O工藝,由於氧化溝內活性污泥已經好氧穩定,可直接濃縮脫水,不必厭氧消化。
氧化溝污水處理技術已被公認為一種成功的革新的活性污泥法工藝,與傳統活性污泥系統相比較,它在技術、經濟等方面具有一系列獨特的優點。
1、 工藝流程簡單、構築物少,運行管理方便。一般情況下,氧化溝工藝可比傳統活性污泥法少建初沉池和污泥厭氧消化系統,基建投資少。另外,由於不採用鼓風曝氣和空氣擴散器,不建厭氧硝化系統,運行管理方便。
2、 處理效果穩定,出水水質好。
3、 基建投資省,運行費用低。
4、 污泥量少,污泥性質穩定。
5、 具有一定承受水量、水質沖擊負荷的能力。
6、 佔地面積少。
污水處理廠的基建投資和運行費用與各廠的污水濃度和建設條件有關,但在同等條件下的中、小型污水廠,氧化溝比其他方法低,據國內眾多已建成的氧化溝污水處理廠的資料分析,當進水BOD5在120-180mg/L時,單方基建投資約為700-900元/(m3.d),運行成本為0.15-0.30元/m3污水。
由以上資料,經過簡單的分析比較,氧化溝工藝具有明顯優勢,故採用氧化溝工藝。
二、工藝流程確定:(如圖所示)
說明:由於不採用池底空氣擴散器形成曝氣,故格柵的截污主要對水泵起保護作用,擬採用中格柵,而提升水泵房選用螺旋泵,為敞開式提升泵。為減少柵渣量,格柵柵條間隙已擬定為25.00mm。
曝氣沉砂池可以克服普通平流沉砂池的缺點:在其截流的沉砂中夾雜著一些有機物,對被有機物包裹的沙粒,截流效果也不高,沉砂易於腐化發臭,難於處置。故採用曝氣沉砂池。
本設計不採用初沉池,原則上應根據進水的水質情況來確定是否採用初沉池。但考慮到後面的二級處理採用生物處理,即氧化溝工藝。初沉池會除去部分有機物,會影響到後面生物處理的營養成分,即造成C/N比不足。因此不予考慮。
擬用卡羅塞爾氧化溝,去除COD與BOD之外,還應具備硝化和一定的脫氮作用,以使出水NH3低於排放標准,故污泥負荷和污泥泥齡分別低於0.15kgBOD/kgss*d和高於20.0d。
氧化溝採用垂直曝氣機進行攪拌,推進,充氧,部分曝氣機配置變頻調速器,相應於每組氧化溝內安裝在線DO測定儀,溶解氧訊號傳至中控室微機,給微機處理後再反饋至變頻調速器,實現曝氣根據DO自動控制
為了使沉澱池內水流更穩定(如避免橫向錯流、異重流對沉澱的影響、出水束流等)、進出水更均勻、存泥更方便,常採用圓形輻流式二沉池。向心式輻流沉澱池採用中心進水,周邊出水,多年來的實際和理論分析,認為此種形式的輻流沉澱池,容積利用率高,出水水質好。設計流量 Q=2.85萬m3/d=1208.3 m3/h,迴流比 R=0.7。

第三章 污水處理工藝設計計算
一、水質水量的確定
1. 水量的確定
近期水量:生活廢水Q生活=6.0×104×300L/人•天=1.8×104m3/d
工業廢水Q工業=1.5×104m3/d
公用建築廢水Q公用=1.8×104×0.15=0.27×104m3/d
所以近期產生的廢水量為Q
Q=Q生活+Q工業+Q公用=(1.8+1.5+0.27)×104 =3.57×104m3/d
近期的處理系數為0.8,故近期污水處理廠的處理量
Qp=3.57×104×0.8=2.856×104m3/d

遠期水量:生活廢水Q生活=10.0×104×300L/人•天=3.0×104m3/d
工業廢水Q工業=2.4×104m3/d
公用建築廢水Q公用=3.0×104×0.2=0.6×104m3/d
所以遠期產生的廢水量為Q
Q=Q生活+Q工業+Q公用=(3.0+2.4+0.6)×104 =6.0×104m3/d
遠期的處理系數為0.9,故遠期污水處理廠的處理量
Qp=6.0×104×0.9=5.4×104m3/d
通常設計污水處理廠時遠期的設計處理量為近期的兩倍,綜合考慮近期和遠期的處理水量,取近期的設計處理水量Qp=3.0×104m3/d,遠期的設計處理水量Qp=6.0×104m3/d。
2. 水質的確定
近期COD:
COD = =242mg/L
近期BOD5:
BOD5= =129mg/L
遠期COD:
COD= =240 mg/L
遠期BOD5:
BOD5= =128mg/L
NH3-N按規定取為30 mg/L
所以處理廠的處理水質確定為COD=242mg/L,BOD5=129mg/L,NH3-N=30 mg/L
二、曝氣沉砂池設計計算說明書
沉砂池的作用是從污水中去除砂子、煤渣等比重比較大的無機顆粒,以免這些雜質影響後續構築物的正常運行。常用的沉砂池有平流式沉砂池、曝氣沉砂池、豎流沉砂池和多爾沉砂池等。平流式沉砂池構造簡單,處理效果較好,工作穩定,但沉砂中夾雜一些有機物,易於腐化散發臭味,難以處置,並且對有機物包裹的砂粒去除效果不好。曝氣沉砂池在曝氣的作用下顆粒之間產生摩擦,將包裹在顆粒表面的有機物除掉,產生潔凈的沉砂,通常在沉砂中的有機物含量低於5%,同時提高顆粒的去除效率。多爾沉砂池設置了一個洗砂槽,可產生潔凈的沉砂。渦流式沉砂池依靠電動機機械轉盤和斜坡式葉片,利用離心力將砂粒甩向池壁去除,並將有機物脫除。後3種沉砂池在一定程度上克服了平流式沉砂池的缺點,但構造比平流式沉砂池復雜。
和其它形式的沉砂池相比,曝氣沉砂池的特點是:一、可通過曝氣來實現對水流的調節,而其它沉砂池池內流速是通過結構尺寸確定的,在實際運行中幾乎不能進行調解;二、通過曝氣可以有助於有機物和砂子的分離。如果沉砂的最終處置是填埋或者再利用(製作建築材料),則要求得到較干凈的沉砂,此時採用曝氣沉砂池較好,而且最好在曝氣沉砂池後同時設置沉砂分選設備。通過分選一方面可減少有機物產生的氣味,另一方面有助於沉砂的脫水。同時,污水中的油脂類物質在空氣的氣浮作用下能形成浮渣從而得以被去除,還可起到預曝氣的作用。只要旋流速度保持在0.25~0.35m/s范圍內,即可獲得良好的除砂效果。盡管水平流速因進水流量的波動差別很大,但只要上升流速保持不變,其旋流速度可維持在合適的范圍之內。曝氣沉砂池的這一特點,使得其具有良好的耐沖擊性,對於流量波動較大的污水廠較為適用,其對0.2mm顆粒的截流效率為85%。
由於此次設計所處理的主要是生活污水水中的有機物含量較高,因此採用曝氣沉砂池較為合適。
曝氣沉砂池的設計參數:
(1)旋流速度應保持0.25—0.3m/s;
(2)水平流速為0.08—0.12 m/s;
(3)最大流量時停留時間為1—3min;
(4)有效水深為2—3m,寬深比一般採用1~1.5;
(5)長寬比可達5,當池長比池寬大得多時,應考慮設置橫向擋板;
(6)1 污水的曝氣量為0.2 空氣;
(7)空氣擴散裝置設在池的一側,距池底約0.6~0.9m,送氣管應設置調節氣量的閥門;
(8)池子的形狀應盡可能不產生偏流或死角,在集砂槽附近可安裝縱向擋板;
(9)池子的進口和出口布置,應防止發生短路,進水方向應與池中旋流方向一致,出水方向應與進水方向垂直,並考慮設置擋板;
(10)池內應考慮設置消泡裝置。
一、 曝氣沉砂池的設計與計算
1. 最大設計流量Qmax
Qmax=Kz×Qp
式中的Kz為變化系數,Kz=1.42
Qmax=1.42×0.347=0.493 m3/s

2. 池子的有效容積
V=60Qmaxt
式中 V——沉砂池有效容積,m3;
Qmax——最大設計流量,m3/s;
t——最大設計流量時的流動時間,min,設計時取1~3min。
所以 V=60×0.493×1.5=44.37m3
3. 水流斷面面積
A=
式中 A——水流斷面面積,m2
Qmax——最大設計流量,m3/s;
V——水流水平流速,m/s。
所以 A=4.11m2
取 A=4.2m2
4.池寬B
B=
h——沉砂池的有效水深,m。
取h=2m。所以B= =2.1m
B/h=1.05,滿足要求。
5. 池長
L= = m,取L=10.5m
此時L/B=5滿足要求
6.流速校核
Vmin= m/s,在0.8~1.2m/s之間,滿足要求
7.曝氣沉砂池所需空氣量的確定
設每立方米污水所需空氣量 d=0.2m3空氣/m3污水
8.沉砂槽的設計
若設吸砂機工作周期為t=1d=24h,沉砂槽所需容積

