① 污水處理後總氮偏高,如何解決
你可以檢測下碳氮比是否在控制范圍之內;2、活性污泥法中,MLSS濃度是滿足專要求,DO是否能夠滿屬足情況;3、總氮偏高是因為你脫氮的時間過短,即缺氧時間過短,或者是缺氧的DO控制過高,由缺氧變成好氧,而氨氮偏高是硝化反應後,沒有及時進行反硝化,或者反硝化時間過短造成的。
② 氨氮很低,總氮超標怎麼辦
總氮不光包括氨氮,還包括NO3-、NO2-等無機氮以及蛋白質、氨基酸、有機胺等有機氮。
微生物的硝化過程為將氨氮轉化為亞硝酸鹽、硝酸鹽的過程;反硝化過程即亞硝酸鹽、硝酸鹽轉化為氮氣。
你的這種情況是硝化過程良好,但反硝化過程缺失或不良。應增加或改良缺氧池,可投加專業培養的反硝化菌劑(RECY-DAN-01),快速啟動反硝化系統,同時控制溶解氧為0.2-0.5,並保證碳源的充足。此後,總氮排放可保持達標。
附AAO工藝圖:
③ 污水中總氮比氨氮值高是什麼原因
水質檢測時,氨氮分析結果高於總氮可能的原因
水質檢測時,氨氮分析結果高於總氮可能的原因有:
1、樣品引入的誤差 由於水中的氮化合物是在不斷變化著的, 採集後送回實驗室等待實驗 分析的樣品, 它們的存放時間、 存放地點, 光照情況等, 甚至分析人員 取樣的先後次序等, 都會給氨氮和總氮的實驗分析帶來不同的誤差。
2、 實驗環境引入的誤差 在實驗室周圍有衛生間或存放氨水等等, 使實驗室的空氣不同程度地 常含有氨和銨鹽, 氨和銨鹽都極易溶於水, 使實驗用水也不同程度地 含有銨離子。 可以說, 整個實驗分析過程都難達到無氨操作, 這種環境 當然對氨氮和總氮的分析實驗帶來用全程序空白難以完全扣除的誤差, 尤其給氨氮的實驗測試帶來的正誤差更直接、更大。
3、實驗條件引入的誤差 氨氮的分析通常採用較為經典的納氏試劑光度法, 雖然顯色要求鹼性 環境, 但沒有長的前處理過程, 直接顯色測定後, 就可以計算得出結 果。當中實驗條件一般沒有大的誤差引入。總氮的分析就要經歷在鹼性 條件下 30min 的加溫加壓處理, 使樣品中所含的不同形態、 不同狀態的 氮全部轉化為高價的硝酸根離子, 用稀鹽酸調節樣品的 pH 值後, 在紫 外分光光度計上比色測定。 這相對於氨氮的測定說來, 是一個很長的前 處理過程, 當中最為重要的是前處理的效率問題, 因為任何前處理的 效率都很難達到 100 % , 也就是說, 樣品中氮化合物在前處理後的轉化 不可能為 100 % ,這當中必有誤差存在。
4、樣品濁度引入的誤差 總氮分析前處理能消除的濁度影響在氨氮分析中消除不了, 加上比色 時常用不同種比色皿, 這幾種影響因素加起來, 對最後結果帶來差異。
5、不同分析人員引入的誤差所以,本人認為重點要做到: (1)對於總氮和氨氮的分析時間要保持一致; (2)測總氮是要消除濁度的干擾
④ 污水處理中氨氮指標和總氮指標高
個人建議:工業廢水,你可以檢測下碳氮比是否在控制范圍之內;2、活性污泥法中,MLSS濃度是滿足要求,DO是否能夠滿足情況;3、總氮偏高是因為你脫氮的時間過短,即缺氧時間過短,或者是缺氧的DO控制過高,由缺氧變成好氧,而氨氮偏高是硝化反應後,沒有及時進行反硝化,或者反硝化時間過短造成的。
⑤ 污水處理廠總氮高怎麼辦
我們在給某污水處理廠配套風機時,常遇到污水廠的總氮指標經過處理設施處理後的濃度總是達不到預期的處理效率的情況,現將我們掌握的總氮濃度偏高不下的原因歸納總結如下,希望能幫到您:
(1)污泥負荷與污泥齡。由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得而穩定的的反硝化。因此,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。
(2)內、外迴流比。生物反硝化系統外迴流比較單純生物硝化系統要小些,這主要是入流污水中氮絕大部分已被脫去,二沉池中NO3--N濃度不高。相對來說,二沉池由於反硝化導致污泥上浮的危險性已很小。另一方面,反硝化系統污泥沉速較快,在保證要求迴流污泥濃度的前提下,可以降低迴流比,以便延長污水在曝氣池內的停留時間。運行良好的污水處理廠,外迴流比可控制在50%以下。而內迴流比一般控制在300~500%之間。
