Ⅰ 乙烯基樹脂的技術的發展
1低收縮型乙烯基樹脂的發展
乙烯基酯樹脂作為不飽和聚酯樹脂的范疇,活性較高,固化反應速度較快,造成乙烯基酯樹脂固化後有較大的固化收縮率,一般不飽和聚酯樹脂(包括常規乙烯基樹脂)固化時收縮較大,可達到7-10%左右的體收縮,隨著國內外對於高性能樹脂技術要求的提高,希望尋找一些固化收縮較低的乙烯基酯樹脂,這是一個21世紀初期國內外許多廠家努力尋求的技術突破點。 低收縮樹脂的機理較為復雜,而原來一些廠家為了克服樹脂的固化收縮,通過加入低收縮添加劑(LPA)的方法來達到目的,但有其應用的局限性,而更多的廠家是努力通過樹脂合成方法以及分子設計水平上來解決這個技術問題,
超低收縮環氧乙烯基酯樹脂以其具有的足夠的機械強度和剛度、足夠的尺寸穩定性、耐熱循環、耐腐蝕的獨特性能更好的滿足高品質FRP產品的要求。
2耐沖擊型乙烯基酯樹脂:
乙烯基酯目前應用最多的場合是耐腐蝕場合,但是由於乙烯基樹脂中具有較多的仲羥基,可以改善對玻璃纖維的濕潤性與粘結性,提高了層合製品的力學強度;另外在分子兩端交聯,因此分子鏈在應力作用下可以伸長,以吸收外力或熱沖擊,表現出耐微裂或開裂。因此,乙烯基樹脂在一些要求高力學性能、耐沖擊場合中得到應用,但是常規的乙烯基樹脂在耐力學沖擊方面還是有待於提高的,尤其是採用富馬酸性改性的一些乙烯基樹脂,因為該類型樹脂的固化交聯密度高,交聯點間的分子鏈段較短,所以耐沖擊性能較差。在這些樹脂的合成設計中,要求樹脂分子主鏈上的醚鍵較多,這樣能夠充分的提高樹脂的耐沖擊性,2013年又出現了另外一種方式,即在通過橡膠改性,即採用端羧基丁腈橡膠(CTBN)和丁腈橡膠(BNR)增韌甲基丙烯酸型環氧乙烯基酯樹脂,在此之後國內外也就後種方法作了不少的工作,自然橡膠改性乙烯基樹脂的延伸率等得到大幅度的提高,可以達到12%。
一般乙烯基樹脂的沖擊強度(無缺口)不大於14.00 KJ/M2,而一些21世紀新開發的耐沖擊型非橡膠改性乙烯基樹脂可以達到22 KJ/M2以上,橡膠改性的乙烯基樹脂可達到25KJ/M2,這樣這些耐沖擊乙烯基樹脂就可以很好的應用於一些高耐沖擊的FRP製作,如運動雪撬、運動頭盔等。
3 增稠用乙烯基酯樹脂
作為一種高性能的不飽和樹脂,乙烯基樹脂的增稠特性一直是各廠家研究的方向,這是因為BMC/SMC的獨特應用特性得到廣大客戶的認可,尤其隨著BMC/SMC在汽車零部件上的應用,增稠型乙烯基樹脂能夠較通用的不飽和樹脂承受更高的沖擊力,並具有良好的抗蠕變性和抗疲勞性。這些零部件包括車輪、座椅、散熱架、柵口板、發動機閥套等。當然,增稠型乙烯基樹脂能夠廣泛應用於電絕緣、工業用泵閥的製作、高爾夫球頭等。
作為一種增稠用乙烯基樹脂,自然要求樹脂具有以下的特點:①與增強材料和填料的良好浸潤性;②初始的低粘度和快速增稠特性;③良好的力學特性,包括韌性和耐疲勞特性等;④較長的存放周期;⑤較低的固化放熱峰和較低的苯乙烯揮發等。為了達到使用效果,在乙烯基樹脂的合成研究中,原來較通用的方法是:在乙烯基酯分子上引入酸性官能團(羧酸),再利用這些羧基與鹼土金屬氧化物(如氧化鎂、氧化鈣等),但這種方法增稠時間長,一般需要幾天時間,況對含水量敏感。由此也發展了另外一種方法,即用聚異氰酸鹽和多元醇反應以產生網狀結構,從而達到樹脂的快速稠化,該方法可適合於低壓成型,具有粘度控制穩定、對溫濕度要求低、存放期長的特點,同時製品的層間結合強度高的特點,同時也可以用帶過量醇的低酸值樹脂作稠劑。
