1. 各種污水處理設施的去除效率是多少
污水處理設施,對污染物指標的去除可以說幾乎是零。
設施就是基礎建設,或者處理專設備。要想談論去除屬率,可以從葯劑的使用,工藝的選用等方向談起。
例如說水中的COD去除效果。從工藝上講,是用單純的物化工藝流程、單純的生化工藝流程,還是用物化—生化聯合工藝流程。從葯劑選擇上來說,是用芬頓試劑、臭氧,還是用氧化劑—紫外線聯合法。
我說幾乎是零,因為還有膜處理技術。最常見的就是家用凈水器,原理就是比水大的分子過不去。但是目前世界上所有的自來水廠、污水處理廠沒有一家是完全靠膜處理技術,來處理水體的。理由就是成本高且處理量少。當然隨著科學的進步,這有著非常好的發展前景。
希望能幫到你!!!
2. 城鎮污水處理的主要考核指標是污水處理總量及什麼
城鎮污水處理工作考核暫行辦法
第一條 為加強城鎮污水處理設施建設和運行管理,依據《國務院關於印發節能減排綜合性工作方案的通知》(國發[2007]15號)及有關規定,制定本辦法。
第二條 本辦法適用於對城鎮污水處理設施建設、運行和管理工作考核。
第三條 住房和城鄉建設部負責對各省、自治區、直轄市城鎮污水處理工作考核。 各省、自治區、直轄市人民政府住房和城鄉建設廳(水務廳(局)、市政管委會)負責本行政區內城鎮污水處理工作考核。
第四條 考核採取日常監管、現場核查和重點抽查相結合的方式進行。
第五條 考核指標主要為城鎮污水處理設施覆蓋率、污水處理率、處理設施利用效率、污染物削減效率以及監督管理指標。
第六條 住房和城鄉建設部於每年5月前,對上一年度全國城鎮污水處理工作情況進行考核。各省、自治區、直轄市於每年3月前完成上一年度城鎮污水處理工作自查報告並報送住房和城鄉建設部。自查內容除考核指標外,還應包括城鎮污水處理規劃編制和執行、城鎮污水處理監管制度和落實、污水處理收費、污水處理水質監測、重大安全事故等情況。 第七條 住房和城鄉建設部負責制定考核評分細則,具體評分細則參見附件。考核結果採用百分制記分,分為優(≥85分)、良(<85分,≥70分)、中(<70分,≥60分)、差(<60分)四個等級。對考核結果為優的將給予表彰,對考核結果為差的,認定為未通過年度考核,並給予通報。
未通過年度考核的省(自治區、直轄市)應在30天內向住房和城鄉建設部做出書面報告,並提出限期整改措施。
第八條 對在考核工作中瞞報、謊報和造假的地區,予以通報批評。對直接責任人員,要嚴肅處理。
第九條 本辦法由住房和城鄉建設部負責解釋。 第十條 本辦法自印發之日起施行。 附件:
1、省、自治區、直轄市城鎮污水處理考核評分細則 2、36個大中城市污水處理考核評分細則
一、考核總分計算
考核指標包括:設施覆蓋率、城鎮污水處理率、處理設施利用效率、主要污染物削減效率和監督管理指標。考核採用百分制,考核總分為各項考核指標分值之和。
二、考核指標分值計算
(一)設施覆蓋率(25分)
設施覆蓋率分值按所轄設市城市和縣城污水處理設施建成率加權計算。計算公式如下:(略)
所轄市縣設施建設情況依據「全國城鎮污水處理管理信息系統」數據。
(二)城鎮污水處理率(20分)
城鎮污水處理率分值計算公式如下:(略)
城鎮污水處理廠污水處理量依據「全國城鎮污水處理管理信息系統」本年度數據;其它
設施污水處理量和污水排放總量依據《中國城市建設統計年鑒》上一年度數據。考慮到污水處理率統計的復雜性,可根據全國城鎮污水處理率的實際情況,對污水處理率最高得分作適當調整。
(三)處理設施利用效率(20分)
處理設施利用效率分值按不同運行負荷率對應的實際處理水量加權計算。計算公式如下:(略)
運行負荷率依據「全國城鎮污水處理管理信息系統」數據。
(四)主要污染物削減效率(20分)
污染物削減效率分值按不同的污染物削減效率的削減總量加權計算。計算公式如下:(略)
主要污染物削減量依據「全國城鎮污水處理管理信息系統」數據。
(五)監督管理指標(15分)
監督管理指標分值按「全國城鎮污水處理管理信息系統」數據上報分值和水質化驗管理分值加和計算。計算公式如下:
監督管理分值=數據上報管理分值+水質化驗管理分值
1、數據上報管理分值(9分)
數據上報管理分值=在建項目分值+運行項目分值(略)
其中,上報率依據「全國城鎮污水處理管理信息系統」數據。
2、水質化驗管理分值(6分)
水質化驗管理分值計算公式如下:(略)
其中,上報率依據「全國城鎮污水處理管理信息系統」數據,取各指標項實報期數與應報期數之比。
3、在專項檢查、抽查中,發現上報數據存在弄虛作假現象的,每一項扣3分,直至將總分15分全部扣凈。
請參考:住房和城鄉建設部頒布的《城鎮污水處理工作考核暫行辦法》
3. 我國每年污水處理率是多少
目前,水污染在中國已成為不容忽視的事實,而日益膨脹的城鎮每天產生的大量生產生活污水也成了水污染的元兇之一.污水處理,這一人類自身能夠採取的應對補救措施也更多地進入人們的視野.
