導航:首頁 > 廢水知識 > 翻譯污水處理

翻譯污水處理

發布時間:2022-02-24 04:49:55

1. 求翻譯 污水處理 最佳答案再追加30分

工廠里(使用)的旋轉生物接觸器處理系統
由於它的優點是低運行成本和維護成本,紅細胞和安裝是由工廠選定的,並由工廠進行處置的。紅細胞預處理單元,用連續放出的廢水培養的。它由一個四個階段紅細胞組成。每個階段都被裝滿塑料包裝材料的形式提供一個完全表面光環。面積4000平方米(圖11)。圓盤旋轉大約在3 - 5轉速轉動,而且硬碟45%的表面積是淹沒在廢水中的。該系統總液體的體積是6 m3,
載入於RBC的液壓負載是.d 0.02立方米/平方米。通過旋轉裱在依附在主軸上的大磁碟的杯子,紅細胞吸收水分。工廠紅細胞的性能是被監測的。表2顯示處理污水的特點。化學需氧量的剩餘值和生化需氧量的變化。
從127到543和從25 到385的過程中,平均值相應地為139 到362O2/l 。 相應的平均去除值分別為86%和88%。
去除的平均比例總懸浮物是73%。相應的殘余濃度是95毫克/升。平均殘余價值的油和油脂27毫克/升)的去除和77%相應的去除值。處理污水的特點可以和以實驗室單位的紅細胞計算得到的結果相媲美。
結論
從已獲得的結果可以說明:採用活性污泥法、旋轉生物接觸器和UASB技術來處理污水,被證明是有效的,而這些污水在味精生產廠中是沒有改變的。
在廢水處理各個過程中廢水的特點與埃及的法律是相符的。埃及的法律規范了
工業廢水排放到污水處理系統。因為相比從實驗單位中獲得的結果,污水處理中具有某些特點,因此工廠安裝的紅細胞是有效的,可信賴的。

2. 請翻譯成英文 關於污水處理的

this is a split flow system project, water,rain water and sewage go into each pipe line respectively,
sanitary sewage;toilet sewage goes into community underground sewage pipeline after disposed in septic tank,kitchen waste water after separated in separation tank goes into underground sewage pipeline,
rain water;according to regulations,collect it into pool then discharge them into neighborhood rainwater pipeline,
instrial waste water;this equipment proces waste water by coating spraying process,sewage quantity about 128m3/d,the proction waste water first goes into sewage plant to be disposed by standard procere,then discharge into sewage pipeline,
the material and layout of drainage pipe ;pe double layer corrugated pipe is adopted for outside pipelines,and UPVC for inside pipeline,

3. 請幫我翻譯一下 這段話 關於污水處理的

污水處理的目的一般是去除水中大量的固體物質,使得剩餘的水排進受納水專體後不會影響水體的屬正常功能。去除的固體物質,主要是有機物,但也會含有無機物固體。「作為污泥排出的固體和液體也必須得到處理。最終,污水處理需要控制污水的氣味,減緩污水中的生物活性,也需要消滅污水中的致病微生物。」