4耐高溫型乙烯基樹脂
乙烯基樹脂的分子骨架是環氧樹脂,若採用酚醛環氧樹脂作為原料,則合成的NOVOLAC型乙烯基樹脂具有良好的耐腐蝕性、耐溶劑性及耐高溫型,我們對國內外的知名廠家的酚醛環氧乙烯基酯樹脂按中國國家有關標准測試,結果表明,這些樹脂的熱變形溫度(HDT)均在132-137℃之間,而國內一些廠家的酚醛環氧乙烯基樹脂的熱變形溫度則更低,要低於125℃,但在一些工業實踐應用中,剛對樹脂的耐熱性提出了更高的要求,而21世紀初期國內外少數廠家如上海富晨提供的高交聯密度型乙烯基樹脂898的熱變形溫度可達到150℃以上,該類型樹脂分子結構已作改性,優化了樹脂的耐熱特性,苯乙烯含量也作了合理調滿足實際使用要求。較常規的酚醛環氧乙烯基樹脂具有更高的耐溫溫度,可長期應用於200℃氣相的強腐蝕環境,同時我們的使用經驗表明,該類型型樹脂可在2-3min內承受300℃的溫度沖擊,該獨特應用是絕緣應用中,可完全達到C級絕緣等級以上。
該類型樹脂可以廣泛的應用於一些冶煉、電力脫硫(FGD)設備等高溫應用,如冷卻塔、煙囪和化學管道等,同時該類型樹脂也具有耐強溶劑、強氧化性介質的特點。
5光敏乙烯基樹脂
由於乙烯基樹脂樹脂的中的不飽和雙鍵在分子鏈端,由於活性較高,同時配以分子設計,如採用高環氧值的環氧樹脂,採用丙烯酸取代甲基丙烯基酸合成後的乙烯基樹脂,加入光引發劑(如苯醌、苯偶姻醚等),用以吸收紫外線能量,並傳遞給樹脂系統,而使乙烯基樹脂進行聚合固化。
此類樹脂可以用於印刷、光敏油墨等,在油漆工業上用作光敏塗料,在無線電工業中用作PCB上的光致抗蝕膜。另外,在拉擠工藝中,如採用光敏乙烯基樹脂,則可極大的提高拉擠速度,如在光纜芯拉擠工藝中,速度可以達到10m/min。
6氣乾性
乙烯基酯樹脂與不飽和聚酯樹脂一樣,常溫固化時,製品表面有發粘現象,給應用帶來不便。主要原因是由於空氣中氧氣參加了乙烯基酯樹脂表面的聚合反應。為克服此缺點,科研人員開發出了多種有效方法。其中之一就是採用在乙烯基酯樹脂結構中接入烯丙基醚(CH2=CH—CH2—O—)基團的方法來合成氣乾性乙烯基酯樹脂。該種樹脂適合於製作高檔氣乾性膠衣、塗層、封面料等。
值得注意的是烯丙基醚在樹脂中的含量有一合適的值,太小了樹脂不能很好地吸氧,太大則由於「自動阻聚」作用,氣乾性也會下降。
7 低苯乙烯揮發技術
乙烯基樹脂一般含有35%左右的苯乙烯單體,而苯乙烯的蒸汽壓較低,因此在手糊成型和噴射成型中,樹脂是一層層地鋪復於開口模具上的,特別是噴射成型,樹脂一部分成霧狀,因而在樹脂充分固化之前,苯乙烯不斷從樹脂中揮發出來,這樣在造成苯乙烯損失的同時,更是污染了環境,也是造成了對工人的健康損害,因此各國相繼提高了對於苯乙烯閾限值(TLV)的要求,因此對於以苯乙烯為稀釋單體的不飽和樹脂包括乙烯基樹脂,要努力尋求一種低苯乙烯揮發技術(LSE)以解決這個問題,原來一些廠