『壹』 樹脂基復合材料的組成和作用
1.單樹脂類樹脂中一般不含或很少含揮發油、樹膠及游離芳香酸。通常又可以分為:
(1)酸樹脂主成分為樹脂酸,如松香。
(2)酯樹脂主成分為樹脂酯,如楓香脂、血竭等。
(3)混合樹脂無明顯的主成分,如洋乳香等。
2.膠樹脂類主成分為樹脂和樹膠,如藤黃。
3.油膠樹脂類主成分為樹脂、揮發油和樹膠,如乳香、沒葯、阿魏等。
4.油樹脂類主成分為樹脂與揮發油,如松油脂、加拿大油樹脂等。
5.香樹脂類主成分為樹脂、游離芳香酸(香脂酸)、揮發油,如蘇合香、安息香等。
『貳』 環氧樹脂膠粘劑合成工藝及添加劑
隨著科學技術的發展,高新技術產品的需求增大,環氧膠黏劑品種不斷推陳出新,性能日益攀高。研發高強度、高韌性、高耐熱高耐久、多功能、阻燃型、環保無毒的改性環氧膠黏劑將是今後的重點發展方向。
環氧樹脂膠黏劑是由環氧樹脂、固化劑、促進劑、改性劑等組成的液態或固態膠黏劑。環氧樹脂的分子結構是以分子鏈中含有活潑的環氧基團為其特徵,環氧基團可以位於分子鏈的末端、中間或成環狀結構。由於環氧樹脂含有多種極性基團和活性很大的環氧基,因而與金屬、玻璃、水泥、木材、塑料等多種極性材料具有很強的黏結力,同時環氧固化物的內聚強度也很大,所以黏結強度很高。
分類及用途環氧膠黏劑的品種繁多,目前還沒有統一標準的分類方法,行業類有L2T幾種分類方法:(1)組分與形態分類;(2)包裝形態分類;(3)固化方式與條件;(4)黏接強
生產原理及工藝流程:
當環氧樹脂膠黏劑的配方確定後,便可配製不同的產品,既可配成雙組分的,也可配成單組分的。所謂雙組分環氧樹脂膠黏劑就是環氧樹脂和改性劑等作為一種組分,而固化劑和促進劑作為另一組分,兩組分分別包裝儲存,使用時再按一定的比例混合。
雙組分環氧樹脂膠黏劑的生產工藝:原料及器具准備一按配方准確稱量一混合攪拌均勻一檢查與檢驗一包裝
常用的環氧樹脂一般黏度較大,在室溫低於15°C時很黏稠,不便取出或與其他組分混合。可以用加熱的方法來降低黏度,增加流動性,但加熱溫度不宜超過60°C。對於固體環氧樹脂,可以加熱熔化,或以溶劑溶解,或是研細過篩之後,再與其他組分混合對於填料,應在加入前於110°C-150°C烘乾,以除去水分和所吸附的氣體。有的填料須在600°C -900°C高溫下進行活化。填料的乾燥最好是現用現烘,也可預先乾燥之後,放入密閉的容器內儲存,但放置時間也不宜太久。
對於固體固化劑,最好將其變成液體,方法是加熱熔化或以溶劑溶解,也可製成過冷液體,如間苯二胺。若是以固態形式加入環氧樹脂內,需研細過篩(一般為200月以上) ,以使分散均勻。
配製環氧膠的反應釜或攪拌器可以是金屬或搪瓷的,為減少環氧樹脂與器壁的黏附,應鍍鉻拋光或塗以硅樹脂漆。配膠用的容器、攪拌器或其他輔助工具,都要求潔凈乾燥無油污或臟物。取用甲、乙兩組分的工具不可混用,否則會造成局部混合固化,影響膠黏劑的質量。將甲、乙兩組分混合均勻後進行分別包裝,包裝要求方便、耐用,可採用牙膏管狀、注射器狀、塑料桶(盒)、金屬桶(盒)等形式包裝。包裝要密封性好,取用方便。
環氧樹脂膠粘劑中通常需要加入的添加劑有稀釋劑、增韌劑、填料及偶聯劑等。它們的主要作用是進一步地提高環氧樹脂膠粘劑的各種性能,使其能夠得到更加廣泛的應用。
稀釋劑