4. 污水處理英文文獻翻譯

該污水的特點是顏色深黑,化學需氧量(COD)偏高,表現為污水中含有難降解揮發性有機化合物,污水的生物降解度也低。

5. 誰能給我找篇關於污水處理的中英文翻譯

1.1.2 編制原則
依靠科技、加強管理、優化網路、均衡施工。
1.1.3 編制指導思想
嚴格按照IS09001標准要求,與國際慣例接軌,參照了菲迪克條款對承建商的有關要求,力爭使該施工組織設計能全面、系統、科學、有效地指導該工程的安裝及調試直至試運行符合施工驗收規范和業主要求,從而實現設計意圖。
1.1.4 編制目的
確保某污水處理廠安裝工程的施工進度、施工質量、施工安全、確保文明施工、環境保護、員工健康、實現業主願望,確保用戶滿意。
1.2 工程概況
重慶市某污水處理廠二期工程是重慶市利用日本政府貸款建設的主城排水工程之一。本工程的實施將為重慶主城區的可持續發展創造安全的環境。
二期工程是在原一期工程的基礎上,完成一級處理、二級生物處理、消毒及污泥處理工程,使污水處理達到國家一級排放標准後,排入長江。
重慶市某污水處理廠用來處理雨污合流的城市污水,二期工程設計旱季處理污水量為60萬m3/d,雨季處理污水量為135萬m3/d,二級生物處理過程。遠期污水廠規模為處理污水量80萬m3/d,雨季處理污水量165萬m3/d,二級生物處理過程。
重慶市某污水處理廠二期工程由上海某設計研究院設計。
工期要求:合同生效後360天內(包括安裝和完成預調試)。
1.3 工程特點
1.3.1該工程採取設備供貨、安裝及調試總承包方式招商,對投標人要求嚴,承建商負責按設計要求提供設備及各個單項設備的性能保證的供貨,安裝及試運行。同時負責污水處理廠出水水質達到國家一級排放標准,如果達不到所保證的性能,無論是在測試期還是在20個月的運行監理期間,承建商應對設備作必要的改進或更換以達到所保證的性能。
1.3.2安裝技術要求高
工藝設備安裝技術要求高。該工程將大量採用國內外先進設備及儀器儀表,安裝精度的控制對調試致關重要,整個污水處理廠安裝調試合格後將實現計算機管理。
1.3.3自動化程度高
本工程採用PLC集中與分散相接合的控制方式。對液位/界面、溫度、壓力、溶解氧、污泥濃度、酸鹼度、流量、調節閥開啟度、有害氣體濃度、電壓、電流、功率等實施測量控制,工藝設置CRT投影儀銀幕進行顯示。
1.3.4交叉作業多
地下管網、閥井、工藝設備預留孔與土建必須配合進行,存在大量交叉作業。
1.3.5露天作業多
露天作業受氣候影響大,在施工中條件成熟的要抓緊時間實施,雨天作業要有相應的技術措施。
1.4工藝簡介
採用A/A/O處理工藝
重慶市某污水處理廠二期處理程度為一級處理、二級生物處理、消毒及污泥處理,執行中華人民共和國國家標准GB8978—1996《污水綜合排放標准》中的一級標准,即:BOD5≤20mg/1,SS≤20mg/1,CODcr≤60mg/1,NH3-N≤15mg/1,TP≤0.5mg/1。
該污水處理廠採用A/A/O生化處理工藝。它是在A/O工藝基礎上增加了一個缺氧區,具有同步脫氮除磷的功能。
A/A/O工藝處理污水首先進入厭氧區,兼性厭氧發酵細菌將污水中可生物降解的有機物轉化為VFA(揮發性脂肪酸類)這類低分子發酵中間產物。而聚磷菌可將其體內存儲的聚磷酸鹽分解,所釋放的能量可供好氧的聚磷菌在厭氧環境下維持生存,另一部分能量還可供聚磷菌主動吸收環境中的VFA類低分子有機物,並以PHB(聚羥β丁酸)的形式在其體內儲存起來。隨後污水進入缺氧區,反硝化菌就利用好氧區迴流混合液帶來的硝酸鹽,以及污水中可生物降解有機物作碳源進行反硝化,達到同時降低BOD5與脫氮的目的。接著污水進入曝氣的好氧區,聚磷菌在吸收、利用污水中殘剩的可生物降解有機物的同時,主要是通過分解體內儲存的PHB釋放能量來維持其生長繁殖。同時過量的攝取周圍環境中的溶解磷,並以聚磷的形式在體內儲積起來,使出水中溶解磷濃度達到最低。而有機物經厭氧區、缺氧區分別被聚磷和反硝化細菌利用後,到達好氧區時濃度已相當低,這有利於自養型硝化菌的生長繁殖,並通過硝化作用將氨氮轉化為硝酸鹽。非除磷的好氧性異養菌雖然也能存在,但他在厭氧區中受到嚴重的壓抑,在好氧區又得不到充足的營養,因此在與其他生理類群的微生物競爭中處於相對劣勢。排放的剩餘污泥中,由於含有大量能超量儲積聚磷的聚磷菌,污泥含磷量可以達到6%(乾重)以上。從以上分析可以看出A/A/O工藝具有同步脫氮除磷的功能。
A/A/O工藝的優點是厭氧、缺氧、好氧交替運行,可以達到同時去除有機物、脫氮、除磷的目的,而且這種運行狀況絲狀菌不宜生長繁殖,基本不存在污泥膨脹問題。A/A/O工藝流程簡單,總水力停留時間少於其他同類工藝,並且不需外加碳源,缺氧、缺氧段只進行緩速攪拌,運行費用低。
雨、污水經過上述處理合格,符合國家排放標準的污水直接排入長江。

6. 污水處理廠的英文翻譯 急!!!!

sewage treatment works

7. 求小段的論文翻譯,污水處理方面的

標題:Micro-exposure oxidation ditch process in municipal wastewater treatment application

Abstract:Breakthrough micro-exposure oxidation ditch aeration oxidation ditch traditional methods ,with deep water aeration and underwater propulsion microporous combination of technology,significant effect of energy saving,In the urban sewage treatment has broad application prospects。

Keywords:Micro-exposure oxidation ditch
Aeration equipment
Energy saving
Prospects

8. 求翻譯 污水處理 最佳答案追加20分

廢水特點
從管道末端排出的廢水的物理及化學特點均羅列於表1,並以圖6說明。這些結果顯示,工廠所排出的最終流出物的化學需氧量和生物需氧量都很高,其最高值分別為每公升 6920和 3825毫克氧,而平均值則分別是4646和 2298 毫克氧。最終流出物屬酸性,其酸鹼度介乎4.1和5.6之間;而總懸浮固體則介乎每公升589至3268 毫克,平均值為每公升1790毫克。化驗結果亦顯示磷和氮的濃度偏低,兩者的平均濃度分別是每公升 4.6 毫克磷和14.6 毫克氮。此外,廢水中也含有相當數量的油脂,其最高值為每公升2186 毫克,而平均值則是每公升626 毫克。