家和國家採用添加石蠟等作為揮發抑制劑,但易造成鋪層間的分層,但對於21世紀早期的發展的趨勢是:一是採用一種附著促進劑的化合物,可為丙烯酸、帶2個烴基(含雙鍵的疏水醚或酯)等;二是採用蒸汽壓相對較高的單體,如甲基苯乙烯或乙烯基甲苯等;三是分子結構等方式,或是在保持總體性能的同時使主鏈分子的縮短,以降低苯乙烯用量,或是通過在分子鏈段上引入其它基團或者是鏈段,使樹脂內部分子間的相互作用進一步降低苯乙烯的揮發等。在多年的研究和試驗基礎上,世界上許多的生產商相繼推出了各具特色的低苯乙烯揮發性技術。這個技術可廣泛的應用於樹脂膠衣、絕緣應用等方面,尤其是在中高溫成型的絕緣應用。
8乙烯基樹脂品種衍化
當前,乙烯基樹脂由於共較好的耐腐蝕特性和改良的工藝特性,而成功的大量應用於防腐蝕場合,包括耐腐蝕FRP製作、防腐蝕工程等,但是在一些非耐腐蝕場合並有高力學性能要求的復合材料製作時,目前國內外客戶只能選擇環氧乙烯基樹脂,就就實際上造成了樹脂應用或設計上的浪費,因此國內外一些廠家在努力尋找一種保持乙烯基樹脂的力學性能、合理成本的新型材料,部分公司通過新研發及時的推出了一種新型的高性能不飽和樹脂,稱乙烯基聚酯樹脂,英文名為vinyl polyester resin,國內簡稱「VPR「,該樹脂綜合了乙烯基酯樹脂和通用不飽和樹脂的特點,從而讓用戶有更多的選擇。
VPR乙烯基聚酯樹脂是一種溶於苯乙烯液含有不飽和雙鍵的特殊結構的不飽和聚酯樹脂,VPR乙烯基聚酯樹脂具有較好的耐蝕性能,優於間苯型不飽和樹脂,力學性能與標准型環氧乙烯基樹脂相當的,尤其是耐疲勞性能和動態載荷性能;另外,較通用樹脂,VPR乙烯基聚酯樹脂又具有良好的耐候性能,同時VPR乙烯基聚酯樹脂又具有良好的玻纖浸潤性能和工藝性能,適合於各種FRP成型工藝,包括纖維纏繞、拉擠、手糊、噴射等各種復合材料工藝。
由於VPR乙烯基聚酯樹脂的獨特性能以及較為合理的成本,使該新型材料具有廣泛的應用前景:①混凝土中的玻璃鋼加強筋;②船舶製品中的結構材料;③大型FRP產品製作中的結構層材料,尤其是整體現場大罐製作中代替常的規乙烯基樹脂結構層;④耐疲勞FRP拉擠型材,如運動FRP單杠等。
Ⅱ 3D列印材料大解析
3D列印材料大解析
3D列印,是根據所設計的3D模型,通過3D列印設備逐層增加材料來製造三維產品的技術。這種逐層堆積成形技術又被稱作增材製造。3D列印綜合了數字建模技術、機電控制技術、信息技術、材料科學與化學等諸多領域的前沿技術,是快速成型技術的一種,被譽為“第三次工業革命”的核心技術。
3D列印製造技術主要由3個關鍵要素組成:
一是產品需要進行精準的三維設計,運用計算機輔助設計(CAD)工具對產品全方位精準定位;
二是需要強大的成型設備;
三是需要滿足製品性能和成型工藝的材料。
由於3D列印製造技術完全改變了傳統製造工業的方式和原理,是對傳統製造模式的一種顛覆,因此3D列印材料成為限制3D列印發展的主要瓶頸,也是3D列印突破創新的關鍵點和難點所在,只有進行更多新材料的開發才能拓展3D列印技術的應用領域。目前,3D列印材料主要包括聚合物材料、金屬材料、陶瓷材料和復合材料等。
3D列印聚合物3D列印無人機