(3)反硝化速率。反硝化速率系指單位活性污泥每天反硝化的硝酸鹽量。反硝化速率與溫度等因素有關,典型值為0.06~0.07gNO3- -N/gMLVSSd。
(4)缺氧區溶解氧。對反硝化來說,希望DO盡量低,是零,這樣反硝化細菌可以「全力」進行反硝化,提高脫氮效率。但從污水處理廠的實際運營情況來看,要把缺氧區的DO控制在0.5mg/L以下,還是有困難的,因此也就影響了生物反硝化的過程,進而影響出水總氮指標。
(5)BOD5/TKN。因為反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。由於目前許多污水處理廠配套管網建設滯後,進廠BOD5低於設計值,而氮、磷等指標則相當於或高於設計值,使得進水碳源無法滿足反硝化對碳源的需求,也導致了出水總氮超標的情況時有發生。
(6)pH。反硝化細菌對pH變化不如硝化細菌敏感,在pH為6~9的范圍內,均能進行正常的生理代謝,但生物反硝化的有效pH范圍為6.5~8.0。
(7)溫度。反硝化細菌對溫度變化雖不如硝化細菌那麼敏感,但反硝化效果也會隨溫度變化而變化。溫度越高,反硝化速率越高,在30~35℃時,反硝化速率增至zui大。當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。因此,在冬季要保證脫氮效果,就必須增大SRT,提高污泥濃度或增加投運池數。
⑥ 污水處理廠MBR一體化設備出水氨氮不高,總氮超標是什麼原因如何解決
城市污水處理廠出水氮磷超標因素分析及對策
摘要:脫氮除磷工藝越來越多的應用到城市污水處理廠當中,但是在實際運行過程中,出水氮磷含量超標的情況常常困擾著水廠的工作人員。因此,釐清脫氮除磷工藝的重要參數並加以控制,能夠很好的保證系統的正常運行,出水氮磷含量達標。
關鍵詞:城市污水處理廠,脫氮除磷,對策分析
1概述
近年來污水處理的主要工藝已發生變化,從常規二級處理逐漸變為重視脫氮除磷的深度處理上來。但是在實際運行過程中,由於工藝復雜性及參數的變化性,導致常常出水氮磷含量超標,影響著水廠的運行。因此,釐清脫氮除磷工藝的重要參數並加以控制,能夠很好的保證系統的正常運行。
2污水氮含量超標原因及控制方法
2.1氨氮超標
2.1.1污泥負荷與污泥齡
生物硝化屬低負荷工藝,F/M一般在0.05~0.15kgBOD/kgMLVSS?d。負荷越低,硝化進行得越充分,NH3-N向NO3--N轉化的效率就越高。與低負荷相對應,生物硝化系統的SRT一般較長,因為硝化細菌世代周期較長,若生物系統的污泥停留時間過短,污泥濃度較低時,硝化細菌就培養不起來,也就得不到硝化效果。SRT控制在多少,取決於溫度等因素。對於以脫氮為主要目的生物系統,通常SRT可取11~23d。
2.1.2迴流比與水力停留時間
生物硝化系統的迴流比一般較傳統活性污泥工藝大,主要是因為生物硝化系統的活性污泥混合液中已含有大量的硝酸鹽,若迴流比太小,活性污泥在二沉池的停留時間就較長,容易產生反硝化,導致污泥上浮。通常迴流比控制在50~100%。生物硝化曝氣池的水力停留時間也較活性污泥工藝長,至少應在8h以上。這主要是因為硝化速率較有機污染物的去除率低得多,因而需要更長的反應時間。
2.1.3BOD5/TKN
BOD5/TKN越大,活性污泥中硝化細菌所佔的比例越小,硝化速率就越小,在同樣運行條件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。很多城市污水處理廠的運行實踐發現,BOD5/TKN值最佳范圍為2~3左右。
2.1.4溶解氧
硝化細菌為專性好氧菌,無氧時即停止生命活動,且硝化細菌的攝氧速率較分解有機物的細菌低得多,如果不保持充足的氧量,硝化細菌將「爭奪」不到所需要的氧。因此,需保持生物池好氧區的溶解氧在2mg/L以上,特殊情況下溶解氧含量還需提高。