城鎮污水處理現狀不容樂觀
「2004年,全國661座城市有污水處理廠708座,處理能力4912萬m3/d,全年城市污水處理量162.8億m3,城市污水處理率達到了45.7%;全國的1636個縣城有117座污水處理廠,處理能力273萬m3/d,污水處理率只有11.2%.」 近日,在2006城市水業戰略論壇上,中國國際工程咨詢公司社會事業部城建環保處副處長於曉東指出,我國城鎮污水處理的現狀不容樂觀.
「我們對1995年和2004年的745個國控斷面進行對比分析,發現Ⅰ類到Ⅲ類水質從1995年的27.4%增加到了2004年的37.7%,同時劣Ⅴ類水質下降到了28.2%.雖然水環境整體情況還不是很樂觀,但它已經開始從一個不好的狀態向好的方向發展.在近十年GDP增長迅速、環境承載量巨大的情況下,我們的水環境發生轉變,說明我國』十五』對污水設施投入力度的加大還是非常正確的.」於曉東介紹,從1998年以來,各地就加大城市污水處理方面的投入力度,至2005年國家共投入國債資金600億元,帶動其他資金1500億元.
通過對1990年~2004年我國的用水量分析,於曉東發現用水量在1994年達到最高點之後,一直呈下降趨勢,我國這幾年經濟整體增長非常快,但是用水量並沒有一起增長,說明我國經濟在向節約型轉變.
「2004年,全國城市污水管道長度是7.8萬千米.單位污水排放量的平均長度為8.1km/(萬m3/d),但是低的省份可能連1km/(萬m3/d)都不到,各個城市相差非常大,大部分城市的污水管網建設整體處於明顯不足和滯後狀態.」於曉東指出,我國城鎮管網建設滯後,污水處理廠設計規模偏大、負荷率普遍較低是目前污水處理設施的主要問題.
而除了投資不足之外,於曉東認為,影響城鎮污水管網建設的主要原因在於規劃不科學,建設歸建設,規劃放在規劃一邊,雙方根本沒有銜接.部分污水處理廠建設時未充分調查並合理預測污水量,沒有充分考慮到工業企業、城市建設布局調整或水價提高等原因導致規劃范圍內的用水量下降等因素,造成設施建設脫離環境保護的實際需要,「貪大求洋」,設計規模偏大.加之我國尚未形成有效的污水再生利用激勵機制,再生水管線等配套設施建設不完善.由於資金不足、設計建設缺陷、執行標准逐步趨嚴等方面的原因,有相當一部分城市污水處理廠普遍存在不達標或不能同時達標的問題.
「收費不到位,相關運行機制尚未完善也是大的問題.」於曉東介紹,截至2005年6月底,全國有475個城市實行了污水處理收費制度,還有186個城市沒有開征污水處理費,已經開征污水處理費的城市普遍存在收費標准低、征繳率低的問題.同時,政府和污水處理企業之間的職責分工仍然不明確,部門協調與征地、收費、運行等方面相應配套機制不完善,城市污水處理市場化、產業化進展比較緩慢,「這造成整個污水處理行業現在總量很大,但是效率不高的局面」.
「十一五」污水處理:嚴格對接重點流域保護
「當前工作要優先建設配套管網,保障污水處理率,加快處理設施的建設和升級改造,』十一五』末要保證達到1億m3/d的能力,到』十二五』希望再增長三千萬的規模.」於曉東說.
據悉,2004年,我國城鎮污水處理總能力達到了5185萬m3/d,如果加上各省市自治區目前在建規模,「十一五」初期全國城鎮污水處理能力可望達到近9000萬m3/d.