工程塑料
工程塑料指被用做工業零件或外殼材料的工業用塑料,是強度、耐沖擊性、耐熱性、硬度及抗老化性均優的塑料。工程塑料是當前應用最廣泛的一類3D列印材料,常見的有丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚醯胺(PA)、 聚碳酸酯(PC)、聚苯碸(PPSF)、聚醚醚酮(PEEK)等。
1)ABS
ABS材料因具有良好的熱熔性、沖擊強度, 成為通過熔融沉積3D列印的首選工程塑料。 目前主要是將ABS預製成絲、粉末化後使用,應用范圍幾乎涵蓋了所有日用品、工程用品和部分機械用品。近年來ABS不但在應用領域逐步擴大,而且性能不斷提升,藉助ABS強大的粘接性、強度通過對ABS的改性,使其作為3D列印材料在更廣范圍得到應用。
2014年國際空間站用ABS塑料3D列印機為其列印零件;世界上最大的3D列印機材料公司Stratasys公司研發的最新ABS材料ABS-M30,專為3D列印製造設計,機械性能比傳統的ABS材料提高了67%, 從而擴大了ABS的應用范圍。
2)PA
PA強度高,同時具有一定的柔韌性,因此可直接利用3D列印製造設備零部件。利用3D列印製造的PA碳纖維復合塑料樹脂零件強度韌性很高,可用於機械工具代替金屬工具。另外,由於PA的粘接性和粉末特性,可與陶瓷粉、玻璃粉、金屬粉等混合,通過粘接實現陶瓷粉、玻璃粉、金屬粉的低溫3D列印。索爾維公司作為全球PA工程塑料的專家,基於PA的工程塑料進行3D列印樣件,用於發動機周邊零件、門把手套件、剎車踏板等。用工程塑料替代傳統的金屬材料,最終解決了汽車的輕量化問題。
3)PC
PC具有優異的強度,其強度比ABS材料高出60%左右,因此適合於超強工程製品的應用。索爾維公司作為全球PA工程塑料的專家,基於PA的工程塑料進行3D列印樣件,用於發動機周邊零件、門把手套件、剎車踏板等。德國拜耳公司開發的PC2605可用於防彈玻璃、樹脂鏡片、車頭燈罩、宇航員頭盔面罩、智能手機的機身、機械齒輪等異型構件的3D列印製造。
4)PPFS
PPSF具有最高的耐熱性、強韌性以及耐化學品性,在各種快速成型工程塑料材料之中性能最佳,通過碳纖維、石墨的復合處理,PPSF顯示出極高的強度,可用於3D列印製造高承受負荷的製品,成為替代金屬、陶瓷的首選材料。
5)PEEK
PEEK具有優異的耐磨性、生物相容性、化學穩定性以及楊氏模量最接近人骨等優點,是理想的人工骨替換材料,適合長期植入人體。基於熔融沉積成型原理的3D列印技術安全方便、無需使用激光器、後處理簡單,通過與PEEK材料結合製造仿生人工骨。
6)EP
EP(Elasto Plastic)即彈性塑料,是Shapeways公司最新研製的一種3D列印原材料,它能夠避免用ABS列印的穿戴物品或可變形類產品存在的脆性問題。顧名思義,Elasto Plastic是一種新型柔軟的3D列印材料,在進行塑形時和ABS一樣均採用“逐層燒結”原理,但列印的產品卻具有相當好的彈性,易於恢復形變。這種材料可用於製作像3D列印鞋、手機殼和3D列印衣物等產品。
7)Enr