初級處理
廢水屬酸性,而且含有相當數量的總懸浮粒子(每公升1790毫克)和油脂(每公升626毫克)。這些物質都會對微生物的活動造成不良影響。因此,在進行微生物處理程序前,必須先進行沉澱和調整酸鹼度。這項前期處理工序是在一個多功能緩沖/化糞池內進行。廢水會在池中停留4小時。經過前期處理之後的廢水特點均羅列於表2 ,並以圖7說明。平均而言,油脂濃度降低了74%,並達到每公升161毫克。此外,化學需氧量和生物需氧量也分別減少了 43% 和 47% ;而總懸浮粒子則減少80%。

氮和磷的總濃度分別是每公升 14.8毫克和 4.3 毫克。分析結果顯示,經過前期處理後,廢水的「生物需氧量:氮:磷」比率為100 : 1.2 : 0.4。這個結果顯示:氮和磷的濃度都不足以進行生物處理過程,因此,需要加添氮鹽和磷鹽來調節濃度,務求能夠准確地達到所需要的比率(即「生物需氧量:氮:磷」為100 : 5 :1)。

活性淤泥處理系統
經過初級處理後的廢水會被輸送至反應器內,並會處理約一小時至二十四小時不等,其中的「活性淤泥廢水混合液」所含懸浮固體濃度約為每公升3毫克(請參閱圖8)。在對這些已處理的流出物進行分析後,結果顯示:能夠把生物需氧量減少最多的處理時間是3小時。至於化學需氧量、生物需氧量、總懸浮固體和油脂的殘余含量分別是每公升 109毫克氧、30毫克氧、22毫克和 42毫克(表1)。這些數值都符合埃及法律中,對需要排進排污系統的已處理廢水所要求的標准。

9. 誰有關於污水處理或者組態軟體的外文翻譯(帶原文),急用!