式中Qp的單位為m3/h
設沉砂槽底寬0.5m,上口寬為0.7,沉砂槽斜壁與水平面夾角60°,
沉砂槽高度為 h1=
沉砂槽容積為
9.沉沙池總高
設池底坡度為0.3,坡向沉砂槽,池底斜坡部分的高度為
h2=0.3×0.7=0.21m
設超高 ,沉沙池水面離池底的高
m
10.曝氣系統的設計
採用鼓風曝氣系統,羅茨鼓風機供風,穿孔管曝氣
(1)干管直徑d1:由於設置兩座曝氣沉砂池,可將空氣管供應兩座的氣量,即主管最大氣量為q1=0.0694×2=0.1388m3/s,取干管氣速v=12m/s,
干管截面積A= = =0.0116m2
d1= = m=120mm,
因為沒有120mm的管徑,所以採用接近的管徑100mm。
回算氣速v=17.7m/s 雖然超過15 m/s,但若取150的管氣速又過小,所以還是選擇管徑100mm。
(2)支管直徑d2:由於閘板閥控制的間距要在5m以內,而曝氣的池長為10.5米,所以每個池子設置三根豎管,設支管氣速為v=5m/s,
支管面積 A= m2
d2= = mm,
取整管徑d2=80mm
校核氣速v=4.6m/s (滿足3—5m/s)
(3)穿孔管:採用管徑為6mm的穿孔管,孔出口氣速為設5m/s,孔口直徑取為5mm(在2~6mm之間)
一個孔的平均出氣量 q= =9.81×10-5m3/s
孔數:n= 個
孔間隔 為 ,在10~15mm之間,符合要求。
穿孔管布置:在每格曝氣沉砂池池長一側設置1根穿孔管曝氣管,共兩根。
二、細格柵的選型和計算
選用XG1000型細格柵,參數如下
設備寬B:1000mm 有效柵寬B1:850㎜ 有效柵隙:5㎜ 耙線速度:2 m/min 電機功率:1.1kw 安裝角度:60° 渠寬B3:1050㎜ 柵前水深h2:1.0m/s 流體流速:0.5~1.0m/s
柵條寬度s=0.01m
1. 柵前後的水頭損失
水流斷面面積 m2
柵前流速
在0.4~0.9m/s范圍內,復合要求
設過柵流速為v=0.6m/s
設柵條斷面為銳邊矩形斷面,取k=3 ,則通過格柵的水頭損失為:

3. 柵槽總長度
柵前的渠道超高設為0.45m,所以渠道高度為1.45m
因為安裝高度是取60°,所以格柵所佔的渠道長為1.45×ctg =1.45×ctg60°=0.84m
柵後長1米。
所以渠道的總長度
L=0.5+0.84+1=2.34m
三、水面標高
根據經驗值污水每經過一個障礙物水面標高下降3~5cm,根據曝氣沉砂池的有效水深以及砂斗的高度可推算出各個構築物的水面標高,本次設計以經過一個障礙物水位下降5cm來計算,以曝氣沉砂池的砂槽底為0米進行計算。
曝氣沉砂池的水面標高:2.38m
細格柵與曝氣沉砂池之間的配水井的水面標高: 2.43m
細格柵柵後水面標高: 2.48m
細格柵柵前水面標高:2.48+0.29=2.77m
配水井外套桶水面標高: 2.82m
配水井內套桶水面標高: 2.88
設配水井超高為0.35m
則整個曝氣沉砂池系統的最高標高為3.23m
則曝氣沉砂池的超高為h1=3.23-2.38=0.85m
四、配水井的計算
設配水井的平均停留時間為T=1.5min,Qp=0.347 m3/s,假設配水井水柱高為5.03米。
配水井面積為

配水井直徑為

因為進水管徑為1000,管離底為200mm。所以覆土厚度為1.28m。
五、砂水分離器和吸砂機的選擇
(1)選用直徑LSSF型螺旋式砂水分離器
(2)根據池寬選用LF-W-CS型沉砂池吸砂機,其主要參數為:
潛污泵型號:AV14-4(潛水無堵塞泵)
潛水泵特性 揚程:2m,流量:54m3/h,功率:1.4kw
行車速度為2-5m/min,提耙裝置功率 0.55kw
驅動裝置功率: 0.37×2kw
鋼軌型號 15kg/mGB11264-89
軌道預埋件斷面尺寸(mm) (b1-20) 60 10(b1:沉砂池牆體壁厚)
軌道預埋件間距 1000mm
四、氧化溝
1、設計說明
擬用卡羅塞爾氧化溝,去除COD與BOD之外,還應具備硝化和一定的脫氮作用,以使出水NH3低於排放標准。採用卡式氧化溝的優點:立式表曝機單機功率大,調節性能好,節能效果顯著;有極強的混合攪拌與耐沖擊負荷能力;曝氣功率密度大,平均傳氧效率達到至少2.1kg/(kW*h);氧化溝溝深加大,可達到5.0以上,是氧化溝佔地面積減小,土建費用降低。
氧化溝採用垂直曝氣機進行攪拌,推進,充氧,部分曝氣機配置變頻調速器,相應於每組氧化溝內安裝在線DO測定儀,溶解氧訊號傳至中控室微機,給微機處理後再反饋至變頻調速器,實現曝氣根據DO自動控制
2、設計計算
(1).設計參數:
qv=30000m3/d(設計採用雙池,則單池流量=15000 m3/d),
設計溫度15℃,最高溫度25℃,
進水水質:近期:CODCr=242mg/L,BOD5=129.4mg/L, NH3-N=30mg/L,
遠期:CODCr=240mg/L,BOD5=128mg/L, NH3-N=30mg/L,
出水水質:CODCr=100mg/L,BOD5=30mg/L,SS=30mg/L,NH3-N=10mg/L
(2).確定採用的有關參數:
取MLSS=3500mg/L,假定其70%是揮發性的,DO=3.0mg/L,k=0.05,Cs(20)=9.07mg/L
y=0.6mgVSS/mgBOD5,Kd=0.05d-1,qD,20=0.05kgNH3-N/kgMLVSS•d,CS(20)=9.07mg/L,
α=0.90,β=0.94,
剩餘鹼度:100mg/L(以CaCO3),所需鹼度7.14mg鹼度/mgNH3-N氧化;產生鹼度3.0mg鹼度/mgNO3-N還原,硝化安全系數:3。
(3).設計泥齡:
確定硝化速率μN
μN=0.47e0.098(T-15)*N/KN+N*DO/ Ko+DO=0.47*e0.098*(15-15)*30/(100.051*15-1.158+30)*2/(1.3+2)
=0.22d-1
θcm=1/=1/0.22=4.5d,設計泥齡θc=3*4.5=13.5d
為了保證污泥穩定,應選擇泥齡為30d
(4).設計池體體積:
①確定出水中溶解性BOD5的量:
出水中懸浮固體BOD5=1.4*0.68*30*70%=20mg/L
出水中溶解性BOD5的量=30-20=10mg/L
②好氧區容積計算:
V1=y*qv*(So-Se)*θc/MLVSS*(1+Kd*θc)=0.6*30000*(129.4-10)*30/(0.7*3500*(1+0.05*30))=9278m3
水力停留時間t1= V1/ qv =9278/30000=0.31d=7.4h

③脫氮計算:
產生污泥量=y*qv*(So-Se)/(1+Kd*θc)=0.6*30000*(129.4-10)/(1000*(1+0.05*30))=860kg/d
假設污泥中大約含12.4%的氮,這些氮用於細胞合成,
用於合成的氮=0.124*860=106.6kg/d,轉化為:106.6*1000/30000=3.55mg/L
故脫氮量=30-10-3.55=16.45mg/L。
④鹼度計算:
剩餘鹼度=300-7.14*20+3.0*16.45+0.1(129.4-10)=218.5mg/L(以CaCO3)
大於100mg/L,可以滿足pH>7.2
⑤缺氧區容積計算:
qD=qD,20*1.08T-20=0.05*1.0815-20=0.032 kgNH3-N/kgMLVSS•d
V2=qv*△N/qD/MLVSS=30000*16.45/0.032/0.7/3500=6295m3
水力停留時間t2=V2/qv=6295/30000=0.21d=5h
⑥總池容積計算
V=V1+V2=9278+6295=15573m3,t=t1+t2=7.4+5=12.4h
(5).曝氣量計算
①計算需氧氣量
R=(So-Se)qv*/(1-e-kt)-1.42Px+4.6*qv*△N-2.6*qv*NO3-0.56Px
=30000*(129.4-10)/(1-e-kt)/1000-1.42*856.8+4.6*30000*20/1000
-2.6*30000*16.45/1000-0.56*856.8=5049kg/d=211 kg/h
②實際需氧量
Ro』=1.2*R=1.2*211=253.2kg/d
校核:Ro=R*Cs(20)/α/(β*Cs(T)-C)/1.024T-20=253.2*9.07/0.9/(0.94*8.24-3)/1.024 25-20
=477.6kg/h (在400-500之間 符合)
6.溝型尺寸設計及曝氣設備選型
採用卡式氧化溝(兩座並聯):
取有效水深H=3.5m,單溝的寬度b=7.8m,進水量15000 m3/d,
則單溝長=[V/2-0.5π(2b)2 h-2*0.5πb2 h]/4Hb=53m,
單溝好氧區總長度=單溝長*4* V1 /V=126m
單溝厭氧區總長度=單溝長*4* V2 /V=76m
採用四溝道,兩台55kW的立式表曝氣機(單池)
曝氣設備:PSB3250:D=3.25m,P=132kW,n=30r/min,清水充氧量:252kg/h,

7.配水井設計
污水在配水井的停留時間最少不低於3min(不計迴流污泥的量),
設截面中半圓的半徑為r,矩形的寬度為r,長度為2r,設計的有效水深為4.0m
(2*r*r+0.5πr2)*4=30000*3/24/60
r=2.7m
8.其它附屬構築物的設計
工程設計中牆的厚度為250mm;氧化溝體表面設置走道板的寬度為800mm;;倒流牆的設計半徑為3.9m;配水井的進水管道採用的規格為DN900,污泥迴流管道採用的規格為DN500;出水井的設計尺寸為3000mm*1000mm*1000mm,出水堰高為100mm,堰孔直徑為40mm,出水管採用的規格為DN700。
五、輻流式二沉池
1.設計說明
1.1二沉池的類型
二沉池的類型有:平流式二沉池、豎流式二沉池、輻流式二沉池、斜流式二沉池。其中,輻流式二沉池又分為:中進周出式、周進周出式、中進中出式。
1.2選擇輻流式(中進周出)二沉池的原因
由於平流式二沉池佔地面積大;豎流式二沉池多用於小型廢水中絮凝性懸浮固體的分離;斜流式二沉池較多時候,在曝氣池出口污泥濃度高,而且沒有設置專門的排泥設備,容易造成阻塞。因此選擇輻流式二沉池。從出水水質和排泥的方面考慮,理論上是周進周出效果最好。但是,實際上,考慮異重流,是中進周出的效果最好。因此,選擇了選擇輻流式(中進周出)二沉池。
2.設計計算
2.1污泥迴流比:

2.2沉澱部分水面面積:
流量: ;
最大流量(設計流量):
單個池子的設計流量:
污泥負荷q取1.1m3/(m2.h), 池子數n為2 。
沉澱部分水面面積:
2.3校核固體負荷:

因為142<150,符合要求。
2.4池子直徑
池子直徑: 根據選型取池子直徑為35.0m。
2.5沉澱部分的有效水深
沉澱時間t為2.5s 有效水深:
2.6沉澱池總高

2.7校核徑深比:
徑深比為 符合要求。
2.8進水管的設計
單體設計污水流量:
進水管設計流量:
取管徑D=700mm ,流速為
因為,0.697>0.6符合要求,所以進水管直徑為D=700mm。
2.9穩流筒
進水井的流速為0.8m/s ,則過水面積為
過水面積和泥管面積的總和:
由過水面積和泥管面積的總和求出直徑為
筒壁厚為250mm, 取管徑為900mm。
進行校核:過水面積為
流速為 。
筒上有8個小孔 ,孔面積為S2= ,所以 。
二沉池採用的是ZBX型周邊傳動吸泥機,穩流筒的直徑為3880mm。
取穩流筒出流速度為0.1m/s, 則過水面積為
穩流筒下部與池底距離為
所以穩流筒下部與池底距離大於0.2m,即符合要求。
2.10配水井
配水井設計為馬蹄形,在外圍加寬700mm為污泥井。
時間取3分鍾 流量為
取配水井直徑為D=3000mm 則配水井高度
其中,設計水深為7.0m,超高為0.6m。
2.11出水部分單池設計流量:
出水溢流堰設計
(1) 堰上水頭 H=0.05mH2O
(2) 每個三角堰的流量0.783L/s
(3) 三角堰個數 因此取n=223(個)
2.12排泥部分
迴流污泥量為
剩餘污泥量為
因為剩餘污泥量小,所以忽略不計,即總污泥量為0.188m3/s。
取流速為0.8(m/s) 直徑為 取直徑為D=400mm
校核:流速為 0.6<0.75<0.9 因此符合要求。
綜上, 二沉池採用的是ZBX型周邊傳動吸泥機 池徑為35000mm.

希望能夠幫助你,污水凈化團隊竭誠為你服務!

『叄』 某城市污水處理廠設計 急急急

模板
第一節 設計任務和內容
以一座二級處理的城市污水處理廠為對象,對主要污水處理構築物的工藝尺寸,進行設計計算,確定污水廠的平面布置和高程布置。
完成設計計算說明書和設計圖紙(污水廠平面布置圖和污水廠高程布置圖)。
設計深度一般為方案設計的深度。
第二節 基 本 資 料
1. 污水水量、水質
污水處理水量16萬m3/d;
污水水質為:CODcr450mg/L,BOD5200 mg/L, SS250 mg/L,氨氮25mg/L。
2. 處理要求
污水經二級處理後應符合以下具體要求:
CODcr≤70mg/L, BOD5≤20mg/L, SS ≤30mg/L,氨氮≤12mg/L。
3. 處理工藝流程
原水→格柵→泵→沉砂池→初沉池→曝氣池→二沉池→出水
4. 氣象與水文資料
風向:多年主導風向為北北東風;
氣溫:最冷月平均為-3.5℃;
最熱月平均為32.5℃;
極端氣溫,最高為41.9℃,最低為-17.6℃,最大凍土深度:0.18m;
水文:降水量,多年平均為每年728mm;
蒸發量,多年平均為每年1210mm;
地下水水位,地面下5-6m。
5. 廠區地形
污水廠選址區域海拔標高在64-66米之間,平均地面標高為64.5米。平均地面坡度為0.3-0.5‰,地勢為西北高,東南低。
廠區征地面積為東西長380米,南北長280-300米。
污水進水管相對標高為-2.50米。

第二章 處理工藝流程說明
根據污水處理量、原污水水質、處理要求,污水廠主要去除CODcr,BOD5和SS,對氨氮也有一定的去除率,選擇以好氧生物處理為主的二級處理工藝流程如下:
原水→格柵→泵→沉砂池→初沉池→曝氣池→二沉池→出水
第一節 格 柵
格柵是用以去除廢水中較大的懸浮物,漂浮物,纖維物質和固體顆粒物質,以保證後續處理單元的正常運行,減輕後續處理單元的處理負荷,防止阻塞排泥管道和設備。
按形狀分為平面格柵和曲面格柵兩種。按格柵柵條的凈間隙,可分為粗格柵,中格柵和細格柵。按清楂方式可分為人工清楂和機械清楂兩種。
本設計選用間隙b=20mm的中格柵,機械式平面清渣。
第二節 沉 砂 池
沉砂池的作用是從廢水中分離密度比較大的無機顆粒,例如:直徑為0.1mm,密度為2.5g/cm3以上的砂粒。目前常用沉砂池,按池型可分為平流式沉砂池,曝氣沉砂池、多爾式沉砂池和鍾式式沉砂池[1]。
本設計選用停留時間t=250s的曝氣沉砂池。因為平流式沉砂池的主要缺點是沉砂中約夾有15%的有機物,使沉砂的後續處理難度加大,而曝氣池就能克服這一缺點。曝氣池的優點還有通過調節曝氣量可以控制污水旋流速度,使除砂效率較穩定,受流量變化的影響較小,同時還起預曝氣的作用,但其構造比平流式沉砂池復雜。
第三節 初 沉 池
初次沉澱池的作用是對污水中的以無機物為主的相對密度大的固體懸浮物進行沉澱分離。污水中的懸浮顆粒以重力為主,在初沉池中主要進行自由沉澱和絮凝沉澱。污水處理廠用沉澱池,按水流方向分平流式,輻流式,豎流式,斜流式四種。每種沉澱池都分為五個區,即進水區,沉澱區,緩沖區,污泥區和出水區。
此處選擇表面負荷q=1.8的平流式沉澱池,其優點是沉澱效果好,對沖擊負荷和溫度變化的適應能力強,布置緊湊,排泥過程穩定,施工簡易,已趨定型。缺點是配水不易均勻,如果採用多斗排泥時每個泥斗需單獨設排泥管各自排泥,操作量大,因此多採用新型排泥方法與機械。
第四節 曝 氣 池
曝氣池,屬於好氧生物處理單元,對污水中的(膠體和懸浮的)有機物作進一步的處理,COD、BOD、NH3-N的去除率一般為85%、90%、65%左右,可使出水達到二級要求。
曝氣池按流動形態分主要有推流式,完全混合式和循環混合式三種。按平面形狀方面可分為長方形廊道形,圓形,方形以及環狀跑道形等四種。按採用的曝氣方法可分為鼓風曝氣池,機械曝氣池以及兩者混合使用的機械-鼓風曝氣池。
此處選用傳統活性污泥法,污泥負荷取0.2 kgBOD5/(kgMLSS•d),推流式廊道、鼓風曝氣、形狀為長方形。
第五節 二 沉 池
二沉池有別於其他沉澱池,首先在作用上有其特點。它除了進行泥水分離外,還進行污泥濃縮,並由於水量、水質的變化,還要暫時貯存污泥。由於二次沉澱池需要完成污泥濃縮的作用,所需要的池面積大於只進行泥水分離所需要的池面積。
其次,進入二次沉澱池的活性污泥混合液在性質上有其特點。活性污泥混合液的濃度高,具有絮凝性能,屬於成層沉澱。
活性污泥的另一特點是質輕,易被出水帶走,並容易產生二次流和異重流現象,使實際的過水斷面遠遠小於設計的過水斷面。
池型說明:分為平流、斜管、輻流、豎流四類,本設計選用中心進水周邊出水輻流式二沉池。
第六節 消 毒 池
城市污水經一級處理或二級處理後,水質改善,細菌含量也大幅度減少,但其絕對值仍很可觀,並有存在病原菌的可能,因此污水排放水體前應進行消毒,特別是醫院、生物製品所及屠宰場等有致病菌污染的污水,更應嚴格消毒。
消毒設備應按連續工作設置,消毒設備的工作時間,消毒劑投加量,可根據所排放水體的衛生要求及季節條件掌握。
目前最常用的污水消毒劑是液氯。其優點是效果可靠,投配設備簡單,投量准確,價格便宜。
第三章 污水處理構築物設計計算
第一節 格 柵
1. 設計參數
處理設施數量:兩組
設計流量為: ,
最大設計流量Qmax = KzQ
柵前水深h=1.0 m
過柵流速v=0.9m/s
柵條間隙b=0.02m
安裝傾角α= 60°
1. 柵條的間隙數n
h=1.0 m ,v=0.9m/s, b=0.02m, α= 60°,n=2,
最大設計流量Qmax = KzQ =1.2×1.85/2 =1.11 m3/s

2. 柵槽寬度B
設柵條寬度S=0.01
B=(n-1)S+bn=(72-1)×0.01+0.02×72=2.15m
3. 進水渠道漸寬部分長度l1
設進水渠寬 ,其漸寬部分展開角度為 ,

4. 柵槽與出水渠道連接處的漸寬部分長度l2

5. 通過格柵的水頭損失h1
設柵條斷面為銳邊矩形斷面

6. 柵後槽總高度H
設柵前渠道的超高 ,
7. 柵槽總長度L

8. 每日柵渣量W
在格柵間隙20mm 的情況下,設柵渣量為每1000m3污水產生0.07m3.
,宜用機械清渣。

格柵計算簡圖如下:

第二節 曝氣沉砂池
1. 參數的確定
處理設施數量:兩組,n=2
設計流量為:

水力停留時間t=240s=250s ,水平流速v=0.1m/s,有效水深
含砂量X=0.05L/ =50 /1000000 ,
2. 池子總容積:
3. 水流斷面積:
4. 池長:
5. 池寬: 池子總寬度為 , 池子分兩格n=2,
每格池子寬度b=
6. 池高:池底坡度為0.2,超高 ,集砂槽高度 ,集砂槽寬度 ,池底斜面高度 ,全池總高:

7. 每格沉砂池實際進水斷面面積:

8. 每格沉砂池沉砂斗容量:
9. 每格沉砂池實際沉砂量:每兩天排一次砂,則:

10. 每小時所需空氣量:取曝氣管浸水深度為3.2m,查表得單位池長所需空氣量為28 ,故q=28×24×(1+15%)×2=1545.6 /h,式中(1+15%)為考慮到進出口條件而增長的池長。

第三節 初 沉 池
1. 參數確定:
表面負荷 =1.8 ,
沉澱時間t=2.1h,
SS去除率η=55%,
設計流量
2. 沉澱池各部尺寸:
總有效沉澱面積 ,
採用四(8)座沉澱池, 每池處理量Q= ,
每池表面積A= ,
沉澱池有效水深 ,
每個池寬b取12m
池長:L=
長寬比 ,合格
3. 污泥區尺寸:
每日產生的污泥量 每日每座沉澱池的污泥量 ,
污泥斗容積:
式中污泥鬥上口 ,污泥斗下底面積 ㎡,污泥斗為方斗,α=60°,故 ,則每個污泥斗的容積為
4. 沉澱池總高度
採用機械刮泥,緩沖層高 (含刮泥板),平底,故
0.3+3.78+0.6+10.4=15.08m
5. 沉澱池總長度
L=0.5+0.3+83.3=84.1m
式中 0.5為流入口至擋板距離,0.3為流出口至擋板的距離。
6. 放空管徑
放空時間設為T=6h,則放空管 取d=360mm, 式中H為平均水深
7. 進出水措施
進水端採用穿孔花牆配水,出水端採用三角溢流堰

第四節 曝 氣 池
一、 設計數據:
污泥負荷Ns = 0.30kgBOD5/(kgMLSS•d)
設計流量Q=16×104m3/d=1.86m3/s
二、 計算:
1. 污水處理程度的計算:
原污水的BOD值為200mg/L, 經初次沉澱池處理後BOD5按降低25%考慮,則進入曝氣池的污水,其BOD5值(Sa)為: 。
計算去除率,對此,首先按下式計算處理水中非溶解性BOD5值 ,式中b為微生物自身氧化率,取0.09,Xa活性微生物在處理水中所佔的比例,取0.4,Ce為處理水中懸浮固體濃度。
處理水中溶解性BOD5值為Se=20-5=15mg/L,
去除率
2. BOD-污泥負荷率的確定
擬定採用的BOD-污泥負荷率為0.3kgBOD5/(kgMLSS•d),但為穩妥需加以校核。
,式中
代入各值,計算得 ,
計算結果確定, 值取0.3是適宜的。
3. 確定混合液污泥濃度X
由基本資料得SVI值為120-150 mg/L,取120mg/L
計算確定混合液污泥濃度X,對此r=1.2,R=0.5,代入各值得:

4. 確定曝氣池容積計算
曝氣池容積按下式計算:
5. 確定曝氣池各部位尺寸
設4組曝氣池,每組容積為 ,
池深取4m,則每組曝氣池的面積 ㎡,
池寬取4.5m,, 介於1-2之間,符合規定。
池長: ,符合規定。
設五廊道式曝氣池,廊道長: ,
取超高0.5m,則,池總高度H=4+0.5=4.5m
在曝氣池面對初沉池和二沉池的一側各設橫向配水渠道,並在1,2和3,4號沉澱池之間設置縱向中間配水渠道與橫向配水渠道相連接。在兩側橫向配水渠道上設進水口,每組曝氣池共有5個進水口。
6. 曝氣系統的設計與計算(本設計採用鼓風曝氣系統)
1) 平均時需氧量的計算
由公式: 取 , , 代入各值,得:

2) 最大時需氧量的計算
查表得K=1.4,代入各值,得:

3) 每日去除的BOD5值

4) 去除每千克BOD的需氧量

5) 最大時需氧量與平均時需氧量之比

7. 供氣量的計算
採用網狀膜型中微孔空氣擴散器,敷設於距池底0.2m處,淹沒水深3.8m,
計算污水溫度為30°C,
查表得水中溶解氧飽和度:
1) 空氣擴散器出口處的絕對壓力 按下式計算,即:

2) 空氣離開曝氣池面時,氧的百分比按下式計算,即:
式中EA是空氣擴散器的氧轉移效率,對網狀膜型中微孔空氣擴散器,取值12%。
3) 曝氣池混合液中平均氧飽和度(按最不利的溫度30°C考慮)按下式計算,即:

4) 換算為在20°C條件下,脫氧清水的充氧量,按下式計算,即:
取值α=0.82,β=0.95,C=2.0,ρ=1.0
代入各值,得:
相應的最大時需氧量為:

5) 曝氣池平均時供氣量,按下式計算,即:

6) 曝氣池最大時供氣量:
7) 去除每kgBOD5的供氣量:
8) 每立方米污水的供氣量:
9) 本系統的空氣總量:除採用鼓風曝氣外,本系統還採用空氣在迴流污泥井提升污泥,空氣量按迴流污泥量的6倍考慮,污泥迴流比R取值60%,這樣,提升迴流污泥所需空氣量為:
總需氣量:36525+32000=68525
8. 空氣管系統計算
在相鄰的2個廊道的隔牆上設1根干管,共10根干管。每根干管上設5對配氣豎管,每根干管上共10條配氣豎管。全曝氣池共設100條配氣豎管。每根豎管的供氣量為: ,曝氣池的平面面積為:66.6×4.5×5×4=5994㎡。每個空氣擴散器的服務面積按0.49㎡計,則所需空氣擴散器的總數為: ,為安全計,本設計採用12300個空氣擴散器,每個豎管上安設的空氣擴散器的數目為: 個,每個空氣擴散器的配氣量為: 。
空氣管道系統的總壓力損失估算為:3kPa。網狀膜空氣擴散器的壓力損失為5.88kPa,總壓力損失為:5.88+3=8.88kPa。為安全計,設計取值10kPa。
9. 空壓機的選定
空氣擴散裝置安曝氣池池底0.2m處,因此,空壓機所需壓力為:P=(4-0.2+1)×9.8=47kPa
空壓機供氣量,最大時:36525+32000=68525
平均時:30186+32000=62186
根據所需壓力及空氣量,決定採用LG80型空壓機15台,該型空壓機風壓50kPa,風量80 。正常條件下,13台工作,2台備用;高負荷時14台工作,1台備用。

第五節 二 沉 池
二沉池的池型是中心進水周邊出水的輻流式沉澱池,其剖面圖如下:

一、 參數的確定:
表面水力負荷q=1.2m3/(㎡•h),
二沉池個數n=4,
水力停留時間T=2.5h
二、 主要尺寸計算:
1. 池總表面積
2. 單池面積:
3. 池直徑:
4. 沉澱部分有效水深
5. 沉澱部分有效容積: V=
6. 沉澱池底坡落差: 取池底底坡 i=0.05,則:

7. 沉澱池周邊水深(有效)水深:
,滿足規范要求6—12之間,
式中 為緩沖層高度,取0.5m;
為刮泥板高度,取0.5m
8. 沉澱池總高度: ,
式中 為沉澱池超高,取0.3m
為沉澱池中心斗高度,取1.73m。
三、 每池產生的污泥量
估計經過曝氣池後污泥的SS去除率能達到80%,採用機械刮泥,所以污泥在斗內貯存時間約2h,並考慮到曝池迴流比取最大值80%,則:

四、 貯泥斗貯泥量計算
泥斗容積用幾何公式計算:
,
式中泥斗高

池底可貯存污泥的體積為:

共可貯存污泥的體積
>57.6 ,合要求。
五、 中心進水管的計算
單池設計流量: ,
中心進水管設計流量:

選用管徑 ,
六、 進出水配水設施
進水採用進水管,進水豎井,穩流筒等設施;出水採用環形集水槽,以及出水溢流三角堰。
第六節 污泥處理
一、污泥處理工藝
典型的污泥處理工藝流程包括四個階段。第一階段為污泥濃縮,主要目的是使污泥初步減容,縮小後續處理構築物的容積或設備容量,第二階段為污泥消化,使污泥中的有機物分解,使污泥趨於穩定;第三階段為污泥脫水,使污泥進一步減容,便於運輸;第四階段為污泥處置,採用某種適宜的途徑,將最終的污泥予以消化處置。以上各階段產生上清液或濾液其中含有大量的污泥物質,因而應送回污水處理系統中繼續處理。

以上是典型的污泥址理工藝流程。但由於各地的條件不同,也可採用一些簡化流程。
當污泥果用自然干化法脫水時,可果用以下工藝流程

二、污泥濃縮池
污泥濃縮主要有重力濃縮,氣浮濃縮和離心濃縮三種工藝形式。國內目前以重力濃縮為主,但隨著氧化溝、A2/0 等污在處理新工藝的不斷增多,氣浮濃縮和離心濃縮將會有較大的發展。在此選用重力濃縮。
1. 設計參數:
二沉池剩餘污泥量:691.2m3/d
含水率99.2%,濃度7875mg/l
濃縮後含水率96%濃度3937mg/l
二座濃縮池固體通量Nwg=55Kg
2. 設計計算:
(1) 每座濃縮池面積
設計泥量Qw=
A=
(2) 濃縮池直徑
D= =
(3) 濃縮池工作部分高度
取污泥濃縮時間T=14h。則濃縮池工作部分高度
h1= =
(4) 濃縮池高度
設池超高0.5m。緩沖層高0.3m
濃縮池總高:
H=h1+h2+h3=2.3+0.5+0.3=3.1m
(5) 濃縮後污泥總體積:
V2=

