㈠ 含磷廢水怎麼處理
含磷廢水的四種處理方法:吸附法、離子交換法、化學沉澱法及膜分離方法。
1、吸附法
吸附法除磷的作用機理:在廢水吸附除磷過程中,主要關注於正磷酸鹽。受磷酸的電離平衡制約,正磷酸鹽在水體中電離,同時生成H3P04、H2P04、HP04和P04。吸附除磷的實際過程既包括物理吸附,又包括化學吸附。
2、離子交換法。
該方法是利用強鹼性陰離子交換樹脂,與廢水中的磷酸根陰離子進行交換反應,將磷酸根陰離子置換到交換劑上予以除去的方法。離子交換樹脂脫除P4O3的交換容量比較穩定,其再生後交換容量也比較穩定。但離子交換樹脂的價格較高,樹脂再生時需用酸、鹼或食鹽,運行費用較高
3、化學沉澱法
化學法即投加除磷劑,投加除磷劑後,污水中進行的不僅是沉析反應,同時還發生著化學絮凝作用,即形成的細小的非溶解狀的固體物互相粘結成較大形狀的絮凝體,通過固液分離,得到凈化的污水和固液濃縮物(化學污泥),達到化學除磷的目的。
4、膜分離方法。
液膜分離法是一種新型的、類似溶劑萃取的膜分離技術。液膜法通常是將按一定比例配製的有機溶劑(有機相)同膜內試劑混合製成乳液微滴,微滴表面形成一層極薄的(l~10μm)液膜,膜內為內相試劑。
在混合柱內,將此表面積極大的乳液微滴與廢水接觸,水中待除的金屬離子便通過選擇性滲透、萃取、吸附等穿過液膜,進入內相試劑進行化學反應,廢水中的金屬離子因而得到分離去除。
(1)離子樹脂除磷擴展閱讀:
含磷廢水的危害:磷化工在加工生產中都要產生大量的含有磷、氟、硫、氯、砷、鹼、鈾等有毒有害物質的廢水。黃磷生產中要產生黃磷污水,其黃磷污水中含有50~390 mg/L濃度的黃磷,黃磷是一種劇毒物質,進入人體對肝臟等器官危害極大。
長期飲用含磷的水可使人的骨質疏鬆,發生下頜骨壞死等病變。黃磷污水中還含有68~270 mg/L的氟化物,經過處理後可降至15~40 mg/L,但仍高於國家規定的10 mg/L的排放標准。
㈡ 總磷去除原理
總磷去除原理:當水體中的磷含量超過是水體自凈能力後,就會出現富營養化甚至藻類繁殖泛濫。低pH有利於磷的釋放,高pH有利於磷的吸收,而除磷效果是磷釋放和吸收的綜合。因此在生物除磷系統中,宜將混合液的pH控制在6.5~8.0的范圍內的原理去除法。。
若磷離子通過食物鏈被人體吸收之後,就會結成不溶於水的磷酸鈣排除體外,必然導致鈣的流失,磷與鈣的關系很密切,它們是有一定的抗結作用的,一般鈣低磷就高,磷高鈣就低。
總鱗去除方法:
離子交換法:利用強鹼性陰離子交換樹脂去除總磷。
生物法:利用活性污泥或簡單的生物菌種降低磷含量。
吸附法:利用多孔隙物質作為吸附劑和離子交換劑
膜。
分離方法:磷離子通過選擇性滲透、萃取、吸附等穿過液膜,進入內相試劑進行化學反應,從而降低磷含量。
化學沉澱法:通過投加除磷劑與廢水中的磷酸鹽生成難溶沉澱物,可把磷分離出去,同時形成的絮凝體對磷也有吸附去除作用。
總磷的去除方法有很多種,選擇哪種需要根據現場實際情況而定。分別針對不同類型的污水,但都具有反應速度快,去除率高。
㈢ 離子交換樹脂凈水原理
離子交換樹脂算起來不算凈水,它們主要用於水的高級凈化,也就是去除特定離子。離子交換樹脂一般是高分子鹽類,強鹼弱酸鹽,或者強酸弱鹼鹽,比如常用去除硬度的001×7強酸性陽離子樹脂,就是末端是鈉離子,水經過時候鈉離子交換掉水裡的鈣離子,降低水的硬度。當離子飽和無法繼續降硬的時候,需要用飽和食鹽水進行樹脂再生,也就是用鈉離子換掉樹脂上的鈣離子。其他樹脂工作方法類似,當然也有一次性樹脂。
㈣ 總磷超標怎麼辦
一、電鍍廢水總磷超標。
電鍍廢水中的磷比較特殊,與一般總磷不同,電鍍廢水中的磷一般是次亞磷,對於次亞磷廢水,不能使用傳統的除磷劑處理,比較有效的辦法是使用次亞磷去除劑進行處理,通過催化劑進行催化,次亞磷去除劑能夠與次亞磷結合,形成均相共沉澱。