關鍵詞:
人工濕地;硝化作用;反硝化作用;生活污水;脫氮;硝化細菌;反硝化細菌
2. 材料和方法
2.1 系統描述
我們研究隊伍設計的人工濕地結構位於中國寧波某村。它包括三個部分,容積按照四十人排量設計。氣候特點為年降水量1300-1400mm和累計年平均氣溫16.2℃。極高極低值分別為38.8℃和-4.2℃。較冷的時間段以十二月到二月為代表並且在這個時間段里出水比較接近於8℃(最低5℃)。第一部分和第三部分8m長6m寬1.0m深。反應床有三層構成,最底一層由厚20 cm的洗凈的礫石(2–6 cm)構成,中間層由65 cm厚的細砂(0.5–2.0 cm)粒構成,最上層由15 cm厚的土壤(0.1–0.2 cm)構成。底面坡度大約1%。第三部分有三個環形的單元構成,直徑分別為7m、5m和3m,由下向上每個0.6m深,表面積近似估算為38.5m2。由頂部向低處單元的溢流會立即產生的瀑布似的紊流可以增大溶解氧含量和維持含氧條件。
圖1 塔式復合人工濕地水流示意圖:1.進水區 2.塔式區 3.出水區 4.濕地植物 5.頂部環形區域 6.中部環形區域 7.底部環形區域 8.瀑布似溢流
濕地結構的底部用高密度的聚乙烯作為襯里,環形區域則是要鋪襯5cm厚的砌磚牆,為了防止污水的滲漏及污水與地下水混合。由苗圃購得的池柏(Taxodium ascendens)的幼苗以間距0.8m間隔圍繞整個濕地結構底部環形種植,濕地結構地層中部種植密度為56株/m2的藺草(Schoenoplectus trigueter),於頭年十一月種植第二年五月份收割。在藺草收獲後的六至十月份,以9株/m2的種植密度種植野茭白(Zizania aquatica)。在第二部分頂部的環形部分以近似6株/m2的種植密度種植睡蓮(Nymphaea tetragona),在中間環形區域以的36株/m2種植密度種植香蒲(Typha angustifolia)。
表1 THCW進水和出水的物理化學特性
80%的原污水不斷的流入濕地結構的第一部分。20%的污水由泵直接輸入第二部分的環形結構最高層,溢流進入環形結構中間一層,之後流入最後一層。此時第二部分處理污水與第一部分處理後的污水一起流入濕地結構的第三部分並最終由其排出。水深由一個儲水塔控制。在第一時段,前四個月(06年5月到8月)人工濕地結構以的16 cm/d水力負荷運行(水力停留時間5.4 d)。第二時段,之後八個月(06年9月到07年4月)人工濕地結構以的比較高的32 cm/d水力負荷運行(水力停留時間2.7 d)。這些生活污水在一個腐化池裡先進行預處理(表一)。
2.2 分析方法
2.2.1 化學分析
需每天採集第一部分的進水,第二部分的出水(僅在後八個月),第三部分的出水,每周混合水樣的測試數據和結果搜集分析,需檢測TSS,COD,NH3-N,TN,TP。每周檢測現場每部分和每個環形處理單元的水溫,pH,DO,TSS,COD,TN,TP和NH3-N要堅決的按照標准方法來檢測控制(APHA, 1998)。
野茭白(Z. aquatica))和藺草(S. trigueter)在零六年十月和零七年五月分別被收割(砍掉植株所有水面上可見部分)。收割的植物在被蒸餾水洗過後在太陽下經過24小時的日照後投入105 ◦C下灼燒24小時。植物在乾燥後的稱重作為基本分析。被乾燥和研磨過的植物碎末作為總氮(TKN)測量的准備,分析方法按照標准方法(APHA, 1998)。
2.2.2硝化及反硝化的測量
在濕地結構第三部分的前端沉澱物上層的五厘米處存在潛在的硝化反應。使用的試驗介質中每公升包含:0.14g K2HPO4; 0.027 g KH2PO4; 0.59 g (NH4)2SO4;1.20 g NaHCO3;0.3 g CaCl2·2H2O;0.2 g MgSO4; 0.00625 g FeSO4;0.00625 g EDTA;1.06 gNaClO3;pH是7.5。氯化鈉被用於抑制硝酸鹽及亞硝酸鹽的氧化。50mL沉澱污泥需要加入100mL試驗介質25 ◦C在震盪器150 rpm轉速下培養。這種經處理過的樣本在被培養2,6,20和24小時後被收集。亞硝酸鹽的濃度用光度計測量。由亞硝酸鹽產量和培養時間數計算出的線性回歸,評估出的角系數可以計算出潛在硝化反應的量。結果以在樣品中的體積損耗規范化的計算出來,最後以乾重(DW)及明確的每小時每克干物質產生nmol亞硝酸鹽表示。
潛在亞硝化反應速率(PDR)被用乙炔抑制設備進行測量。 沉澱物樣本在第三部分的後部的四個地點採集(兩個分散採集,兩個呈柱狀採集直徑3.5 cm),並且要立即用鋁箔密封以防游離氧進入沉澱物樣本。這四個樣本分別投入四個容積為1500mL的錐形瓶中,加入添加營養元素的營養液進行培養(15 mg/L NO3-N,72 mg/L Ca,10 mg/L Mg,27 mg/L Na,39mg/L K和2.5 mg/L PO4-P)。燒瓶頂部用氮氣吹洗半個小時。燒瓶被置於旋轉振盪器中60 rpm轉速震盪。樣本在黑暗處20 ◦C培養八小時。每個小時使用注射器進行氣體取樣。頂部樣本用氣象色譜儀分析N2O的濃度(日本金島公司氣象色譜儀GC-14B),氣象色譜儀帶有一個電子捕獲探測器操作溫度340 ◦C。潛在亞硝化的反應速率以mg N2O-N/m2沉澱物每小時表示。
2.2.3 微生物數量的分析
人工濕地沉澱物中的硝化和反硝化微生物使用以下培養基用最大可能數量法計算(Carter and Gregorich, 2006)。計算硝化細菌的培養基配方如下:13.5 g Na2HPO4;0.7 g KH2PO4; 0.1g MgSO4·7H2O; 0.5 g NaHCO3; 2.5 g (NH4)2SO4;14.4mg FeCl3·6H2O; 18.4mg CaCl2·7H2O; 1 L 蒸餾水;pH=8.0。計算反硝化細菌的培養基配方如下:1.0 g KNO3; 0.1gNa2HPO4;;2.0 g Na2S2O7; 0.1g NaHCO3;;0.1 g MgCl2; 1 L 蒸餾水;pH 7.0。用一根內徑為4.7cm的玻璃管採集測量硝化和反硝化細菌的數量應遠離泥水分界面(0–2 cm)及過深的深度(5–8 cm)。附著在岩石及水生植物體上的細菌剝離下來之後,然後用混合器將其溶於冷水驅散混合。經十個無菌的蒸餾水樣稀釋的沉澱物樣本被轉移到96格的包含各自培養基的微量滴定板上在28 ◦C下硝化細菌培養21 d反硝化細菌培養5 d。為了確定沉澱物的乾重,10 g的沉澱物在105 ◦C下被隔夜烘乾直至產生衡重樣本。在人工濕地結構運行期間,硝化和反硝化細菌的數量要每兩月進行一次計算。
2.2.4 統計分析
所有帶有方差測驗的統計分析都使用統計分析軟體SPSS進行分析(Statistic Package for Social Science)。當p < 0.05時誤差被認為是有效的。有效的誤差用鄧肯測試法進行評估。皮爾森相關分析適用於評估潛在反硝化效率和水力負荷之間有效的的線性相關,以及反硝化和水力負荷之間的關系。
3.結果
第二部分第三部分的出水中物理化學指標的變化在表1中給出,水的pH沒有太大的變化。由於人工濕地結構第二部分的瀑布式溢流的被動充氧的原因,出水的溶解氧含量(DO)相對較大。在第二部分入水的溶解氧平均值為:1.28±0.52 mg/L,出水中的平均值為:2.98±0.38mg/L。已觀測到的對總懸浮物TSS的脫除率為84.60±9.6%。氮的脫除率是較高值的,脫除NH3-N和TN平均值為:83.11±10.2%,82.85±8.5%。在第二部分NH3-N和TN的脫除率分別為:72%和29%。在第二部分的硝化作用將很大部分的氮轉化成了NO3-N,54%的由第三部分的反硝化作用和其他作用轉移脫除。磷的脫除率觀測到在64.15±7.9%。在第二時間段對於第一時間段各類超標污染物的脫除效率更高,因為第一時間短的水力負荷較低。但在兩種不同的水力負荷下各類污染物的脫除效率是相似的(p < 0.02)。
圖2顯示了的研究調查期間12個月的入水和出水中CODcr,NH3-N,TN和TP脫除效率。在研究期間的時間段一和時間段二中,調研中的十二個月NH3-N和TN被有效脫除。脫氮效率在開始10周和最後10周是最高,由於溫度較高的原因。人工濕地結構在冬季也顯出了對於氮、磷和有機物的較高的脫除效率。另外由於硝化和反硝化作用而導致的氮素流失的量在夏季大於(p < 0.003)在冬季。當濕地中的pH值超過極大值7.7,氨的揮發可以被忽略,這個pH值下沒有足夠量的氨氣的生成。在兩種水力負荷下(16 cm/d和 32 cm/d)的脫除效率在統計上沒有顯著差異。
圖2.實驗期間THCW進水出水中的COD,NH3-N,TN和TP含量與脫除效率
圖2中同樣顯示在濕地運行期間磷的脫除效率在最高的水力負荷下或是在冬季沒有十分顯著的波動。在冬季和夏季的運行中,出水的總磷TP濃度沒有顯著的差異。圖3. 實驗期間THCW第三部分沉澱物中潛在硝化及反硝化量
如圖3所示,潛在硝化速率和潛在反硝化效率在最初的四個月里的隨著時間增長。在水力負荷上升(16 cm/d到32 cm/d)之後的一個月,在2006年的十月到十二月之間潛在硝化速率下降,潛在反硝化速率在2006年的十月到2007年的二月之間下降。實驗結束時潛在硝化反應速率沒有明顯上升,反硝化反應速率上升了一點。潛在硝化反應和潛在反硝化反應用硝化細菌和反硝化細菌的最有可能數目來分別計算,顯出兩條正相關關系很好的曲線(p < 0.05)。
表2 在THCW中硝化及反硝化細菌數量
由表2看出,在濕地結構沉澱物中的硝化細菌和反硝化細菌最可能數目大約在每克104–105數量級之間。對比硝化細菌及反硝化細菌的估算定量,濕地結構中相應的潛在硝化反應和潛在反硝化反應(圖3)顯示出更多數量的硝化細菌和反硝化細菌,更高的潛在硝化活動。