「對新增能力要進行一個總體布局的分析,布局總體效果要與污染貢獻和水環境污染嚴重地區相吻合,達到治理效果最優.」於曉東建議,目前,尚未建成污水處理廠的297個城市,尤其是地級以上城市,應優先啟動城市污水處理設施建設,優先考慮水源保護區、沿江與河流上游城鎮、國家重點保護區和風景區;重點流域區域及大江大河沿岸城市應嚴加要求,達到較高的城鎮污水處理率和處理程度;飲用水水源地周圍及影響區的城市和縣鎮,根據相關法規和標准規范,從嚴確定污水處理率和處理程度;重點國家級保護區、風景區和自然遺產等,城鎮污水處理率盡可能滿足水環境保護的要求;東部發達地區、中部地區及西部欠發達地區,其他非重點領域、區域,根據當地環境容量和社會經濟發展情況,確定合理可行的城鎮污水處理率.
「城鎮污水處理要與國家幾個重點流域的保護規劃嚴格對接,到2010年,南水北調東線、三峽庫區及上游影響區、21世紀首都水資源影響區、滇池流域城鎮污水處理率達到80%,淮河流域、太湖流域、巢湖流域達到75%,海河流域、遼河流域、松花江流域達到70%,黃河流域、珠江流域、長江中游達到60%.」
於曉東說,「十一五」期間要完成以上規劃目標,新增投資將比「十五」期間更大,投資額度排序為:管網、新增污水能力、污泥處理處置、舊廠升級改造、再生水.同時保障措施必須跟上,如建立和完善技術標准和評估體系,組織技術開發、示範,解決關鍵技術問題;推行有利於城鎮污水處理及再生利用的經濟政策,積極推進水價改革,進一步建立和完善污水處理收費制度;明確各部門職責,加強組織協調,整合和優化配置資源;完善法律法規,規范項目建設,加強運營和市場監管等.
「到2010年底,全國城鎮污水處理率平均達到60%以上,其中省會以上城市達到80%以上,地級市達到60%,縣級市達到50%,縣城達到30%,北方地區缺水城市再生水利用率達到污水處理量的20%以上.到』十一五』末,全國城鎮污水集中處理能力達到1億m3/d左右,城鎮污水集中處理系統的處理量達到300億m3/年左右,預計污染物每年削減量為COD600萬噸以上.」最後,於曉東用這一連串數字描繪出五年後我國城鎮污水處理的規劃目標.
4. 污水處理量和處理質量指的是什麼
典型的活性污泥工藝二沉池的底泥去向有二,①作為剩餘污泥Qw排出進內入污泥處理設施;②作為容迴流污泥Qr返回至曝氣池,以維持其污泥濃度的穩定(其損失主要來自曝氣池向二沉池的輸送過程)。
更進一步,污水中的污染物去向也有二:①在曝氣池中被活性污泥(即微生物)生化降解;②難降解物質轉移富集到剩餘污泥中,進一步處置。
5. 城市污水處理率計算中「城市污水產生總量」從哪裡得到
城市污水包括:生活污水、工業廢水以及部分合流制的雨水量
生活污水量和工業廢水量
3.1.1城鎮旱流污水設計流量,應按下列公式計算:
Qdr=Qd+Qm (3.1.1)
式中:Qdr-截留井以前的旱流污水設計流量(L/s);
Qd -設計綜合生活污水量(L/s);
Qm -設計工業廢水量(L/s);
在地下水位較高的地區,應考慮入滲地下水量,其量宜根據測定資料確定。
3.1.2居民生活污水定額和綜合生活污水定額應根據當地採用的用水定額,結合建築內部給排水設施水平和排水系統普及程度等因素確定。可按當地相關用水定額的80%~90%採用。
3.1.3綜合生活污水量總變化系數可按當地實際綜合生活污水量變化資料採用,沒有測定資料時,可按本規范表3.1.3的規定取值。
表3.1.3 綜合生活污水量總變化系數
平均日流量(L/s) 5 15 40 70 100 200 500 ≥1000
總變化系數 2.3 2.0 1.8 1.7 1.6 1.5 1.4 1.3
註:當污水平均日流量為中間數值時,總變化系數可用內插法求得。
3.1.4工業區內生活污水量、沐浴污水量的確定,應符合現行國家標准《建築給水排水設計規范》GB50015的有關規定。
3.1.5工業區內工業廢水量和變化系數的確定,應根據工藝特點,並與國家現行的工業用水量有關規定協調。
6. 常規生活污水,採用一體化污水處理設施處理時,污水量怎麼計算呢有沒有懂的人給個指點是按BOD還是COD計