部分污水處理廠總磷處理採用生物法,生物除磷中通過聚磷菌在厭氧狀態下釋放磷,在好氧狀態下過量地攝取磷。經過排放富磷剩餘污泥而除磷,導致出水總磷超標。
二、生活污水總磷超標。
生活污水中的磷多為有機磷,對於有機磷而 言,最有效而又省成本的方式是生化處理,現在很多的大型生活污水處理廠都有幾個生化池進行處理,可以降解COD、總磷、總氮等指標。
對於總磷而言,因為生 化處理能夠把部分有機磷轉化為正磷,在生化以後,往往還要繼續進行化學處理,在廢水中添加鐵系除磷劑或者鈣系除磷劑進行處理。
現有廢水處理工藝技術分析現有廢水處理採用了「氣浮——好氧曝氣——沉澱——砂、炭過濾」 的骨幹工藝,技術路線可行且比較完善,所以才會使處理出水除了總磷以外的其餘各項水質均已優於排放標准而得以達標排放。
三、磷化廢水總磷超標。
磷化廢水一般是指陽極氧化廢水、工業含磷廢水、磷酸廢水等,這些廢水中的磷一般是正磷酸鹽,對於這類磷,一般採用傳統除磷劑進行處理。
例如,對於磷濃度比較高的陽極氧化廢水,可以加入石灰處理,對於磷濃度比較低的工業廢水,可以加入鐵系除磷劑進行沉澱處理。
是活性炭在長期運行過程中必須保證其表面清潔,不受任何污染,才能確保活性炭的微孔具備吸附能力和保持其活性。可是,現有工藝中除了在活性炭吸附的前級設置了一台石英砂過濾器以外,再也沒有其他輔助措施可以確保活性炭免受污染長期保持其活性。
四、化肥廠農葯含磷廢水。
化肥廠或者農葯廢水一般是有機磷廢水,對於這類有機磷廢水,採用兩種工藝進行處理,氧化處理或者生化處理,氧化辦法處理廢水是把有機磷氧化為正磷,而後加 入正磷去除劑處理,生化法處理類似,也是先把有機磷氧化為正磷,而後對正磷進行處理。
這兩種工藝對於化肥廠農葯廢水都比較實用,如果水量比較大,建議用生 化法,水量比較小,可以使用氧化除磷劑進行後處理。
五、
總磷處理解決方案:
(有機磷)特種磷處理設備SPI-IE是針對總磷超標廢水研發的新型化學除磷設備,專門解決各類工業含磷廢水,如有機磷廢水、次亞磷廢水、含膦農葯廢水、含磷阻燃劑廢水等,主要針對解決有機磷廢水等水量大、難處理的問題,可廣泛應用於化學鍍、農葯、化工等行業。
注意事項:
特種磷處理設備SPI-IE是針對總磷超標廢水研發的新型化學除磷設備,專門解決各類工業含磷廢水。
㈤ 污水處理總磷用什麼方法
提到「總磷」,相信很多人都感到很陌生,其實這是存在於我們生活中的事物,磷來源於磷礦石,通過化肥、農作物、人和動物傳播,終經填埋處理回到土壤中。如果水中的磷含量過高,會對我們的生活帶來很大影響。
磷是一種的資源,如果不對磷進行回收,百年之後將會影響到人類正常的生產和生活。污水中的磷主要來自生活污水中的含磷有機物、合成洗滌劑、工業廢液、化肥農葯以及各類動物的排泄物。如污水沒有完全處理,磷還會流失到江河湖海中,造成這些水體的富營養化。
總磷處理方法:
1、磷處理方法一般是化學除磷法和生物除磷法兩種。化學法除正磷,往裡投加鋁鹽、鈣鹽、鐵鹽等無機鹽除磷劑即可;還有一種化學法除化學鎳廢水次亞磷,傳統的除磷劑無法與之形成沉澱,因此通常使用HMC-P3次亞磷去除劑,通過均相共沉澱技術,能夠直接與次亞磷反應去除。
2、生物法除磷是指好氧型細菌在一定條件下會對有機磷或者偏磷進行硝化分解,一部分磷會被微生物吸收,從而變為微生物污泥,另外一部分磷會被分解轉化為為正磷小分子,在後續處理中,還要繼續通過化學法將正磷小分子沉澱。
3、生物+化學法除磷,化學法除磷只能除去無機磷,對於有機磷或者多聚磷酸往往效果很差,而生物除磷卻剛好相反,能夠處理有機磷。因此在不少廢水處理現場,往往採用生物+化學除磷的辦法,先通過生物除磷將有機磷分解為正磷分子,再通過除磷劑化學沉澱法將磷去除。