為了測定植物收獲後在脫氮方面的效果,在06年十月和07年五月收獲的植物烘乾後測量其凱氏氮(TKN)的含量,顯示出在藺草(S. trigueter)中積累的氮的含量遠大於野茭白(Z. aquatica)中的積累,在藺草(S. trigueter)和野茭白(Z. aquatica)的烘乾樣中平均固氮的量是6.8±0.3/kg和4.7±0.2/kg,總氮的平均吸收率分別是17.18 kg/(ha·d)和12.63 kg/(ha·d)。

4.討論

硝化反應是不能從水中脫氮。但是伴隨著反硝化反應卻是許多人工濕地結構的主要脫除機理。硝化反應發生在氧氣處於一個可以使嚴格好氧硝化細菌生長的足夠高的濃度氧氣含量下。硝化反應存在於所有的人工濕地結構中,但這一反應的大小又由溶解氧的量決定。因為NH3-N在許多廢水中是占優勢的種類,硝化反應通常在各類濕地系統中是一個限制環節。反硝化作用被認為是大多數人工濕地結構中主要的脫氮機理。無論如何,通常在廢水中硝酸鹽的濃度是非常低的,因此反硝化反應必須伴隨硝化反應而進行。硝化反應和反硝化反應對於氧的不同需求成為了許多要求到高脫氮效率的人工濕地的障礙。

人們普遍認為當溶解氧濃度(DO)達到1.5mg/L以上時硝化反應可以發生。研究中濕地結構的出水溶解氧濃度(DO)平均值為2.22±0.13 mg/L,這個可能是由於人工濕地結構中部的塔式結構的瀑布式溢流造成的,這個溶解氧濃度是對硝化作用有利的;這個推論與沉澱物中的更多的硝化細菌的數目相一致(表2)。高的溶解氧濃度與充足由入水的支路直接注入人工濕地第二部分的有機物,減少了異養生物和硝化細菌之間對營養的爭奪。因此更多的緩慢生長的硝化細菌轉移到了沉澱物的表面和植物根部。

5.結論

該研究顯示,塔式復合人工濕地結構可以有效處理許多污染物,第一部分的處理目標為總懸浮物TSS和生物需氧量,第二個塔式部分的處理目標是硝化,第三部分的目標是反硝化。使用塔式結構的瀑布式水流而帶來被動充氧以及由旁路直接注入第二部分的原污水,在促進硝化和反硝化方面的顯示出了很大的促進。對於總懸浮物TSS,化學需氧量COD,氨氮NH3-N,總氮TN,總磷TP的脫除效率分別為:88.57±16.3%,84.60±9.6%,83.11±10.2%,82.85±8.5%,64.15±7.9%。顯然,我們設計的系統在高的水力負荷下對於初級生活污水有一個高的脫氮能力。濕地結構污泥里的硝化細菌的數量較高,但反硝化細菌數量對於其他報道來說相對偏低。潛在硝化反應和潛在反硝化反應的數目是與硝化細菌和反硝化細菌數目相一致的。在濕地結構中硝化反應和反硝化反應是脫氮運行的主要機理。濕地種植物的含氮量顯示出本土植物藺草是最適合濕地結構的植物,因為它有冬季生長和工業可以利用的特點。對於環境教育項目,塔式復合人工濕地結構也提供了一個額外的好處,即美學的觀賞價值。對於濕地結構的超過兩年的現場檢測研究,最佳化的入水分布和結構設計將會在將來的研究中逐一進行。