第四章 污水廠總體布置
一、廠址選擇

在城鎮總體規劃中,污水廠的位置范圍已有規定。但是,在污水廠的具體設計時,對具體廠址的選擇,仍須進行深入的調查研究和詳盡的技術經濟比較。其一般原則如下:
(1)廠址與規劃居住區或公共建築群的衛生防護距離應根據當地具體情況,與有關環保部門協商確定,一般不小於300m 。
(2) 廠址應在城鎮集中供在水源的下游,至少500m。
(3) 廠址應盡可能少佔農田或不佔良田.便於農田灌溉和消納污泥。
(4) 廠址應盡可能設在城鎮和工廠夏季主導風向的下方。
(5) 廠址應設在地形有適當坡度的城鎮下游地區,使污水有自流的可能,以節約動力消耗。

二、平面布置及總平面圖
污水處理廠的平面布置包括處理構築物、辦公、化驗且其他輔助建築物,以及各種管道、道路、綠化等的布置。根據處理廠的規模大小,採用l:200-1:50比例尺的地形圖繪制總平面圖,管道布置可單獨繪制。
平面布置的一般原則如下:
(1)處理構築物的布置應緊湊,節約用地且便於管理。
(2) 處理構築物應盡可能地按流程的順序布置,以避免管線迂迴,同時應充分利用地型,以減少士方量。
(3) 經常有人工作的建築物如辦公、化驗等用房應布置在夏季主風向的上風一方,在北方地區,並應考慮朝陽。
(4 )在布置總圖時,應考慮安裝充分的綠化地帶。
(5) 總圖布置應考慮遠近期結合,有條件時,可按遠景規劃水量布置,將處理構築物分為若干係列,分期建設。遠景設施的安排應在設計中仔細考慮,除了滿足遠景處理能力的需要而增加的處理池以外,還應為改進出水水質的設施安排場址。
(6) 構築物之間的距離應考慮敷設管渠的位置,運轉管理的需要和施工的要求,一般採用5-10m.
(7) 污泥處理構築物應恩可能布置成單獨的組合,以策安全,並方便管理。污泥消化池應距初次沉澱池較近,以縮短污泥管線,但消化池與其他構築物之間的距離不應小於20m。貯氣罐與其他構築物的間距則應根據容量大小按有關規定辦理。

1、水廠面積為380m*280m,
平面圖採用1:1000比例。所有構築物應在廠區的范圍內。

三、高程布置
在整個污水處理過程中,應盡可能使污水和污泥為重力流,但在多數情況下,往往須抽升。高程布置的一般規定如下:
(1)為了保證污水在各構築物之間能順利自流,必須精確計算各構築物之間的水頭損失,包括沿程損失、局部損失及構築物本身的水頭損失。此外,還應考慮污水廠擴建時預留的儲備水頭。
(2) 進行水力計算時,應選擇距離最長,損失最大的流程,井按最大設計流量計算。當有二個以上並聯運行的構築物時,應考慮某構築物發生故障時,其餘構築物須負擔全部流量的情況。計算時還須考慮管內淤積,阻力增大的可能。因此,必須固有充分的餘地,以防止水頭不夠而發生涌水現象。
(3) 污水廠的出水管渠高程,須不受水體洪水頂托,並能自由進行農田灌溉。
(4)各處理構築物的水頭損失(包括進出水渠的水頭損失) .

『肆』 污水處理設計原則是什麼

城市污水處理廠的設計原則

1. 貫徹執行國家關於環境保護的政策,符合國家的有關法規、規范及標准。

2. 從城市的實際情況出發,在城市總體規劃的指導下,使工程建設與城市的發展相協調,既保護環境,又最大程度地發揮工程效益。

3. 根據設計進水水質和出廠水質要求,所選污水處理工藝力求技術先進、成熟、處理效果好、運行穩妥可靠、高效節能、經濟合理、確保污水處理效果,減少工程投資及日常運行費用。

4. 妥善處理和處置污水處理過程中產生的柵渣、沉砂和污泥,避免造成二次污染。

5. 為確保工程的可靠性及有效性,提高自動化水平,降低運行費用,減少日常維護檢修工作量,改善工人操作條件,本工程中的關鍵設備擬從國外引進。其它設備和器材則採用合資企業或國內名牌產品。

6. 採用現代化技術手段,實現自動化控制和管理,做到技術可靠、經濟合理。

7. 為保證污水處理系統正常運轉,供電系統需有較高的可靠性,採用雙迴路電源,且污水廠運行設備有足夠的備用率。

8. 在污水廠征地范圍內,廠區總平面布置力求在便於施工、便於安裝和便於維修的前提下,使各處理構築物盡量集中,節約用地,擴大綠化面積,並留有發展餘地。使廠區環境和周圍環境協調一致。

9. 豎向設計力求減少廠區挖、填土方量和節省污水提升費用。

10. 廠區建築風格力求統一,簡潔明快,美觀大方,並與廠區周圍景觀相協調。

11. 積極創造一個良好的生產和生活環境,把污水處理廠設計成為現代化的園林式工廠。

『伍』 工廠里的污水怎麼處理呀

第一步:工廠污水隔渣攔污處理
工業污水中一般都含有少量的固體污染物,即使生產過程中不含有固體雜質,也可能會有操作人員掉落的防護資料工具掉落到污水中(如口罩、手套、塑料袋以及管道中可能掉落的泥沙和樹葉等),通過隔渣攔截後將其去除,防止堵塞後續處理水池和設備等。
第二步:工廠污水隔油及調節池處理
工廠排放污水一般都是間歇排放,有些是按照生產班次排放,但有的工廠污水集中在幾小時甚至在幾分鍾內大量排出;因此,須根據污水的排放規律設計合理的調節池,以應對污水的不定時排放;這是工廠污水能夠正常處理的前提。
第三步:工廠污水的中和處理
工廠所排污水,大部分廢水pH值都是波動的,含有各種酸鹼等;即使生產車間未加入酸鹼,污水在排放過程中自身水解也會導致廢水的pH值下降;這往往會影響污水站的加葯處理和生化處理效果。因此為確保工廠污水處理系統穩定運行,建議工廠污水處理時,應建設完善的自動在線中和系統。
第四步:工廠污水的絮凝反應沉澱或氣浮處理
工廠排放的污染物一般含有顆粒固體、膠體、重金屬物質、溶解性污染物等,其中前三種污染物可通過加葯絮凝去除,絮凝加葯方法一般見效快、效果好(缺點為有固體廢棄物產生);對於中小型工廠,建議採用此方法進一步將廢水中污染物濃度降低。
絮凝反應產生的絮體污染物,建議配套採用沉澱或氣浮工藝從水中分離出來。
第五步:工廠污水的生化反應處理
通過上述步驟去除廢水中各種固形物和膠體後,殘留的污染物大部分為溶解性的有機污染物,溶解性的有機污染物可採用生化工藝將廢水中有機物分解為甲烷、二氧化碳等氣體,並從水中分離溢出而得以去除,從而實現污水達標排放。
第六步:工廠污水的深度處理
工廠污水經上述幾個步驟處理後,對於排放標准要求不高的廢水 可以達標排放;對於要求高的地方,廢水還需進一步深度處理後才能排放或回收利用(回用),常用的工藝有催化氧化污水處理工藝,化學氧化污水處理工藝,膜過濾和膜分離污水處理工藝,污水的消毒處理工藝等;具體要根據工廠污水處理的程度選擇適宜的深度處理方法。

『陸』 我想做一篇關於酒廠 廢水治理方案設計的綜述!

白酒廢水調研報告

一、 概述
白酒是一種含有較高酒精濃度的無色透明的飲料酒,是利用澱粉質原料和糖質原料經過發酵、蒸餾而製成,根據原料和工藝的不同,具有各自獨特的風味,近年來,隨著人民生活水平的提高,白酒的需求量增大,全國各大酒廠紛紛擴建,增加產量,以滿足市場的需求,白酒生產過程中排出大量有機廢水,如直接排放將對環境造成污染。
二、 白酒生產工藝
我國白酒生產大多數以高梁、小麥、玉米等作為原輔料,經過四道基本工序釀制而成,即原料的預處理、糖化發酵、蒸餾出酒、裝瓶。白酒的生產工藝有固態發酵法、半固態發酵法和液態發酵法,下圖是典型的固態發酵法:

三、 廢水的來源
白酒廢水是指從生產到貯存陳化過程中所產生的工業廢水,各個廠生產工藝有所不同,但都是屬於間歇式排放,廢水主要來自以下幾個方面:釀造車間的冷卻水、蒸餾操作工具的沖洗水、蒸餾鍋底水、蒸餾工段地面沖洗水以及發酵池滲瀝水、地下酒庫滲漏水、發酵池盲溝水、灌裝車間酒瓶清洗水、「下沙」和「糙沙」工藝工程中原料沖洗、浸泡排放水等。
四、 白酒廢水的水質水量
白酒廢水按污染程度可分為兩部分,一部分為高濃度廢水,所含有機物濃度非常高如蒸餾鍋底水、發酵池盲溝水、蒸餾工段地面沖洗水、地下酒庫滲漏水、「下沙」和「糙沙」工藝工程中原料沖洗、浸泡排放水等,其COD高達100000mg/l左右,BOD高達44000 mg/l,pH呈酸性,但這部分廢水量很小,占廢水總量不到5%,其他屬於低濃度廢水,污染物濃度遠遠低於國家排放標准,可直接排放,一般高低濃度廢水分開排放。以下是某酒廠排放的廢水水質表,該廠以高梁為原料釀酒。
釀酒車間及酒庫排放廢水水質
廢水類別 pH COD(g/l) BOD(g/l) TN(g/l) TP(mg/l) SS
(g/l)
冷卻水 7.3~7.9 0.011~0.025
蒸餾鍋底水 3.7~3.8 10~100 5.8~66 0.3~1.1 31.4~664 1.35~31
發酵池盲溝水 4.0~4.8 43~130 21~67 1.0 703 0.2~6.0
蒸餾工段地面沖洗水 4.5~5.8 4~17 1.6~8.1 0.2~1.0 158~597 2.5~6.3
地下酒庫滲水 5.7~6.0 61 31 0.15 0.3 0.4