不知道你想表達什麼,你想計算原水污水量呢還是設計處理池容積呢。
7. 污水處理流量折算
你說的系數可能就是
總變化系數Kz:最大日最大時污水量與平均日平均時污水量的比值稱為總變化系數。
一般是根據流量按經驗查出來
有一個經驗公式,該式是我國在多年觀測資料的基礎上進行綜合分析總結出的計算公式。它反映了我國總變化系數與平均流量之間的關系:
Q平均<5時 kz=2.3
Q平均5<Q平均<1000時 kz=2.7/(Q平均的0.11次方)
Q平均>1000時 kz=1.3
8. 污水處理廠裡面污水池散發臭氣的量(每平方米散發的量)大約是多少有相關的計算公式嗎
表1 臭氣濃度控制參考值
序號 控制項目 一級標准 二級標准
1 氨 1.5 4.0
2 硫化氫 .06 .32
3 甲硫醇 .007 .02
4 甲硫醚 .07 .55
5 臭氣濃度(倍數) 20 60
6 甲烷氣(廠區最高濃度) 5 5
7 氯氣 .4 .6
表2 污水處理廠構築物脫臭通量
設施名稱 通風量 備注
沉沙池 二層蓋板作業空間 3~5次/小時
非作業空間 1~3次/小時
廠房式蓋板作業空間 5~10次/小時 在漏鬥上加蓋辦事為3~5次/小時
泵房 3~5次/小時或根據發熱量計算 考慮內燃機用氣
鼓風機房 3~5次/小時或根據發熱量計算
電氣室 根據發熱量計算
發電機房 3~5次/小時 考慮內燃機用氣
初沉池 二層蓋板作業空間 3~5次/小時
非作業空間 1~3次/小時
廠房式蓋板作業空間 5~10次/小時
曝氣池 二層蓋板作業空間 3~5次/小時
非作業空間 1.2×曝氣空氣量
廠房式蓋板作業空間 3~5次/小時
加氯機房 5~7次/小時
污泥濃縮池 二層蓋板作業空間 3~5次/小時+1.5×曝氣空氣量
非作業空間 1~3次/小時
廠房式蓋板作業空間 5~10次/小時
污泥濃縮機房 3~10次/小時 熱處理時採用其他方法
一般機械室 3~5次/小時
管廊 3~5次/小時
2.1 土壤脫臭技術
2.1.1土壤脫臭原理及特點
土壤脫臭機理主要可分為物理吸附和生物分解兩類,惡臭氣體-如胺類、硫化氫、低級脂肪酸等水溶性臭氣類,被土壤中的水分吸收去除,而非溶性臭氣則被土壤表面物理吸附繼而被土壤中微生物分解。土壤脫臭法特點:① 維護管理費用低,效果與活性炭脫臭同等,② 處理1m2的臭氣需2.5~3.3 m2土地;③ 但不適於降暴雨、下大雪地區;對於高溫、高濕和水分、塵土、微塵等氣體須予處理。
2.1.2 土壤和參數
設計土壤脫臭時選擇的土壤指標應是:腐殖土為好,亞粘土等紅土需摻入雞糞、垃圾和污泥肥料進行改良後使用;礦質土和粘土不宜。土壤水分40~70%為宜。過於乾燥的土壤需裝設水噴淋器。種植草坪土壤表面保持傾斜,作為防降暴雨的措施。
日本經驗得出:
臭氣通過土壤中速度:2mm ~17mm/s;
設計一般選為5mm/s;
有效土壤厚度為50 cm;
臭氣與土壤接觸時間為1分40秒;
臭氣通過活性炭速度:30cm~40cm/s;
有效厚度為40cm;
臭氣與活性碳接觸時間為1秒。
2.1.3 工程範例
(1)日本某處土壤脫臭床
臭氣風量:600m3/min
臭氣與土壤接觸時間:2.7m3/m2min
需土壤面積:1580m2
(2)我國某處污泥脫水機房土壤脫臭床
脫水機房容積:V=450m3
設換氣周期:每小時3次(20min)
換臭氣量:22.5m3/min(450m3/20min)
脫臭負荷:設2.7m3(臭氣)/m2(土)min
需土壤面積(計算值):8.3m2
(設計值):25m2
結構設計(自土壤表層向下)
2.3 高能離子脫臭技術
2.3.1 技術簡介及工作原理
高能離子凈化系統是瑞典的高新技術,它能有效地清除空氣中的細菌、可吸入顆粒物、硫化合物等有害物質。使人的嗅覺感受到模擬自然的清新空氣。它的核心裝置是BENTAX離子空氣凈化系統,其工作原理是置於室內的離子發生裝置發射出高能正、負離子,它可以與室內空氣當中的有機揮發性氣體分子(VOC)接觸,打開VOC分子化學鍵,分解成二氧化碳和水;對硫化氫、氨同樣具有分解作用;離子發生裝置發射離子與空氣中塵埃粒子及固體顆粒碰撞,使顆粒荷電產生聚合作用,形成較大顆粒靠自身重力沉降下來,達到凈化目的;發射離子還可以與室內靜電、異味等相互發生作用,同時有效地破壞空氣中細菌生存的環境,降低室內細菌濃度,並將其完全消除。最終的效果是使室內空氣變得象雨後森林般的純凈。