稀釋劑的主要作用是降低環氧樹脂膠粘劑體系的粘度,改善工藝性能。但稀釋劑的加入對環氧樹脂固化物的熱變形溫度(HDT)、機械性能等有很明顯的影響。稀釋劑又分為活性稀釋劑和非活性稀釋劑。
非活性稀釋劑
在此物理混入過程中,不能參與固化反應,僅起到稀釋粘度作用,其用量約為組份總含量的5~20%為宜。非活性稀釋劑大部分是高沸點溶劑如鄰苯二甲酸二丁酯、鄰苯二甲酸二辛酯等。
活性稀釋劑
主要是含有環氧基團的低分子環氧化合物,能與環氧樹脂固化反應,它的加入對固化物性能的影響不大,可分為單環氧基和雙環氧基活性稀釋劑。
增韌劑
環氧樹脂未經改性的固化物延伸率低、韌性差、脆性大。當承受到內應力或外應力時,迅速形成缺陷區並擴展成裂縫,導致固化物的開裂。改性環氧樹脂固化物具有較大韌性和抗沖擊性。增韌劑也可分為活性和非活性兩種。
非活性增韌劑
不含有活性基團,僅與環氧樹脂混溶而不發生化學反應。其大多為粘度小的液體,具有稀釋作用,有利於膠液對膠接表面的擴散、吸附和浸潤,並能增加流動性,使固化物柔性好。(需要注意的是:必須控制其用量,否則固化後將從膠層內溢出)。用量為樹脂量的5~20%。
活性增韌劑
含有活性基團,能參加環氧樹脂的固化反應也能與環氧樹脂混溶,起到增韌作用。常用的增韌劑有液體聚硫橡膠、液體丁腈橡膠(液體端羧基丁腈橡膠)、液體端羧(羥)基聚丁二烯橡膠、聚乙烯醇縮醛、聚氨酯、尼龍、低分子聚醯胺和聚醚樹脂等。
填料
填料的主要作用是降低膠層的收縮率,提高膠接的抗剪強度。其主要作用是:
|、填料使膠液增稠或使粘度增大。
2、填料降低收縮應力和熱應力。
填料能夠影響膠層的物化性能。例如:羧基鐵粉添加到環氧樹脂中能改進導磁性能。另外填料的加入會降低環氧膠的剝離強度,因此一般的結構膠除加入具有觸變性的2#二氧化硅外,不再加填料。
偶聯劑
偶聯劑主要是改善膠接頭的強度和耐濕熱老化性能,用量約為1~5%,大多為有機硅偶聯劑,在環氧膠配方中常用的是KH-550和KH-560。
硅烷偶聯劑分子含有一部份基團(X )與無機物表面較好地親和;另一部份基團(R)能與有機樹脂結合,可用於處理織物,作塗層或被粘物表面處理劑,有效地提高膠接強度。
生產應用現狀:
環氧膠黏劑具有粘接強度高收縮率小、毒性小、電性能優良、耐腐蝕性好、機械性好、施工工藝簡便、使用性較強的優點,因而廣泛應用於機械工業、鐵路機車及車輛、建築工業、宇航和飛機製造業電子工業、船艦工業、石油和化工方面各大領域中。
『叄』 聚酯絲網如何上膠粘接復合
材料
1.用甲醛膠桶,或者用環氧樹脂膠和聚氨酯膠混合物混合,將膠液塗布在聚酯絲網上,讓它充分潤濕;
2.將聚酯絲網和復合材料緊密粘合在一起,使兩個材料的接觸面盡可能的平面,然後用扁平的物體壓實;
3.將壓實後的復合材料放入溫控烘箱中,調節溫度在140℃左右,行殲烘烤一到兩小時;
4.取出復合材料,放入冷卻箱冷卻至室溫;
5.檢查復檔毀沖合材料余念的粘接強度,確保復合材料可以使用。
『肆』 環氧樹脂膠使用方法以及注意事項介紹
環氧樹脂膠是一種粘膠劑,它能夠很快的實現固化,一般有三種顏色,白色、黑色、灰色,它的主要原料是環氧樹脂,當然,在使用環氧樹脂膠的時候,還必須要有固化的過程,所以必須要用到固化劑。這種類型的粘接劑固化的速度非常快,粘結的效果也很好、並且粘結之後能夠有很好的防水效果,還能夠在高溫的環境下使用,如果放在180到200度的高溫下的話,至少可以放置20分鍾,所以它的性能還是比較好的。下面就來介紹環氧樹脂膠使用方法的有關內容。