下沙、糙沙工藝廢水水質
廢水類別 水溫 水色 pH COD(mg/l) BOD(mg/l)
高梁沖洗水 40 紅褐色渾 4.8 1781
高梁浸泡水 33 紅色 3.7 7192 2700
蒸餾鍋底水 80 灰黑色渾 6.5 7809 2665

五、 高濃度白酒廢水常見處理工藝

設計參數一覽表
厭氧反應池 容積負荷:3.0~6.0kgCOD/m3.d,
BOD去除率:80%,
接觸氧化池 容積負荷:1.0~1.5kgBOD5/m3.d,
BOD去除率:95%,
產泥量:0.3~0.5 kg/ kgBOD5

六、 工程實例
常德市武陵酒廠日排放廢水量2000噸,工程設計採取了清污分流制,高濃度廢水採用「厭氧-好氧-物化」三級處理工藝,見下圖:
高濃度廢水匯合後,水質情況如下:COD=17700mg/L,BOD=8900 mg/L,SS=5500 mg/L,pH=3.8~5.0,厭氧採用厭氧流化床反應器,該反應器以砂為載體,有機負荷為15kgCOD/m3.d,COD、BOD去除率為80%,厭氧出水經生物濾池、接觸氧化、氣浮池後,COD降至70.8 mg/L,BOD降至53.4 mg/L,全流程COD、BOD的總去除率分別為99.5%、99.4%,處理效果比較好。

本工程要求處理的酒精廢液,是一種高懸浮物、高濃度的有機廢液,對於這種生產廢液實際工程中有採用全糟處理工藝也有採用半糟處理工藝的成功實例。所謂全糟處理工藝是指生產廢液不經固液分離全部的酒糟都進入厭氧發酵系統。半糟處理工藝是指酒精糟液先經固液分離,粗渣作飼料,剩餘濾液(半糟)進厭氧處理工藝。
全糟處理工藝不產生可回用作飼料的粗渣,但沼氣產量遠高於半糟處理工藝。全糟處理工藝由於節省了固液分離機械設備,具有投資省、運行費用低的優點。但由於全部糟液都厭氧發酵,造成厭氧發酵反應器較大,整個工程佔地面積大。
由於該廠酒精生產原料採用木薯,木薯為原料產生的粗糟回用作飼料原料市場銷路不好,粗糟如果不能及時銷售出去,不但不能給公司帶來效益,而且勢必造成嚴重的二次污染。相反,甲方對沼氣需求量較大(甲方計劃將廢液處理過程中產生的沼氣回用作鍋爐燃料),全糟厭氧工藝產生的所有沼氣都能吸納,從而很大程度上減少了煤的用量,為公司帶來經濟效益。綜合以上分析,本方案選擇全糟厭氧處理工藝。
經過厭氧發酵處理後的廢水有機污染物濃度還較高,可生化性較好,需進一步進行好氧生化處理才能達到《污水綜合排放標准》GB8978-96中一級排放標准。
3.1厭氧工藝選擇
目前在廢水處理工程中,採用的厭氧處理工藝較多,如普通厭氧消化池、厭氧接觸工藝、厭氧生物濾器、上流式厭氧污泥床(UASB)和厭氧折流板反應器等。從容積負荷、去除效率來進行比較分析,目前應用較為廣泛的是UASB反應器。但是,UASB反應器抗懸浮物沖擊性能較差,當廢水中懸浮物含量太高時,顆粒污泥很難形成,而絮狀污泥的沉降性能較差,三相分離器很難保證厭氧污泥的濃度,無法實現UASB反應器高容積負荷的特點。考慮到酒精廢液高懸浮物、高濃度有機物的特點,本方案採用兩級厭氧處理工藝,第一級厭氧工藝採用適應懸浮物濃度高的厭氧接觸工藝。
厭氧接觸工藝出水經過脫氣沉澱後出水再進後續的UASB厭氧反應器進行進一步的有機物降解,使好氧生化段進水有機物濃度更低,減少能耗。
結合本工程的特點,下面對這兩種工藝介紹如下:
厭氧接觸工藝
厭氧接觸工藝是普通消化池改進的一種工藝,它包含消化池、脫氣池、沉澱池三部分。消化池是厭氧接觸工藝的反應主體,酒糟廢液從消化池上部進入池內,經與池中原有的厭氧微生物混合、接觸後,通過厭氧微生物的吸附、吸收和生物降解作用,使廢水中的有機物轉化為甲烷、 二氧化碳為主的氣體(俗稱沼氣)。消化池排出的混合液先經脫氣池脫除未分離干凈的氣體,再進沉澱池進行泥水分離。沉澱池出水進入下一級處理,沉澱池污泥迴流至消化池。
為了保證消化池厭氧微生物與有機物的充分接觸,池內溫度、水質的均勻,同時防止形成浮渣層(形成浮渣層會阻礙沼氣的及時排出),消化池需設攪拌裝置。攪拌方式較多,本方案採用泵加水射器的攪拌方式,主要居於如下考慮。由於酒糟廢液pH較低,僅僅為4~5,而厭氧微生物特別是產甲烷菌對系統內泥水的pH非常敏感,其最佳要求為6.8~7.2,因此為了保證厭氧系統的處理效果,需要對來水pH進行調節,這樣必將消耗大量的葯劑,增加了整個污水處理系統的運行成本,而厭氧系統出水pH相對較高,鹼度含量較大,卻不能得到充分的利用。通過消化池出水迴流,不但能減少鹼的投加量,而且經水射器釋放,還有很好的攪拌作用。
UASB工藝
升流式厭氧污泥床(UASB)反應器是荷蘭學者Lettinga等人於20世紀70年代初開發的。由於這種反應器結構簡單,不用填料,沒有懸浮物堵塞等問題,因此一出現便立即引起了廣大廢水處理工作者的極大興趣,並很快被廣泛應用到工業廢水和生活污水的處理中。UASB反應器在處理各種有機廢水時,反應器內一般情況下均能形成厭氧顆粒污泥,而厭氧顆粒污泥不僅具有良好的沉降性能,而且有較高的比產甲烷活性。由於UASB反應器設有三相分離器,使得反應器內的污泥不易流失,所以反應器內能維持很高的生物量,平均濃度能達到80gSS/L左右。同時,反應器的STR很大,HRT很小,這使反應器有很高的容積負荷率和處理效率以及運行穩定性。
待處理的廢水被引入UASB反應器的底部,向上流過由絮狀或顆粒狀污泥組成的污泥床。隨著污水與污泥相接觸而發生厭氧反應,產生沼氣(氣體是甲烷和二氧化碳)引起污泥床擾動。在污泥床產生的氣體中有一部分附著在污泥顆粒上,自由氣泡和附著在污泥顆粒上的氣泡上升至反應器的頂部。污泥顆粒上升撞擊到脫氣擋板的底部,這引起附著的氣泡釋放;脫氣的污泥顆粒沉澱回到污泥床的表面。自由氣體和從污泥顆粒釋放的氣體被收集在反應器頂部的集氣室內。液體中包含一些剩餘的固體和生物顆粒進入到沉澱室內,剩餘固體和生物顆粒從液體中分離並通過反射板落回到污泥層的上面。分離氣體、固體後的液體繼續上升,最後從出水堰溢流,經集水槽排出。沼氣聚集於三相分離器頂部,通過氣管排出。
高濃度有機生產廢水經過兩級厭氧反應器預處理後,有機物得到大量去除,但出水還含有一定有機污染物,本方案選用好氧系統進行後續處理。
3.2好氧工藝選擇
好氧生化處理工藝主要包含兩種形式:活性污泥法和生物膜法。活性污泥法常用工藝普通活性污泥法、SBR及各類變形工藝如CASS、DAT-IAT等、氧化溝、A/O、A2/O等。生物膜法常用工藝有生物濾池、生物轉盤、生物接觸氧化池和曝氣生物濾池,代表工藝為生物接觸氧化工藝。
下面就本工程的特點對以上幾種工藝進行比選,確定出最適宜的工藝。
普通活性污泥法
普通活性污泥法又稱普曝法,是採用普通曝氣池為主體構築物,對污水進行生化處理的方法。廢水及迴流污泥從曝氣池首端進入,沿池長方向推流式前進,需氧量首端高,末端低,利用好氧微生物對廢水中有機物進行降解,達到凈化廢水的目的。其工藝比較簡單,運行經驗成熟,此工藝對COD,BOD,SS的去除率均可達到預期效果,但該工藝BOD負荷低,抗擊負荷的能力較弱,佔地面積大。
SBR工藝
SBR法是間歇式活性污泥法(Sequence Batch Reactor Activated Sludge Process縮寫為SBR),又稱序批式活性污泥法。其特點是集生化反應池和沉澱池於一體,不需設初沉池和二沉池,亦避免迴流污泥泵房等裝置。基本操作為進水,反應,沉澱,出水等過程組成。從廢水流入開始到出水排泥結束為一個周期。在周期內一切過程都在一個設有曝氣裝置的反應池中依次進行。該法不易產生污泥膨脹,處理構築物簡單,同時對運行參數調整後可有效進行生物脫氮除磷。但由於其運行的周期性,一般要設置多池,池體內有效利用率低,佔地面積較大,運行控制較復雜。
接觸氧化工藝
生物接觸氧化是一種好氧生物膜法工藝,池內設有填料,部分微生物以生物膜的形式固著生長在填料表面,部分則是絮狀懸浮生長於水中。該工藝兼有活性污泥法與生物膜法二者的特點,其優點有:
 容積負荷高,處理時間短;
 生物活性高;
 污泥產量低,無需污泥迴流;
 出水水質好且穩定;
 不存在污泥膨脹問題;
該工藝成熟穩定,佔地面積省,設備國產化,在小規模廢水處理工程中得到了廣泛的應用。但對於水量較大時,存在填料用量大、安裝、維護復雜,填料費用高等不利因數。
各種工藝的綜合比較見下表:
幾種好氧技術或工藝在工業廢水處理應用的比較
序號 工藝或技術 普通活性污泥法 生物接觸氧化法 SBR
1 BOD負荷 低 較高 較低
2 抗沖擊負荷 較差 一般 好
3 抗絲狀膨脹 較差 好 較好
4 投資 大 較大 一般
5 佔地面積 大 較小 小
6 運行控制 一般 簡單 復雜
7 自控要求 簡單 簡單 復雜
8 設備維修 一般 一般 復雜
9 運行費用 較高 一般 一般
綜合比較以上工藝,對於本工程日處理水量3500噸採用SBR工藝較合理。因此,在本方案中,好氧段我們採用SBR工藝對廢水進行處理。
好氧處理系統出水各項污染物指標都有很大程度的降低,基本能夠保證出水達到《污水綜合排放標准》GB8978-96中一級排放標准。考慮到一定沖擊負荷,為了確保出水水質的達標,SBR出水再經絮凝過濾處理後排放,如果SBR出水長期穩定達標,可以超越絮凝過濾裝置,SBR出水直接排放。