提高塔式復合人工濕地處理農村生活污水的脫氮效率[1]

摘要:

努力保護水源,尤其是在鄉鎮地區的飲用水源,是中國污水處理當前面臨的主要問題。氮元素在水體富營養化和對水生物的潛在毒害方面的重要作用,目前廢水脫氮已成為首要關注的焦點。人工濕地作為一種小型的,處理費用較低的方法被用於處理鄉鎮生活污水。比起活性炭在脫氮方面顯示出的廣闊前景,人工濕地系統由於溶解氧的缺乏而在脫氮方面存在一定的制約。為了提高脫氮效率,一種新型三階段塔式混合濕地結構----人工濕地(thcw)應運而生。它的第一部分和第三部分是水平流矩形濕地結構,第二部分分三層,呈圓形,呈紊流狀態。塔式結構中水流由頂層進入第二層及底層,形成瀑布溢流,因此水中溶解氧濃度增加,從而提高了硝化反應效率,反硝化效率也由於有另外的有機物的加入而得到了改善,增加反硝化速率的另一個原因是直接通過旁路進入第二部分的廢水中帶入的足量有機物。常綠植物池柏(Taxodium ascendens),經濟作物藺草(Schoenoplectus trigueter),野茭白(Zizania aquatica),有裝飾性的多花植物睡蓮(Nymphaea tetragona),香蒲(Typha angustifolia)被種植在濕地中。該系統對總懸浮物、化學需氧量、氨氮、總氮和總磷的去除率分別為89%、85%、83%、 83% 和64%。高水力負荷和低水力負荷(16 cm/d 和 32 cm/d)對於塔式復合人工濕地結構的性能沒有顯著的影響。通過硝化活性和硝化速率的測定,發現硝化和反硝化是濕地脫氮的主要機理。塔式復合人工濕地結構同樣具有觀賞的價值。

關鍵詞:

人工濕地;硝化作用;反硝化作用;生活污水;脫氮;硝化細菌;反硝化細菌
研究目的:

1.評價新型人工濕地的性能,塔式復合人工濕地(THCW),尤其是在高水力負荷的情況下脫氮效率。這種人工濕地結構設計通過瀑布形式的水流進行被動充氧從而提高廢水中溶解氧濃度進而提高硝化速率,依靠直接在濕地中間部分加入原廢水提高反硝化速率,從而促進硝化反硝化過程。

2.對於在人工濕地結構中常綠多年生木本植物和草本植物共同脫除氮的效率的評價,尤其是在冬季的階段,且在濕地里植物的生長量對於氮的脫除是有幫助作用的。

3.研究表面水平流、自由水流相結合的系統是否在脫除和轉化廢水中污染物方面表現出更好的性能,尤其是脫氮方面。

2. 材料和方法

2.1 系統描述

我們研究隊伍設計的人工濕地結構位於中國寧波某村。它包括三個部分,容積按照四十人排量設計。氣候特點為年降水量1300-1400mm和累計年平均氣溫16.2℃。極高極低值分別為38.8℃和-4.2℃。較冷的時間段以十二月到二月為代表並且在這個時間段里出水比較接近於8℃(最低5℃)。第一部分和第三部分8m長6m寬1.0m深。反應床有三層構成,最底一層由厚20 cm的洗凈的礫石(2–6 cm)構成,中間層由65 cm厚的細砂(0.5–2.0 cm)粒構成,最上層由15 cm厚的土壤(0.1–0.2 cm)構成。底面坡度大約1%。第三部分有三個環形的單元構成,直徑分別為7m、5m和3m,由下向上每個0.6m深,表面積近似估算為38.5m2。由頂部向低處單元的溢流會立即產生的瀑布似的紊流可以增大溶解氧含量和維持含氧條件。

圖1 塔式復合人工濕地水流示意圖:1.進水區 2.塔式區 3.出水區 4.濕地植物 5.頂部環形區域 6.中部環形區域 7.底部環形區域 8.瀑布似溢流

濕地結構的底部用高密度的聚乙烯作為襯里,環形區域則是要鋪襯5cm厚的砌磚牆,為了防止污水的滲漏及污水與地下水混合。由苗圃購得的池柏(Taxodium ascendens)的幼苗以間距0.8m間隔圍繞整個濕地結構底部環形種植,濕地結構地層中部種植密度為56株/m2的藺草(Schoenoplectus trigueter),於頭年十一月種植第二年五月份收割。在藺草收獲後的六至十月份,以9株/m2的種植密度種植野茭白(Zizania aquatica)。在第二部分頂部的環形部分以近似6株/m2的種植密度種植睡蓮(Nymphaea tetragona),在中間環形區域以的36株/m2種植密度種植香蒲(Typha angustifolia)。