高能離子凈化系統在歐洲諸國應用於醫院、辦公樓、公眾大廳等,以空氣凈化以致達到模擬自然森林空氣清新的效果。近些年逐步開發應用於污水處理廠和污水提升泵房的脫臭方面,法國、英國、蘇格蘭、瑞典等國的應用實例很多。
2.3.2 天津市某污水廠試驗效果
(1)試驗場地
脫臭中試場地選擇在天津市某污水處理廠污泥處置實驗室內,臭源是脫水污泥處置過程中產生的臭氣。
(2)試驗條件:
①污泥中試實驗室
總容積:30m3 (3×4×2.5m3) ;
污泥發酵倉直徑φ600mm,長3m;
臭氣測試點與發酵倉的水平距離為1m;
高能離子凈化系統主機及通風系統置於室內。
②臭氣源
260kg脫水污泥投入到回轉式污泥發酵倉中;
為了加強臭氣強度,污泥採用了太陽能加熱。
③高能離子凈化系統
離子機規格型號:2—E—S氣流:0.42m3/s
空氣處理量:1500m3/h 功率:22w
為離子發射系統配套的通風系統;
④ 測試項目
負離子濃度;VOC(有機污染)氣體總量;
H2S、O2、CO、CH4濃度。
⑤ 試驗數據分析及評價
9小時連續運行,臭源VOC濃度周期性變化從25~100ppm,室內則從15~16.7ppm逐漸衰減到0~1ppm;室內測點離子濃度始終保持在160~170Ions/cm3;H2S氣體濃度也保持為0。
試驗結果變化曲線見圖1及2。
⑥ 試驗結果評價
A試驗所採用的VOC測定儀,離子檢測計和有毒有害氣體測定儀都是先進的攜帶型儀器,靈敏度很高,能保證數據的可靠性;
B試運行是污泥發酵倉及太陽能加熱後的污泥臭氣,臭氣強度高,通過BENTAX離子空氣凈化系統凈化,僅1小時後,VOC濃度降低至零,離子濃度升高,H2S氣體由4.0ppm減小到0,人員嗅覺感覺臭味明顯下降。負載試驗是在脫水污泥處置臭源條件下進行的,臭源VOC濃度從25~100ppm,室內測點則從15~16.7ppm逐漸衰減到0~1ppm;離子濃度始終保持在160~170 Ions/cm3;H2S氣體濃度也保持為0。
技術結論意見為:通過利用高能離子除臭,在上述試驗條件下,除臭效果技術上是可行的。
C 經濟分析
在本實驗條件下,高能離子凈化系統對污水廠脫水污泥臭氣的凈化效果較顯著,運行成本分析如下:
24小時運行耗電量僅為0.53kwh;
單位空間耗電量為0.018 kwh/m3.d;
按每度電0.45元計算
凈化1立方米臭氣的成本約為0.0081元/m3.d;
污泥脫水車間以1000 m3為計;
則運行成本直接耗電費用為8.1元/d。
9. 污水處理流量怎麼折算
污水處理工藝流程是指在達到所要求的處理程度的前提下,污水處理各單元的有機組合,以滿足污水處理的要求。
污水處理折算:
(一)、設計水量,水質及處理程度:
平均流量:5萬噸/天,變化系數1.4;
進水:COD:400 mg/L,BOD:300 mg/L,SS:350 mg/L;
出水:COD: 60 mg/L,BOD: 20 mg/L,SS: 20 mg/L;
處理程度計算:COD:(400-60)/400=85% ;
BOD:(300-20)/300=93.3% ;
SS:(350-20)/350=94.3% 。
(二)、機械格柵及其設計:
機械格柵是由一組平行的金屬柵條製成,斜置在污水流經的渠道上或水泵前集水井處,用以截留污水中的大塊懸浮雜質,以免後續處理單元的水泵或構築物造成損害。
設計中取二組機械格柵,N=2組,安裝角度α=60°
Q 設計水量=平均流量×變化系數=0.810 m3/s
2、機械格柵槽寬度:
B=S(n-1)+bn
式中: B——機械格柵槽寬度(m);
S——每根機械格柵條的寬度(m)。
設計中取S=0.015m,則計算得B=0.93m。