『柒』 污水處理方案及措施

污水處理類型很多,首先要分清楚污水是工業的還是生活類的,工業的處理起來比較困難,生活污水么要麼進污水處理廠處理,要麼用小型分散污水處理方案。
工業廢水處理方案一般是根據水質檢測,根據污染物濃度和不同行業的環保排版標准進行工藝方案設計。
生活污水處理方案一般採用的生物處理工藝,前端是採用預處理。目前國內主要標準是根據城鎮污水處理廠標准,當然不少農村生活污水處理項目依據農村生活污水處理設施水污染物排放標准來選擇工藝。

『捌』 印染廢水的處理方案如何設計

福建省某某印染有限公司印染廢水處理方案設計
1 工程概況
PU革是近幾年迅速發展的一種產品,它種類繁多,物美價廉,廣泛應用於汽車、鞋革、箱包、沙發、裝飾及服裝生產工業,是皮革的優良代用品,而革基布則是PU革的基礎材料,市場需求量極大,某縣縣現有織布廠20多家,織布機1500多台,年產革基布9000萬米,以往某縣縣各織布廠生產的革基坯布未經漂染加工直接銷往外地,產品附加值較低。福建省某某印染有限公司在某縣縣埔頭工業區建設年產PU革基布3000萬米這一項目,可成為某縣縣當地的漂染基地,既可增加某縣縣稅費收入,又可解決部分剩餘勞動力。
紡織印染行業是工業廢水排放大戶,據估算,全國每天排放的廢水量約(3-4)×106m3,且廢水中有機物濃度高,成分復雜,色度深,pH變化大,水質水量變化大,屬較難處理工業廢水。據福建省某某印染有限公司提供的數據,該項目的建成排放廢水量800噸/日。
根據《建設項目管理條例》和《環境保護法》之規定,環保設施的建設應與主體工程「三同時」。受福建省某某印染有限公司委託,我們提出了該項目的廢水處理方案,按本方案進行建設後,可確保廢水的達標排放,能極大地減輕該項目外排廢水對某縣的不利影響。
2 方案設計依據
2.1 福建省某某印染有限公司提供的水質參數
2.2 《紡織染整工業水污染物排放標准》GB4287-92
2.3 《室外排水設計規范》GBJ14-87
2.4 《建築給排水設計規范》GBJ15-87
2.5 《福建省環境保護條例》
2.6 其它同類企業廢水處理設施竣工驗收監測數據
3 方案設計原則
3.1 可行性原則。在工程設計中,在確保工藝可行的同時,兼顧經濟上許可的能力(總投資費用省、運行費用低等),考慮工藝上的可行性與經濟上的可行性協調統一。
3.2 可靠性原則。通過對印染行業目前廢水處理情況的調研,結合多年從事廢水處理的經驗,同時借鑒目前印染廢水處理的成功個例,並與當前先進的廢水處理設備相融合,制定合理、成熟、可靠的廢水處理工藝,確保廢水處理系統能長期、穩定、可靠地運行。
3.3 先進性原則,採用當前廢水處理的先進工藝和設備。
3.4 操作管理方便,技術簡單實用,提高操作管理水平,實現科學現代化的管理。
3.5 避免二次污染,在治理廢水的同時,避免污泥和噪音產生二次污染。
4 廢水的水質水量
福建省某某印染有限公司採用的原料為純棉或滌棉坯布,染料有直接和分散染料,助劑有燒鹼、碳酸鈉、雙氧水、表面活性劑、工業食鹽、起毛劑等。
廢水為連續排放,但水量、水質變化大,無固定規律,根據福建省某某印染有限公司提供並結合同類型企業的資料,其廢水水質參數如下:
廢水量 800噸/天
CODcr 1767mg/l
BOD5 868mg/l
SS 121mg/l
pH 9~12
NH3-N 15.1mg/l
S2- 2.3mg/l
色度 1000倍
5 廢水處理後排放標准
根據《紡織染整工業水污染物排放標准》GB4287-92中之規定:
CODcr 100mg/l
BOD5 25mg/l
色度 40倍(稀釋倍數)
pH 6~9
SS 70mg/l
氨氮 15mg/l
硫化物 1.0mg/l
六價鉻 0.5mg/l
銅 0.5mg/l
苯胺類 1.0mg/l
二氧化氯 0.5mg/l
最高允許排水量 2.5m3/百米布(幅寬 914mm)