2.1.5溫度與pH
硝化細菌對溫度的變化也很敏感,當污水溫度低於15℃時,硝化速率會明顯下降,當污水溫度低於5℃時,其生理活動會完全停止。因此,冬季時污水處理廠特別是北方地區的污水處理廠出水氨氮超標的現象較為明顯。硝化細菌對pH反應很敏感,在pH為8~9的范圍內,其生物活性最強,當pH<6.0或>9.6時,硝化菌的生物活性將受到抑制並趨於停止。因此,應盡量控制生物硝化系統的混合液pH大於7.0。
2.2 總氮超標
2.2.1污泥負荷與污泥齡
由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得高效而穩定的的反硝化。因而,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。
2.2.2內、外迴流比
生物反硝化系統外迴流比較單純生物硝化系統要小些,這主要是入流污水中氮絕大部分已被脫去,二沉池中NO3--N濃度不高。另一方面,反硝化系統污泥沉速較快,在保證要求迴流污泥濃度的前提下,可以降低迴流比,以便延長污水在曝氣池內的停留時間。運行良好的污水處理廠,外迴流比可控制在50%以下。而內迴流比一般控制在300~500%之間。
2.2.3缺氧區溶解氧
對反硝化來說,希望DO盡量低,最好是零,這樣反硝化細菌可以「全力」進行反硝化,提高脫氮效率。但從污水處理廠的實際運營情況來看,要把缺氧區的DO控制在0.5mg/L以下,還是有困難的,因此也就影響了生物反硝化的過程,進而影響出水總氮指標。
2.2.4BOD5/TKN
反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。由於目前許多污水處理廠配套管網建設滯後,進廠BOD5低於設計值,而氮、磷等指標則相當於或高於設計值,使得進水碳源無法滿足反硝化對碳源的需求,也導致了出水總氮超標的情況時有發生。
2.2.5溫度與pH
反硝化細菌對溫度變化雖不如硝化細菌那麼敏感,但反硝化效果也會隨溫度變化而變化。溫度越高,反硝化速率越高,在30~35℃時,反硝化速率增至最大。當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。反硝化細菌對pH變化不如硝化細菌敏感,在pH為6~9的范圍內,均能進行正常的生理代謝,但生物反硝化的最佳pH范圍為6.5~8.0。
3 污水生物除磷總磷超標原因及對策
3.1 污泥負荷與污泥齡
厭氧-好氧生物除磷工藝是一種高F/M低SRT系統。當F/M較高,SRT較低時,剩餘污泥排放量也就較多。因而,在污泥含磷量一定的條件下,除磷量也就越多,除磷效果越好。對於以除磷為主要目的生物系統,通常F/M為0.4~0.7kgBOD5/kgMLSS•d,SRT為較大,選擇價廉,易得的填料也是需要考慮的一個重要因子。
⑦ 污水處理後總氮偏高,如何解決
這個太正常了,進水總氮一般小於出水總氮,總氮包括NH3-N、NOx-N、凱氏氮。
1、進水中有凱氏氮。這玩意在水解酸化、厭氧、好氧段都能被氨化,如果後續有好氧,可以硝化成硝基氮,如果好氧段的溶解氧和鹼度或硝化菌等條件不行時,NH3沒被完全轉化。那出水NH3高正常。
2、葯劑影響。
這也是個不可忽略的問題,絮凝劑、硫酸、尿素投加量這幾個要重點看一下。廢酸和哪怕部分正酸里,我們都檢出過NH3-N,某些絮凝劑里也會有。
3、檢測干擾
NH3一般常用水楊酸法和納氏試劑法,可以去查一下排除干擾。水的色度也會有幾個氨氮的影響。
隨著國家環境保護力度的加大,國家和地方政府相繼出台一系列環保加嚴標准,要求企業嚴格按照排放標准執行,其中污水總氮排放需達到《城鎮污水處理廠污染物排放標准》(GB 18918—2002)一級A標准。
水體中的總氮處理是水污染控制行業關注的重點問題,因為總氮超標不僅會導致水體富營養化,如果硝態氮濃度過高,對人體健康有很大的威脅。
污水總氮超標的原因:
1. 內、外迴流比生物反硝化系統外迴流比較單純生物硝化系統要小。
2. 反硝化系統污泥沉速較快。缺氧區溶解氧DO過高。
3. 溫度調控不當,當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。
4. BOD5/TKN 因為反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。
5. 污泥負荷與污泥齡由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得高效而穩定的的反硝化。因而,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。
污水總氮處理方法:
目前有採用離子交換、膜滲透、吸附以及生物脫氮的方法。
1. 污水處理廠常採用生物脫氮反應,通過控制各階段的工藝條件,使出水總氮達標。而反硝化反應階段是總氮處理的控制難點,因此要對生物脫氮反應機理充分了解,進行嚴格的條件控制。
2. 採用湛清環保富增集成裝備IDN-BMP系統脫氮,BMP 富增集成裝備是傳統活性污泥法的一種升級,解決了傳統生物脫氮法中反硝化反應難控制的難點。其原理是通過增加污泥濃度並改善流態,佐以功能強大的反硝化菌,最終達到高效反硝化,實現總氮處理。
⑧ 污水處理總氮超標怎麼辦
水中的總氮含量是衡量水質的重要指標之一。其測定有助於評價水體被污染和自凈狀況。地表水中氮、磷物質超標時,微生物大量繁殖,浮游生物生長旺盛,出現富營養化狀態。
第一、折點加氯氧化法,通過加入次氯酸鈉或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。其反應方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二、利用微生物硝化和反硝化去除廢水中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞硝酸鹽和硝酸鹽,然後再進行反硝化,將硝酸鹽轉化為氮氣。其反應原理結構式如下所示:
2NH3+3O2→HNO2+H2O+能量(亞硝化作用)
2HNO2+O2→ 2HNO3+能量(硝化作用)
HNO3+CH3OH→N2 + CO2+H2O+能量(反硝化作用)
註:總氮,簡稱為TN,水中的總氮含量是衡量水質的重要指標之一。總氮的定義是水中各種形態無機和有機氮的總量。包括NO3-、NO2-和NH4+等無機氮和蛋白質、氨基酸和有機胺等有機氮,以每升水含氮毫克數計算。常被用來表示水體受營養物質污染的程度。
第一、折點加氯氧化法,通過加入次氯酸鈉或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。其反應方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二、利用微生物硝化和反硝化去除廢水中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞硝酸鹽和硝酸鹽,然後再進行反硝化,將硝酸鹽轉化為氮氣。其反應原理結構式如下所示:
2NH3+3O2→HNO2+H2O+能量(亞硝化作用)
2HNO2+O2→ 2HNO3+能量(硝化作用)
HNO3+CH3OH→N2 + CO2+H2O+能量(反硝化作用)
註:總氮,簡稱為TN,水中的總氮含量是衡量水質的重要指標之一。總氮的定義是水中各種形態無機和有機氮的總量。包括NO3-、NO2-和NH4+等無機氮和蛋白質、氨基酸和有機胺等有機氮,以每升水含氮毫克數計算。常被用來表示水體受營養物質污染的程度。
水中的總氮含量是衡量水質的重要指標之一。其測定有助於評價水體被污
⑨ 什麼是污水總氮,總氮高如何解決
污水總氮所指的主要意思是,污水整體的氮含總量比較高,超出了標準的范圍和要求,所以這個時候一定要採用,專業的技術和方式對它進行合理的處理,才可以達到更環保的程度。