3、進水渠道漸寬部分的長度:
4、出水渠道漸窄部分的長度:
5、通過機械格柵的水頭損失:
6、柵後明渠的總高度:
H=h+h1+h2
式中: H——柵後明渠的總高度(m);
h2——明渠超高(m),一般採用0.3-0.5m
設計中取h2 =0.30m,得到H=1.28m。
7、柵槽總長度:
8、每日柵渣量計算:
採用機械除渣及皮帶輸送機或無軸輸送機輸送柵渣,採用機械柵渣打包機將柵渣打包,汽車運走。
9、進水與出水渠道:
城市污水通過DN1200mm的管道送入進水渠道,設計中取進水渠道寬度B1 =0.9m,進水水深h1=h=0.8m,出水渠道B2=B1=0.9m,出水水深h2=h1=0.8m。
(三)、沉砂池及其設計:
沉砂池是藉助於污水中的顆粒與水的比重不同,使大顆粒的沙粒、石子、煤渣等無機顆粒沉降,減少大顆粒物質在輸水管內沉積和消化池內沉積。
沉砂池按照運行方式不同可分為平流式沉砂池,豎流式沉砂池,曝氣式沉砂池,渦流式沉砂池。
設計中採用曝氣沉砂池,沉砂池設2組,N=2組,每組設計流量0.4051m3/s
1、沉砂池有效容積:
式中: V——沉砂池有效容積(m3);
Q——設計流量(m3/s);
t——停留時間(min),一般採用1-3min。
設計中取t=2min,Q=0.4051m3/s,得到V=48.61m3。
出水堰後自由跌落0.15m,出水流入出水槽,出水槽寬度B2=0.8m,出水槽水深h2=0.35m,水流流速v2=0.89m/s。採用出水管道在出水槽中部與出水槽連接,出水管道採用鋼管。管徑DN2=800mm,管內流速v2=0.99m/s,水力坡度i=1.46‰。
12、排砂裝置:
採用吸砂泵排砂,吸砂泵設置在沉砂斗內,藉助空氣提升將沉砂排出沉砂池,吸砂泵管徑DN=200mm。
(四)、初沉池及其設計:
初次沉澱池是藉助於污水中的懸浮物質在重力的作用下可以下沉,從而與污水分離,初次沉澱池去除懸浮物40%~60%,去除BOD20%~30%。
初次沉澱池按照運行方式不同可分為平流沉澱池、豎流沉澱池、輻流沉澱池、斜板沉澱池。
設計中採用平流沉澱池,平流沉澱池是利用污水從沉澱池一端流入,按水平方向沿沉澱池長度從另一端流出,污水在沉澱池內水平流動時,污水中的懸浮物在重力作用下沉澱,與污水分離。平流沉澱池由進水裝置、出水裝置、沉澱區、緩沖層、污泥區及排泥裝置組成。
沉澱池設2組,N=2組,每組設計流量Q=0.4051m3/s。
10、沉澱池總高度:
H=h1+h2+h3+h4
式中:h1——沉澱池超高(m),一般採用0.3-0.5;
h3——緩沖層高度(m),一般採用0.3m;
h4——污泥部分高度(m),一般採用污泥斗高度與池底坡底i=1‰的高度之和。
設計中取h1=0.3m,h3=0.3m,得h4=3.94m,得到H=7.54m。
15、出水渠道:
沉澱池出水端設出水渠道,出水管與出水渠道連接,將污水送至集水井。
式中: v3——出水渠道水流流速(m/s),一般採用v3≥0.4m/s;
B3——出水渠道寬度(m);
H3——出水渠道水深(m),一般採用0.5-2.0。
設計中取B3=1.0M,H3=0.8m,得到v3=0.51m/s>0.4m/s。
出水管道採用鋼管,管徑DN=1000mm,管內流速為v=0.51m/s,水力坡降i=0.479‰。
16、進水擋板、出水擋板:
沉澱池設進水擋板和出水擋板,進水擋板距進水穿孔花牆0.5m,擋板高出水面0.3m, 伸入水下0.8m。出水擋板距出水堰0.5m,擋板高出水面0.3m,伸入水下0.5m。在出水擋板處設一個浮渣收集裝置,用來收集攔截的浮渣。
17、排泥管:
沉澱池採用重力排泥,排泥管直徑DN300mm,排泥時間t4=20min,排泥管流速v4=0.82m/s,排泥管伸入污泥斗底部。排泥管上端高出水面0.3m,便於清通和排氣。排泥靜水壓頭採用1.2m。
18、刮泥裝置:
沉澱池採用行車式刮泥機,刮泥機設於池頂,刮板伸入池底,刮泥機行走時將污泥推入污泥斗內。
(五)、曝氣池及其設計:
設計中採用傳統活性污泥法。傳統活性污泥法,又稱普通活性污泥法,污水從池子首端進入池內,二沉池迴流的污泥也同步進入,廢水在池內呈推流形式流至池子末端,其池型為多廊道式,污水流出池外進入二次沉澱池,進行泥水分離。污水在推流過程中,有機物在微生物的作用下得到降解,濃度逐漸降低。傳統活性污泥法對污水處理效率高,BOD去除率可達到90%以上,是較早開始使用並沿用至今的一種運行方式
7、曝氣池總高度:
H總=H+h
式中: H總——曝氣池總高度(m);
h——曝氣池超高(m),一般取0.3—0.5m。
設計中取 h=0.5m,則 H=4.7m。
10、管道設計:
①中位管:
曝氣池中部設中位管,在活性污泥培養馴化時排放上清液。中位管管徑為600mm。
②放空管:
曝氣池在檢修時,需要將水放空,因此應在曝氣池底部設放空管,放空管管徑為500mm。
④消泡管
在曝氣池隔牆上設置消泡水管,管徑為DN25mm,管上設閥門。消泡管是用來消除曝氣池在運行初期和運行過程中產生的泡沫。
⑤空氣管
曝氣池內需設置空氣管路,並設置空氣擴散設備,起到充氧和攪拌混合的作用。
11、曝氣池需氧量計算:
依照氣水比5:1進行計算,Q=14580m3/h。
12、鼓風機選擇:
空氣擴散裝置安裝在距離池底0.2m處,曝氣池有效水深為4.2m,空氣管路內的水頭損失按1.0m計,則空壓機所需壓力為:
P=(4.2-0.2+1.0)×9.8=49kPa
鼓風機供氣量:
Gsmax=14580m3/h=243m3/min。
根據所需壓力及空氣量,選擇RE-250型羅茨鼓風機,共5台,該鼓風機風壓49kPa,風量75.8m3/min。正常條件下,3台工作,2台備用;高負荷時,4台工作,1台備用
(六)、二沉池及其設計:
二沉池一般可分為平流式、輻流式、豎流式和斜板(管)等幾類。
平流式沉澱池可用於大、中、小型污水處理廠,但一般多用於初沉池,作為二沉池比較少見。平流式沉澱池配水不易均勻,排泥設施復雜,不易管理。
輻流式沉澱池一般採用對稱布置,配水採用集配水井,這樣各池之間配水均勻,結構緊湊。輻流式沉澱池排泥機械已定型化,運行效果好,管理方便。輻流式沉澱池適用於大、中型污水處理廠。
豎流式沉澱池一般用於小型污水處理廠以及中小型污水廠的污泥濃縮池。該池型的佔地面積小、運行管理簡單,但埋深較大,施工困難,耐沖擊負荷差。
斜管沉澱池具有沉澱效率高、停留時間短、佔地少等優點。一般常用於小型污水處理廠或工業企業內的小型污水處理站。斜管(板)沉澱池處理效果不穩定,容易形成污泥堵塞,維護管理不便。
設計中選用輻流沉澱池,沉澱池設2組,N=2組,每組設計流量0.405m3/s。
3、沉澱池有效水深:
h2=q′×t
式中: h2——沉澱池有效水深(m);
t——沉澱時間(h),一般採用1—3h。
設計中取 t=2.5h,得到 h2=3.5m。
4、徑深比:
D/h2=10.4,滿足6-12之間的要求。
5、污泥部分所需容積:
式中: Q0——平均流量(m3/s);
R——污泥迴流比(%);
X——污泥濃度(mg/L);
Xr——二沉池排泥濃度(mg/L)。
設計中取Q0=0.579 m3/s,R=50%,
,
SVI——污泥容積指數,一般採用70-150;
r——系數,一般採用1.2。
設計中取SVI=100,r=1.2,得到Xr=1.2×104mg/L,X=4000mg/L。
經計算得到 V1=1563.3m3。應採用連續排泥方式。
6、沉澱池的進、出水管道設計:
進水管:流量應為設計流量+迴流量,管徑計算為900mm
出水管:管徑計算為800mm
排泥管:管徑為500mm
7、出水堰計算:
堰上負荷的校核。規定堰上負荷范圍1.5-2.9L/m.s之間。
8、沉澱池總高度:
H=h1+h2+h3+h4+h5
式中:H——沉澱池總高度(m);
h1——沉澱池超高(m),一般採用0.3-0.5m;
h2——沉澱池有效水深(m);
h3——沉澱池緩沖層高度(m),一般採用0.3m;
h4——沉澱池底部圓錐體高度(m);
h5——沉澱池污泥區高度(m)。
設計中取h1=0.3m,h3=0.3m,h2=3.5m.