㈥ 水處理用離子交換樹脂有什麼作用
作用是吸附水中的各種陰陽離子,以達到凈化的目的。
離子交換樹脂在乾燥回的情況下內部沒有毛細孔。答它在吸水時潤脹,在大分子鏈節間形成很微細的孔隙,通過分子間的范德華引力產生分子吸附作用。
離子交換樹脂能夠象活性炭那樣吸附各種非離子性物質,擴大它的功能。一些不帶交換功能團的大孔型樹脂也能夠吸附、分離多種物質,例如化工廠廢水中的酚類物。
離子交換樹脂在應用中的優點:
1、工業超純水處理工藝,是目前工業用超純水的制備上應用最多的一種工藝之一。
2、食品工業離子交換樹脂可用於製糖、味精、酒的精製、生物製品等工業裝置上。
3、制葯工業離子交換樹脂對發展新一代的抗菌素及對原有抗菌素的質量改良具有重要作用。鏈黴素的開發成功即是突出的例子。
4、合成化學和石油化學工業在有機合成中常用酸和鹼作催化劑進行酯化、水解、酯交換、水合等反應。
5、電鍍廢液中的金屬離子,回收電影製片廢液里的有用物質等。
6、濕法冶金及其他離子交換樹脂可以從貧鈾礦里分離、濃縮、提純鈾及提取稀土元素和貴金屬。
㈦ 含磷廢水怎麼處理
一、生物法
20世紀70年代美國的Spector發現,微生物在好氧狀態下能攝取磷,而在有機物存在的厭氧狀態下放出磷。含磷廢水的生物處理方法便是在此基礎上逐步形成和完善起來的。
目前,國外常用的生物脫磷技術主要有3種:
1、向曝氣貯水池中添加混凝劑脫磷;
2、利用土壤處理,正磷酸根離子會與土壤中的Fe和Al的氧化物反應或與粘土中的OH-或SiO22-進行置換,生成難溶性磷酸化合物;
3、活性污泥法,這是目前國內外應用最為廣泛的一類生物脫磷技術。
生物除磷法具有良好的處理效果,沒有化學沉澱法污泥難處理的缺點,且不需投加沉澱劑。對於二級活性污泥法工藝,不需增加大量設備,只需改變運轉流程即可達到生物除磷的效果。
但要求管理較嚴格,為了形成VFA,要保證厭氧階段的厭氧條件。
二、化學沉澱法
通過投加化學沉澱劑與廢水中的磷酸鹽生成難溶沉澱物,可把磷分離出去,同時形成的絮凝體對磷也有吸附去除作用。
常用的混凝沉澱劑有石灰、明礬、氯化鐵,石灰與氯化鐵的混合物等。影響此類反應的主要因素是pH、濃度比、反應時間等。
三、生物強化除磷
生物強化除磷中的聚磷菌利用比較普遍,目前也是生物除磷的主要研究方向。
聚磷菌也叫做攝磷菌、除磷菌,是傳統活性污泥工藝中一類特殊的細菌,在好氧狀態下能超量地將污水中的磷吸入體內,使體內的含磷量超過一般細菌體內的含磷量的數倍,這類細菌被廣泛地用於生物除磷。
其原理為:在厭氧條件下,除磷菌能分解體內的聚磷酸鹽而產生ATP,並利用ATP將廢水中的有機物攝入細胞內,以聚b-羥基丁酸等有機顆粒的形式貯存於細胞內,同時還將分解聚磷酸鹽所產生的磷酸排出體外。
而好氧條件下,除磷菌利用廢水中的BOD5或體內貯存的聚b-羥基丁酸的氧化分解所釋放的能量來攝取廢水中的磷,一部分磷被用來合成ATP,另外絕大部分的磷則被合成為聚磷酸鹽而貯存在細胞體內。
四、吸附法
20世紀80年代,多孔隙物質作為吸附劑和離子交換劑就已應用在水的凈化和控制污染方面。黃巍等人以粉煤灰作為吸附劑,對含磷50~120mg/L模擬廢水脫磷的規律特徵進行了研究。
研究表明粉煤灰中含有較多的活性氧化鋁和氧化硅等,具有相當大的吸附作用,粉煤灰對無機磷酸根不是單純吸附,其中CaO、FeO、Al2O3等可以和磷酸根生成不溶或直溶性沉澱現象,因而在廢水處理方面具有廣闊的應用前景。
五、其他的除磷方法
鄒偉國等研究的新型雙污泥脫氮除磷工藝系統處理生活污水取得成功。傳統的脫氮除磷工藝多採用單污泥系統,因此存在著硝化和除磷泥齡之間的矛盾,將活性污泥法與生物膜法相結合,可解決這個問題。