表1 THCW進水和出水的物理化學特性

80%的原污水不斷的流入濕地結構的第一部分。20%的污水由泵直接輸入第二部分的環形結構最高層,溢流進入環形結構中間一層,之後流入最後一層。此時第二部分處理污水與第一部分處理後的污水一起流入濕地結構的第三部分並最終由其排出。水深由一個儲水塔控制。在第一時段,前四個月(06年5月到8月)人工濕地結構以的16 cm/d水力負荷運行(水力停留時間5.4 d)。第二時段,之後八個月(06年9月到07年4月)人工濕地結構以的比較高的32 cm/d水力負荷運行(水力停留時間2.7 d)。這些生活污水在一個腐化池裡先進行預處理(表一)。

2.2 分析方法

2.2.1 化學分析

需每天採集第一部分的進水,第二部分的出水(僅在後八個月),第三部分的出水,每周混合水樣的測試數據和結果搜集分析,需檢測TSS,COD,NH3-N,TN,TP。每周檢測現場每部分和每個環形處理單元的水溫,pH,DO,TSS,COD,TN,TP和NH3-N要堅決的按照標准方法來檢測控制(APHA, 1998)。

野茭白(Z. aquatica))和藺草(S. trigueter)在零六年十月和零七年五月分別被收割(砍掉植株所有水面上可見部分)。收割的植物在被蒸餾水洗過後在太陽下經過24小時的日照後投入105 ◦C下灼燒24小時。植物在乾燥後的稱重作為基本分析。被乾燥和研磨過的植物碎末作為總氮(TKN)測量的准備,分析方法按照標准方法(APHA, 1998)。

2.2.2硝化及反硝化的測量

在濕地結構第三部分的前端沉澱物上層的五厘米處存在潛在的硝化反應。使用的試驗介質中每公升包含:0.14g K2HPO4; 0.027 g KH2PO4; 0.59 g (NH4)2SO4;1.20 g NaHCO3;0.3 g CaCl2·2H2O;0.2 g MgSO4; 0.00625 g FeSO4;0.00625 g EDTA;1.06 gNaClO3;pH是7.5。氯化鈉被用於抑制硝酸鹽及亞硝酸鹽的氧化。50mL沉澱污泥需要加入100mL試驗介質25 ◦C在震盪器150 rpm轉速下培養。這種經處理過的樣本在被培養2,6,20和24小時後被收集。亞硝酸鹽的濃度用光度計測量。由亞硝酸鹽產量和培養時間數計算出的線性回歸,評估出的角系數可以計算出潛在硝化反應的量。結果以在樣品中的體積損耗規范化的計算出來,最後以乾重(DW)及明確的每小時每克干物質產生nmol亞硝酸鹽表示。

潛在亞硝化反應速率(PDR)被用乙炔抑制設備進行測量。 沉澱物樣本在第三部分的後部的四個地點採集(兩個分散採集,兩個呈柱狀採集直徑3.5 cm),並且要立即用鋁箔密封以防游離氧進入沉澱物樣本。這四個樣本分別投入四個容積為1500mL的錐形瓶中,加入添加營養元素的營養液進行培養(15 mg/L NO3-N,72 mg/L Ca,10 mg/L Mg,27 mg/L Na,39mg/L K和2.5 mg/L PO4-P)。燒瓶頂部用氮氣吹洗半個小時。燒瓶被置於旋轉振盪器中60 rpm轉速震盪。樣本在黑暗處20 ◦C培養八小時。每個小時使用注射器進行氣體取樣。頂部樣本用氣象色譜儀分析N2O的濃度(日本金島公司氣象色譜儀GC-14B),氣象色譜儀帶有一個電子捕獲探測器操作溫度340 ◦C。潛在亞硝化的反應速率以mg N2O-N/m2沉澱物每小時表示。

2.2.3 微生物數量的分析

人工濕地沉澱物中的硝化和反硝化微生物使用以下培養基用最大可能數量法計算(Carter and Gregorich, 2006)。計算硝化細菌的培養基配方如下:13.5 g Na2HPO4;0.7 g KH2PO4; 0.1g MgSO4·7H2O; 0.5 g NaHCO3; 2.5 g (NH4)2SO4;14.4mg FeCl3·6H2O; 18.4mg CaCl2·7H2O; 1 L 蒸餾水;pH=8.0。計算反硝化細菌的培養基配方如下:1.0 g KNO3; 0.1gNa2HPO4;;2.0 g Na2S2O7; 0.1g NaHCO3;;0.1 g MgCl2; 1 L 蒸餾水;pH 7.0。

用一根內徑為4.7cm的玻璃管採集測量硝化和反硝化細菌的數量應遠離泥水分界面(0–2 cm)及過深的深度(5–8 cm)。附著在岩石及水生植物體上的細菌剝離下來之後,然後用混合器將其溶於冷水驅散混合。經十個無菌的蒸餾水樣稀釋的沉澱物樣本被轉移到96格的包含各自培養基的微量滴定板上在28 ◦C下硝化細菌培養21 d反硝化細菌培養5 d。為了確定沉澱物的乾重,10 g的沉澱物在105 ◦C下被隔夜烘乾直至產生衡重樣本。在人工濕地結構運行期間,硝化和反硝化細菌的數量要每兩月進行一次計算。