根據污泥部分容積過大及二沉池污泥的特點,採用機械刮吸泥機連續排泥,池底坡度為0.05。
h4=(r-r1)×i
式中:r——沉澱池半徑(m);
r1——沉澱池進水豎井半徑(m),一般採用1.0m;
i——沉澱池池底坡度。
設計中取r1=1.0m,i=0.05,得到h4=0.86m。
式中:V1——污泥部分所需容積(m3);
V2——沉澱池底部圓錐體容積(m3);
F——沉澱池表面積(m2)。
計算可得 =315.4m3,則h5=1.20m。
得到H=6.16m。
(七)、消毒接觸池及其設計:
污水經過以上構築物處理後,雖然水質得到了改善,細菌數量也大幅減少,但是細菌的絕對值依然十分客觀,並有存在病原菌的可能,因此,污水在排放水體前,應進行消毒處理。
設計中採用平流式消毒接觸池,消毒接觸池設2組,每組3廊道。
1、消毒接觸池容積:
V=Qt
式中: Q——單池污水設計流量(m3/s);
t——消毒接觸時間(min),一般採用30min。
設計中取t=30min,得每組消毒接觸池的容積為729m3。
2、消毒接觸池表面積:
F=V/h2
式中:h2——消毒池有效水深,設計中取為2.5m。
設計中取h2=2.5m,得到F=291.6m2。
3、消毒接觸池池長:
L′=F/B
式中:B——消毒池寬度(m),設計中取為5m。
設計中取B=5m,計算得 L=58.32m。每廊道長為19.44m,設計中取為20m。
校核長寬比:L′/B=11.7>10,合乎要求。
4、消毒接觸池池高:
H=h1+h2
式中:h1——消毒池超高(m),一般採用0.3m;
設計中取h1=0.3m,計算得 H=2.8m。
5、進水部分:
每個消毒接觸池的進水管管徑D=800mm,v=1.0m/s。
6、混合:
採用管道混合的方式,加氯管線直接接入消毒接觸池進水管,為增強混合效果,加氯點後接D=800mm的靜態混合器。
(八)、污泥濃縮池及其設計:
污泥濃縮的對象是顆粒間的空隙水,濃縮的目的是在於縮小污泥的體積,便於後續污泥處理,常用污泥濃縮池分為豎流濃縮池和輻流濃縮池2種。二沉池排出的剩餘污泥含水率高,污泥數量較大,需要進行濃縮處理;初沉污泥含水量較低,可以不採用濃縮處理。設計中一般採用濃縮池處理剩餘活性污泥。濃縮前污泥含水率99%,濃縮後污泥含水率97%。
13、溢流堰:
濃縮池溢流出水經過溢流堰進入出水槽,然後匯入出水管排出。出水槽流量q=0.0015m3/s,設出水槽寬b=0.15m,水深0.05m,則水流速為0.2m/s,溢流堰周長:
c=π(D-2b)
計算得到c=15.86m。
溢流堰採用單側90°三角形出水堰,三角堰頂寬0.16m,深0.08m,每格沉澱池有110個三角堰,三角堰流量q0為:
Q1=0.0015/110=0.0000136m3/s
h′=0.7q02/5
式中: q0——每個三角堰流量(m3/s);
h′——三角堰堰水深(m)。
計算得到h′=0.0079m。
10. 污水處理車間怎麼算處理一噸污水花多少錢
污水處理廠的主要成本構成包括如下幾項(不含污水輸送成本):專
(1)直接材料:在污水處理屬過程中耗用的各種材料、葯品、低值易耗品費用。
(2)動力費:在污水處理過程中耗用的燃料和動力費用。
(3)工資福利費:污水處理廠內生產工人、管理人員的工資及福利費。
(4)折舊費:指企業提取的固定資產折舊額,折舊率按相關財務規定分類計取。
(5)修理費:指為設備大修理預提的費用。 參考計算方法:修理費=設備費合計×修理費提存率 修理提存率的確定:設備基本國產的按2.4%,適量進口的按2.2%計取。
(6)檢修維護費:指對建構築物、設備、工藝管道等日常檢修維護實際發生的費用。
(7)財務費用:指企業長、短期貸款發生的利息支出。
(8)其他費用。如污泥處置費、生產用車費、辦公費、差旅費、稅金(如土地使用稅、房產稅、印花稅等)、郵電費等。