Stratasys公司推出一款全新的3D列印材料—Enr,它是一種先進的仿聚丙烯材料,可滿足各種不同領域的應用需求。Enr材料具有高強度、柔韌度好和耐高溫性能,用其列印的產品表面質量佳,且尺寸穩定性好,不易收縮。Enr具有出色的仿聚丙烯性能,能夠用於列印運動部件、咬合嚙合部件以及小型盒子和容器。
生物塑料
3D列印生物塑料主要有聚乳酸(PLA)、聚對苯二甲酸乙二醇酯-1,4-環己烷二甲醇酯(PETG)、聚-羥基丁酸酯(PHB)、 聚-羥基戊酸酯(PHBV)、聚丁二酸-丁二醇酯 (PBS)、聚己內酯(PCL)等,具有良好的可生物降解性。
1)PLA
PLA(Poly Lactic Acid)即聚乳酸可能是3D列印起初使用得最好的原材料,它具有多種半透明色和光澤質感。作為一種環境友好型塑料,聚乳酸可生物降解為活性堆肥。它源於可再生資源—玉米澱粉和甘蔗,而不是非可再生資源——化石燃料。新加坡南洋理工大學的Tan K H等在應用PLA製造組織工程支架方面的研究中,採用3D技術成型生物可降解的高分子材料,製造了高孔隙度的PLA組織工程支架,通過對該支架進行組織分析,發現其具有生長能力。
3D列印的PLA螺栓和螺母、PLA檸檬榨汁機推桿
2)PETG
PETG是採用甘蔗乙烯生產的生物基乙二醇為原料合成的生物基塑料。具有出眾的.熱成型性、堅韌性與耐候性,熱成型周期短、溫度低、成品率高。PETG作為一種新型的3D列印材料,兼具PLA和ABS的優點。在3D列印時,材料的收縮率非常小,並且具有良好的疏水性,無需在密閉空間里貯存。由於PETG的收縮率低、溫度低,在列印過程中幾乎沒有氣味,使得PETG在3D列印領域產品具有更為廣闊的開發應用前景。
3)PCL
PCL是一種生物可降解聚酯,熔點較低,只有60℃左右。與大部分生物材料一樣,人們常常把它用作特殊用途如葯物傳輸設備、縫合劑等,同時,PCL還具有形狀記憶性。在3D列印中,由於它熔點低,所以並不需要很高的列印溫度,從而達到節能的目的。在醫學領域,可用來列印心臟支架等。
熱固性塑料
熱固性樹脂如環氧樹脂、不飽和聚酯、酚醛樹脂、氨基樹脂、聚氨酯樹脂、有機硅樹脂、芳雜環樹脂等具有強度高、耐火性特點,非常適合利用3D列印的粉末激光燒結成型工藝。哈佛大學工程與應用科學院的材料科學家與Wyss生物工程研究所聯手開發出了一種可3D列印的環氧基熱固性樹脂材料,這種環氧樹脂可3D列印成建築結構件用在輕質建築中。
光敏樹脂
光敏樹脂是由聚合物單體與預聚體組成,由於具有良好的液體流動性和瞬間光固化特性,使得液態光敏樹脂成為3D列印耗材用於高精度製品列印的首選材料。光敏樹脂因具有較快的固化速度,表乾性能優異,成型後產品外觀平滑,可呈現透明至半透明磨砂狀。尤其是光敏樹脂具有低氣味、低刺激性成分,非常適合個人桌面3D列印系統。
高分子凝膠
高分子凝膠具有良好的智能性,海藻酸鈉、纖維素、動植物膠、蛋白腖、聚丙烯酸等高分子凝膠材料用於3D列印,在一定的溫度及引發劑、交聯劑的作用下進行聚合後,形成特殊的網狀高分子凝膠製品。如受離子強度、溫度、電場和化學物質變化時,凝膠的體積也會相應地變化,用於形狀記憶材料;凝膠溶脹或收縮發生體積轉變,用於感測材料;凝膠網孔的可控性,可用於智能葯物釋放材料。