實驗結果表明,該工藝對PO43-的去除率達到了90%,處理效果穩定,對水質的適應能力很強。
陳瀅等進行了低溶解氧SBR除磷工藝的研究。
該方法要注意的是污泥負荷對COD去除率和除磷效果的影響較大,因此要選擇合適的污泥負荷。污泥負荷過高時會導致非絲菌污泥膨脹。
方茜等利用SBR法處理低碳城市污水取得進展,解決了處理碳、氮、磷比例失調(碳量偏低)城市污水如何保證氮磷高效去除的難點。
結果表明,利用此法處理廣州地區低碳城市污水,出水有機物、氨氮及總磷均達標,且磷的釋放量越大則出水磷總濃度就越低。實踐證明,SBR法具有流程簡單,不需要污泥迴流,脫氮除磷效果好的特點。
㈧ 磷污染的常用除磷方法
1.化學沉澱法。該方法是通過投加化學沉澱劑與廢水中的磷酸鹽生成難溶沉澱物,可把磷分離出去,同時形成的絮凝體對磷也有吸附去除作用。常用的混凝沉澱劑有石灰、明礬、氯化鐵、石灰與氯化鐵的混合物等。為了降低廢水的處理成本,提高處理效果,學者們在研製開發新型廉價高效化學沉澱劑方面做了大量工作。研究發現,原水含磷 10mg/L時,投加 300mg/L的A12(S04)3或 90mg/L的FeCl3,可除磷70%左右,而在初沉時加入過量石灰,一般總磷可去除80%左右。他根據化學凝聚能增加可沉澱物質的沉降速度,投加新型凈水劑鹼式氯化鋁,沉降效果達80%~85%,很好地解決了生產用水的磷污染。該方法具有簡便易行,處理效果好的優點。但是長期的運行結果表明,化學沉澱劑的投加會引起廢水pH值上升,在池子及水管中形成堅硬的垢片,還會產生一定量的污泥。
2.生物法。20世紀70年代美國的Spector發現,微生物在好氧狀態下能攝取磷,而在有機物存在的厭氧狀態下放出磷。含磷廢水的生物處理方法便是在此基礎上逐步形成和完善起來的。目前,國外常用的生物脫磷技術主要有3種:第一,向曝氣貯水池中添加混凝劑脫磷;第二,利用土壤處理,正磷酸根離子會與土壤中的Fe和Al的氧化物反應或與粘土中的OH或Si3O2進行置換,生成難溶性磷酸化合物;第三種方法是活性污泥法,這是目前國內外應用最為廣泛的一類生物脫磷技術。生物除磷法具有良好的處理效果,沒有化學沉澱法污泥難處理的缺點,且不需投加沉澱劑。但要求管理較嚴格,成本較高。
3.離子交換法。該方法是利用強鹼性陰離子交換樹脂,與廢水中的磷酸根陰離子進行交換反應,將磷酸根陰離子置換到交換劑上予以除去的方法。離子交換樹脂脫除P4O3的交換容量比較穩定,其再生後交換容量也比較穩定。但離子交換樹脂的價格較高,樹脂再生時需用酸、鹼或食鹽,運行費用較高
4.吸附法。20世紀80年代,多孔隙物質作為吸附劑和離子交換劑就已應用在水的凈化和控制污染方面。黃巍等以粉煤灰作為吸附劑,對含磷50~120mg/L模擬廢水脫磷的規律特徵進行了研究。研究表明粉煤灰中含有較多的活性氧化鋁和氧化硅等,具有相當強的吸附作用,粉煤灰對無機磷酸根不是單純吸附,其中CaO、FeO、A12O3等可以和磷酸根生成不溶或直溶性沉澱,因而在廢水處理方面具有廣闊的應用前景。吸附法由於佔地面積小、工藝簡單、操作方便、無二次污染,特別適用於低濃度廢水的處理而倍受關注。在吸附法研究中,尋找新的吸附劑是開發新的除磷工藝的關鍵所在,因此自然界廣泛存在的天然粘土礦物是人們研究的熱點。
5.膜分離方法。液膜分離法是一種新型的、類似溶劑萃取的膜分離技術。液膜法通常是將按一定比例配製的有機溶劑(有機相)同膜內試劑混合製成乳液微滴,微滴表面形成一層極薄的(l~10μm)液膜,膜內為內相試劑。在混合柱內,將此表面積極大的乳液微滴與廢水接觸,水中待除的金屬離子便通過選擇性滲透、萃取、吸附等穿過液膜,進入內相試劑進行化學反應,廢水中的金屬離子因而得到分離去除。