6 廢水處理工藝
6.1 紡織染整行業廢水的特點
紡織染整行業的廢水主要來自退漿、煮煉、漂白、染色和整理工段,各工段廢水特點如下:
6.1.1 退漿廢水
退漿是利用化學葯劑去除紡織物上的雜質和漿料,便於下道工序的加工,此部分廢水所含雜質纖維較多。以往由於紡織廠用澱粉為原料,故廢水中BOD5濃度很高,是整個印染廢水中BOD5的主要來源,使廢水中B/C比較高,往往大於0.3,適宜生化,但隨著科技的進步,印染廠所用漿料逐步被CAM/PVA所代替,從而使廢水中BOD5下降,CODcr升高,廢水的可生化性降低。
6.1.2 煮煉
煮煉工序是為了去除織物所含蠟質、果膠、油劑和機油等雜質,使用的化學葯劑以燒鹼和表面活性劑為主,此部分廢水量大,鹼性強,CODcr、BOD5高,是印染廢水中主要的有機污染源。
6.1.3 漂白廢水
漂白主要是利用氧原子氧化織物中的著色基團,達到織物增白的目的,漂白廢水中一般有機物含量較低,使用的漂白劑多為雙氧水。
6.1.4 染色廢水
染色工藝是本項目的支柱工藝,在此過程中,使用直接、分散等染料和各種助劑,從而使染色工藝成為復雜工藝,也使染色廢水水質呈現出復雜多樣性。一般而言,染色廢水鹼性強,色澤深,對人體器官刺激大,BOD5、CODcr濃度高,廢水中所含各種染料、表面活性劑和各種助劑是印染廢水中最大的有機物污染源。
6.2 目前印染廢水處理現狀
印染廢水的處理以生化法為主,並常與物理、化學法串聯,方能取得較好的效果,目前對印染廢水處理常見的處理方法有:
6.2.1 完全混合式活性污染法
此法工藝較成熟,在印染廢水治理中有一定的歷史,目前應用於紡織系統中大多數工廠。某市印染廠廢水治理即採用此法。此法主要設施有調節池、曝氣池和沉澱池等。
調節池主要用以調節各污染源排放廢水的水質水量,防止對曝氣池形成沖擊,避免細菌死亡。因此,廢水在調節池停留時間越長越好,但也要考慮建造費用,故一般根據企業的生產周期和佔地條件來設計調節池。
曝氣池主要作用是對泥水混合液充氧,保證活性污泥在分解有機物時所需的氧量,同時使活性污泥和廢水充分混合。一般對曝氣池的技術要求是污泥負荷常為0.3-0.4kgBOD5/kg.MLSS.d曝氣時間約為4-6小時,污泥濃度一般在3-4g/l,但隨著化纖織物的比例不斷增大和水處理技術的提高,這些技術要求有所改變。
沉澱池主要是使泥水分離,並在沉澱時進一步降解有機物,經過泥水分離後水直接排放,污泥一部分迴流進入曝氣池,一部分作剩餘污泥排放。
活性污泥法的特點是污水與生物污泥的接觸較均勻持久,池水濃度分布較均勻,水溫控制幅度較寬,在布水操作上也比較簡單,處理效率較高,一般BOD5去除率可達95%以上,CODcr去除率在60%左右。但該法管理較復雜,易發生污泥膨脹及上翻,且佔地面積較大。
6.2.2 接觸氧化法
接觸氧化法是近年來逐步廣泛應用的污水處理技術。上海紡織系統中針織和印染廠大多採用的是塔式濾池(接觸氧化法的一種)。塔式濾池的結構是塔加填料,塔的作用是充氧和安放填料,塔的高度是根據充氧要求和污水與填料上生物膜接觸時間來設計,一般需要2.5-4小時,容積負荷在2-3kgBOD5/m3,填料過去使用表面粗糙的固體物使生物膜能依附其上,隨著塑料工業的發展,目前採用了蜂窩填料和軟性填料作生物膜支撐物,取得較好效果。
塔式濾池特點是運行管理方便,處理時間短,佔地面積小,但有機物去除率相對低此,一般CODcr去除率在45-60%,BOD5去除率在70-90%,色度去除率在30-50%。
6.2.3 物理化學法
隨著織物中化纖成份增多和化學助劑漿料的使用,印染廢水中BOD5與CODcr比值發生了變化,廢水的可生化性變差,為達到較好的處理效果,紡織行業開始採用物理化學法(臭氧混凝沉澱和氣浮法等)處理印染廢水。物理化學法常用混凝劑有硫酸鋁、硫酸亞鐵、三氯化鐵、鹼式氯化鋁、高分子混凝劑等。一般物理化學法用於二級處理,也有些工廠如上海第二絲綢印染廠單用物理化學法處理印染廢水。實踐證明,混凝氣浮是一種較為合適的物化處理方法,因為印染廢水中含有大量的污染物質如纖維素、漿料等,呈懸浮狀態和膠體狀態,且有些染料如分散、硫化、還原染料及塗料與混凝劑特別是鋁鹽混凝劑產生的絮凝物比重較小,適合採用氣浮法處理。
其它化學方法,如臭氧作為氧化劑脫色效果很好,但是耗電量大,處理成本高,不易推廣。同樣,電解法也存在耗電量大,鋼材用量大,且運轉管理較復雜的問題。
6. 2.4 A/O法
(1)有A1/O法,即缺氧/好氧生物脫氮工藝,是英文Anoxic/Oxic的縮寫,它的主要功能是去除有機物和脫氮,一般對BOD5和SS的總去除率為90-95%,總氮的去除率為70%以上。
(2)有A2/O法,即厭氧——好氧除磷工藝,是英文Anaerobic-Oxic的縮寫,其主要功能是去除有機物和除磷,一般對BOD5和SS和去除率為95%,磷的去除率為70%以上。
(3)A2/O法,即厭氧——缺氧——好氧生物脫氮除磷工藝,是英文Anaerobic-Anoxic-Oxic的縮寫,其功能是去除有機物和除磷脫氮。
6.2.4 其他方法
有A/B法、水解——好氧生物處理工藝等,是較新的處理工藝,也有應用於印染廢水處理,本文不再一一贅述。
6.3 本方案採用的印染廢水的處理工藝
6.3.1 工藝流程:
經綜合比較分析,並結合多年從事印染廢水處理的經驗,以經濟和可行為原則,決定採用如下處理工藝:
.3.2 工藝流程簡述
濃鹼性廢水先經過格柵處理後用於水膜除塵器除塵,經消煙除塵後,可降低PH值,使系統不必加酸調整PH,並可去除約30%的CODcr,使生化系統負荷降低,以節省運行費用,保證了生化處理的PH條件。除塵水沉澱後與其它生產廢水一並經粗細格柵去除較粗雜質後,進入調節池,在調節池內設置預曝氣系統,可均勻水質並防止雜質沉澱,還可以調蓄水量和在一定程度上脫除廢水中硫化物。調節池的水用泵提升至反應池,經加葯反應後靠重力流入豎流式沉澱池進行泥水分離。底部的污泥排至污泥濃縮池,豎流式沉澱池可去除部分有機物和大幅度降低硫化物和CODcr、色度,降低PH值並提高了B/C比值,為後續生化處理創造條件。
豎流式沉澱池上清液靠重力流入水解酸化池,同時調入營養料(P),降解大分子物質,進一步提高B/C,並降低CODcr。水解酸化池出水再靠重力流至A/O接觸氧化池。在A/O接觸氧化池中去除大部分溶解性有機物並進行反硝化脫氮,O池末端混合液迴流至A池起始端,其中A池佔1/3,O池佔2/3,迴流量為2倍處理水量。
A/O接觸氧化池出水靠重力流至氣浮系統,經加葯氣浮後,浮泥至污泥濃縮池,出水至排放池,當需要時在排放池內投加脫色劑,達標廢水就近排放。
剩餘活性污泥排入污泥脫水池,污泥脫水池上清液入調節池循環處理。脫水後的干污泥妥善處理(可摻入煤中送鍋爐焚燒),防止二次污染。
6.3.3 主要處理單元說明
(1)水解酸化
在缺氧條件下,廢水中的有機物完成厭氧反應的第一階段,將一些難生物降解的有機物分解成易生物降解的小分子有機物,降低CODcr、BOD5、SS、S2-、色度,提高廢水可生化性,為後續生化處理創造良好條件。
(2)絮凝劑
廢水呈鹼性,含硫化物。常用的絮凝劑為PAC或PFS,助凝劑為PAM,但PAC投加量過多可能影響後續生化處理,因此本工藝選擇FM復合絮凝劑。FM對染色廢水的色度和CODcr的去除有顯著效果,而且具有脫硫的性能。該研究為上海市科委的攻關項目,已由上海市科委組織鑒定,並實際應用。FM絮凝劑價格低、來源方便,可現場復配。當然也可使用其它合適的絮凝劑,助凝劑為PAM。
(3)生化處理
生物接觸氧化是一種較新的生物膜法,是在池中安裝填料,填料具有很大的比表面積,是一種生物載體,產生較大的活性污泥濃度,以提高接觸氧化池的容積負荷,提高污染物的去除效率。同時具有設備簡單,佔地小,維護方便,操作靈活,運行費用低等特點。已廣泛應用於化工、食品、制葯、印染等行業的廢水處理,效果顯著。被國家環保局推薦為最佳環保實用技術。
6.3.4廢水處理工藝特點
(1)濃鹼廢水經消煙除塵後,可降低PH值,使系統不必加酸調整PH,並可去除約30%的CODcr,使生化系統負荷降低,以節省經常費用,保證了生化處理的PH條件。
(2)加葯反應沉澱,主要目的是去除部分有機物和大幅度降低硫化物、降低色度和SS,提高了B/C比值,並適當降低了PH值(PH<10),為生化創造條件。
(3)水解酸化池採用填料形式,定時曝氣沖刷生物膜防止沉澱。每四小時開10分鍾,可使池內基本保持無氧狀態,又可達到換膜目的。
(4)A/O系統採用接觸氧化方式,可減少構築物,節省投資,耐沖擊,污泥量少,主要去除大部溶解性有機物和反硝化脫氮。
(5)最終加葯反應氣浮系統,可進一步去除不可降解有機物、色度等使處理水達標排放。
(6)排放池的設置主要為便於監測,在需要時還可投加脫色劑。
7 主要構築物、設備等投資概算(最終以擴初設計為准)
7.1 主要構築物設計參數
序號 名 稱 參數 材料 數量 備 注
1 集水井 10m3 磚混 1座
2 調節預曝池 450m3 磚混 1座 可依現場情況適當增減
3 沉澱池 80 m3 鋼砼 1座 可依現場情況適當增減
4 水解酸化池 450m3 鋼砼 1座
5 接觸氧化池 700m3 鋼砼 1座
6 混凝氣浮(含反應池) 40m3 磚混 1座
7 機泵間 40m2 磚混 1座
8 污泥干化池 30m2 磚混 3座 可依現場情況適當增減
9 污泥濃縮池 60 m3 磚混 1座
10 排放池 35 m3 磚混 1座
7.2 主要設備及投資
序號 名 稱 規格、型號 數 量 價格(萬元)
1 粗細格柵 非標 2台 0.2
2 污水泵 Q=40,H=10 1台 0.4
3 曝氣機 Q=10,H=5 3台 13.6
4 攪拌機 1台 1.8
5 填料 TB/TA2—TH1 800 m3 15
6 微孔曝氣 TK/R65 500 5.3
7 污水泵 Q=70,H=10 1台 0.3
8 加葯設備 非標(防腐) 0.8
9 部分加壓溶氣氣浮機 非標 6.8
10 自動控制櫃 非標 1台 0.85
11 曝氣系統 非標 3.2
12 預曝氣系統 非標 1.6
13 電纜線照明儀表 0.6
14 填料支架 1.3
15 管道閥門 2.7
16 安裝費(廠方安裝) 0
17 運輸費 0.8
18 小 計 55.25
7.3 其他費用
序號 名 稱 金 額
1 設計費 3.0
2 調試費(不含葯劑費用) 1.6
3 小 計 4.6
總計投資費用(不含土建及氣浮雨棚59.86萬元(總排水計量流量計未計在內),土建費用約為75萬元,詳細費用應在初設完成後最終確定。
8 廢水處理費用
8.1 操作管理人員工資:
廢水處理站24小時連續三班三運轉,操作人員每班1人,共計3人。按每月工資平均500元計3×12×500元/1658/365=0.03元/噸-水
8.2 葯劑費:混凝劑FM和助凝劑PAM組合使用,0.26元/噸-水。
8.3 電費:0.33元/噸-水。
8.4 處理每噸水總運行費用:
0.03+0.26+0.33=0.62元
經常運行費:0.62元/噸-水。
9.補充說明 因時間倉促,且未能進行現場調查,最終方案可能還需要進行適當調整。

閱讀全文

與廠區廢水處理站設計方案相關的資料

熱點內容
昂克賽拉換機油濾芯什麼價格 瀏覽:992
生活污水病毒標准 瀏覽:541
下面放飲水機桶的飲水機怎麼用 瀏覽:521
血透超濾怎麼計算 瀏覽:871
污水調試的書籍 瀏覽:335
凈水機ro膜使用時間 瀏覽:128
飲水機出現e2是什麼原因 瀏覽:909
1噸再生紙排多少污水 瀏覽:36
陽離子交換量單位 瀏覽:445
貨車安全濾芯怎麼兩頭是密封的 瀏覽:364
合成樹脂乳液塗料屬於什麼型塗料 瀏覽:867
蒸餾酒柴火 瀏覽:436
a6沒有機油濾芯對車有什麼影響 瀏覽:275
檸檬酸除垢劑清洗開水機 瀏覽:971
污水處理廠厭氧池控制什麼 瀏覽:481
福建廢水治理多少錢 瀏覽:578
熱固性塑料與樹脂 瀏覽:72
厭氧池對於污水處理的作用 瀏覽:593
如何凈化浴池廢水 瀏覽:467
如何控制環氧樹脂玻璃鋼的固化溫度 瀏覽:134