2.2.4 統計分析

所有帶有方差測驗的統計分析都使用統計分析軟體SPSS進行分析(Statistic Package for Social Science)。當p < 0.05時誤差被認為是有效的。有效的誤差用鄧肯測試法進行評估。皮爾森相關分析適用於評估潛在反硝化效率和水力負荷之間有效的的線性相關,以及反硝化和水力負荷之間的關系。

3.結果

第二部分第三部分的出水中物理化學指標的變化在表1中給出,水的pH沒有太大的變化。由於人工濕地結構第二部分的瀑布式溢流的被動充氧的原因,出水的溶解氧含量(DO)相對較大。在第二部分入水的溶解氧平均值為:1.28±0.52 mg/L,出水中的平均值為:2.98±0.38mg/L。已觀測到的對總懸浮物TSS的脫除率為84.60±9.6%。氮的脫除率是較高值的,脫除NH3-N和TN平均值為:83.11±10.2%,82.85±8.5%。在第二部分NH3-N和TN的脫除率分別為:72%和29%。在第二部分的硝化作用將很大部分的氮轉化成了NO3-N,54%的由第三部分的反硝化作用和其他作用轉移脫除。磷的脫除率觀測到在64.15±7.9%。在第二時間段對於第一時間段各類超標污染物的脫除效率更高,因為第一時間短的水力負荷較低。但在兩種不同的水力負荷下各類污染物的脫除效率是相似的(p < 0.02)。

圖2顯示了的研究調查期間12個月的入水和出水中CODcr,NH3-N,TN和TP脫除效率。在研究期間的時間段一和時間段二中,調研中的十二個月NH3-N和TN被有效脫除。脫氮效率在開始10周和最後10周是最高,由於溫度較高的原因。人工濕地結構在冬季也顯出了對於氮、磷和有機物的較高的脫除效率。另外由於硝化和反硝化作用而導致的氮素流失的量在夏季大於(p < 0.003)在冬季。當濕地中的pH值超過極大值7.7,氨的揮發可以被忽略,這個pH值下沒有足夠量的氨氣的生成。在兩種水力負荷下(16 cm/d和 32 cm/d)的脫除效率在統計上沒有顯著差異。

圖2.實驗期間THCW進水出水中的COD,NH3-N,TN和TP含量與脫除效率

圖2中同樣顯示在濕地運行期間磷的脫除效率在最高的水力負荷下或是在冬季沒有十分顯著的波動。在冬季和夏季的運行中,出水的總磷TP濃度沒有顯著的差異。

5.結論

該研究顯示,塔式復合人工濕地結構可以有效處理許多污染物,第一部分的處理目標為總懸浮物TSS和生物需氧量,第二個塔式部分的處理目標是硝化,第三部分的目標是反硝化。使用塔式結構的瀑布式水流而帶來被動充氧以及由旁路直接注入第二部分的原污水,在促進硝化和反硝化方面的顯示出了很大的促進。對於總懸浮物TSS,化學需氧量COD,氨氮NH3-N,總氮TN,總磷TP的脫除效率分別為:88.57±16.3%,84.60±9.6%,83.11±10.2%,82.85±8.5%,64.15±7.9%。顯然,我們設計的系統在高的水力負荷下對於初級生活污水有一個高的脫氮能力。濕地結構污泥里的硝化細菌的數量較高,但反硝化細菌數量對於其他報道來說相對偏低。潛在硝化反應和潛在反硝化反應的數目是與硝化細菌和反硝化細菌數目相一致的。在濕地結構中硝化反應和反硝化反應是脫氮運行的主要機理。濕地種植物的含氮量顯示出本土植物藺草是最適合濕地結構的植物,因為它有冬季生長和工業可以利用的特點。對於環境教育項目,塔式復合人工濕地結構也提供了一個額外的好處,即美學的觀賞價值。對於濕地結構的超過兩年的現場檢測研究,最佳化的入水分布和結構設計將會在將來的研究中逐一進行。
太多了,發不了

10. 急求環境工程污水處理中英文對照翻譯

小弟,自己做下吧,以後總不能靠別人~

閱讀全文

與翻譯污水處理相關的資料

熱點內容
錦鯉魚池過濾泵流量 瀏覽:711
超濾器是什麼意思 瀏覽:881
純水靜靜怎麼打 瀏覽:846
超濾截COD 瀏覽:914
電子超純水水罐用什麼材質 瀏覽:49
清除水垢硅磷晶 瀏覽:519
crv空氣凈化器怎麼打開 瀏覽:526
反滲透膜低溫清洗 瀏覽:785
鄭州過濾王管理中心地址 瀏覽:872
水水垢成分 瀏覽:866
陝西原裝外置污水提升泵要多少錢 瀏覽:419
聚聚乙烯樹脂粉袋 瀏覽:739
飲水機漏水屬於什麼原因 瀏覽:824
污水廠硝化脫模怎麼處理 瀏覽:924
vue2內置過濾器 瀏覽:386
植物芳香油蒸餾設備 瀏覽:418
聚醚楓超濾膜進水pH 瀏覽:907
外置過濾桶推薦 瀏覽:676
75g反滲透 瀏覽:347
純水機桶怎麼裝 瀏覽:524