3D列印金屬
目前大多數3D列印耗材是塑料,而金屬良好的力學強度和導電性使得研究人員對金屬物品的列印極為感興趣。
3D Systems為GE公司列印的航空金屬構件(左)3D 列印奧斯卡“小金人”(右)
黑色金屬
1)不銹鋼
不銹鋼是最廉價的金屬列印材料,經3D列印出的高強度不銹鋼製品表面略顯粗糙,且存在麻點。不銹鋼具有各種不同的光面和磨砂面,常被用作珠寶、功能構件和小型雕刻品等的3D列印。
2)高溫合金
高溫合金因其強度高、化學性質穩定、不易成型加工和傳統加工工藝成本高等因素,目前已成為航空工業應用的主要3D列印材料。隨著3D 列印技術的長期研究和進一步發展,3D列印製造的飛機零件因其加工的工時和成本優勢已得到了廣泛應用。
有色金屬
1)鈦
採用3D列印技術製造的鈦合金零部件,強度非常高,尺寸精確,能製作的最小尺寸可達1mm,而且其零部件機械性能優於鍛造工藝。英國的Metalysis公司利用鈦金屬粉末成功列印了葉輪和渦輪增壓器等汽車零件。此外,鈦金屬粉末耗材在3D列印汽車、航空航天和國防工業上都將有很廣闊的應用前景。
2)鎂鋁合金
鎂鋁合金因其質輕、強度高的優越性能,在製造業的輕量化需求中得到了大量應用。在3D列印技術中,它也毫不例外地成為各大製造商所中意的備選材料。
日本佳能公司利用3D列印技術製造出了頂級單反相機鎂鋁合金特殊曲面頂蓋
3)鎵
鎵(Ga)主要用作液態金屬合金的3D列印材料,它具有金屬導電性,其黏度類似於水。不同於汞(Hg),鎵既不含毒性,也不會蒸發。鎵可用於柔性和伸縮性的電子產品,液態金屬在可變形天線的軟伸縮部件、軟存儲設備、超伸縮電線和軟光學部件上已得到了應用。
3)鎵-銦合金
北卡羅琳州立大學化學和生物分子工程的副教授Michael Dickey利用鎵(Ga)與銦(In)的液態金屬合金通過3D列印技術在室溫下創造了一種三維的自立式結構,這一奇跡的誕生得益於鎵-銦合金在空氣中與氧氣發生反應形成了一層能夠保持零件形狀的氧化膜。這一技術在3D列印中被用於連接電子部件。
4)稀貴金屬
3D列印的產品在時尚界的影響力越來越大。世界各地的珠寶設計師受益最大的似乎就是將3D列印快速原型技術作為一種強大,且可方便替代其他製造方式的創意產業。在飾品3D列印材料領域,常用的有金、純銀、黃銅等。
陶 瓷
硅酸鋁陶瓷粉末能夠用於3D列印陶瓷產品。3D列印的該陶瓷製品不透水、耐熱(可達600°C)、可回收、無毒,但其強度不高,可作為理想的炊具、餐具(杯、碗、盤子、蛋杯和杯墊)和燭台、瓷磚、花瓶、藝術品等家居裝飾材料。
復合材料
美國矽谷Arevo實驗室3D列印出了高強度碳纖維增強復合材料。相比於傳統的擠出或注塑定型方法,3D列印時通過精確控制碳纖維的取向,優化特定機械、電和熱性能,能夠嚴格設定其綜合性能。由於3D列印的復合材料零件一次只能製造一層,每一層可以實現任何所需的纖維取向。結合增強聚合物材料列印的復雜形狀零部件具有出色的耐高溫和抗化學性能。
;Ⅲ 3d列印一個模型多少錢
3D列印是按克數收費,不同材料價格也不同,相同的材料也會有國產和進口、精度好與精度壞等區分,因此即使材料相同價格也會不同。金屬肯定比塑料要更貴一些。