環氧樹脂膠的注意事項
使用環氧樹脂膠的時候需要首先了解一下它的使用說明,第一個方面就是它的基本特性膠水是分兩組的,所以在使用的時候需要混合使用,這樣的話,比較大的空隙也可以被填充起來。第二個就是它的操作環境,一般情況下,在平常的室內溫度中,膠水就會固化。在進行兩種膠水的混合操作時,可以直接用手混合,也可以使用一些專業的設備,如膠槍等。
使用時還需要注意周圍環境的溫度,零下50攝氏度到150攝氏度之間為最佳。環氧樹脂膠可以使用在一般的正常環境中,它可以防水,還可以防一些侵蝕性較強的物質,如強酸、強鹼等。在保存環氧樹脂膠的時候,還有一些必要的注意事項,它不能接受陽光的直射,所以陰涼處是保存的最佳環境,一般這種膠水的保存時間也是有一定的期限的,超過12個月之後就不能使用了。
使用環氧樹脂膠的時候,比較遵循一定的步驟,而且其中還會有一些注意事項,這都是我們必須要了解的。在使用的時候,首先要做的就是把要粘結的物體表面清理干凈,初步擦拭之後,再使用一些清潔劑進行第二遍的擦拭,以達到充分清潔的目的。
然後把膠水的打開,把a、b兩種膠水以2:1的比例混合,膠水固化很快,所以一定要在膠水可以粘結的時候及時使用,完成粘結的24小時之後,就可以達到粘結的最好效果。塗好膠水之後,需要有一個固化的過程,如果是常溫環境的話,固化2到6個小時就可以了,如果溫度可以達到40到50度的話,固化的時間達到1到3個小時就可以了,完成粘結後的第十天,粘結的效果可以達到最好。
環氧樹脂膠使用方法:
1、多元酸改性環氧丙烯酸酯分別取1份A劑和1份B劑混合並攪拌均勻。
2、將劑混合後的膠水塗布在粘接面上。
3、塗過膠的粘接物品要在至少40分鍾內禁止移位或者挪動,雙酚A環氧樹脂否則會嚴重影響粘接效果。
4、脂肪族聚氨酯丙烯酸酯塗過膠的粘接物品要在至少20分鍾後才能正常使用,聚酯丙烯酸酯否則其固化效果和粘接壽命會受到影響。
對環氧樹脂膠黏劑的分類在行業中還有以下幾種分法:
1、按其主要組成,分為純環氧樹脂膠黏劑和改型環氧樹脂膠黏劑;
2、按其專業用途,分為機械用環氧樹脂膠黏劑、建築用環氧樹脂膠黏劑、電子眼環氧樹脂膠黏劑、修補用環氧樹脂膠黏劑以及交通用膠、船舶用膠等;
3、按其施工條件,分為常溫固化型膠、低溫固化型膠和其他固化型膠;
4、按其包裝形態,可分為單組分型膠、雙組分膠和多組分型膠等;
還有其他的分法,如無溶劑型膠、有溶劑型膠及水基型膠等。但以組分分類應用較多。
環氧樹脂膠的特性
1.基本特性:雙組份膠水,需AB混合使用,通用性強,可填充較大的空隙
2.操作環境:室溫固化,室內、室外均可,可手工混膠也可使用AB膠專用設備(如AB膠槍
3.適用溫度一般都在-50至+150度
4.適用於一般環境,防水、耐油,耐強酸強鹼
5.放置於避免陽光直接照射的陰涼地方,保質期限12個月
以上就是有關環氧樹脂膠使用方法的相關內容,希望能對大家有所幫助!
『伍』 樹脂基復合材料知識
纖維增強樹脂基復合材料常用的樹脂為環氧樹脂和不飽和聚酯樹脂。目前常用的有:熱固性樹脂、熱塑性樹脂,以及各種各樣改性或共混基體。熱塑性樹脂可以溶解在溶劑中,也可以在加熱時軟化和熔融變成粘性液體,冷卻後又變硬。熱固性樹脂只能一次加熱和成型,在加工過程中發生固化,形成不熔和不溶解的網狀交聯型高分子化合物,因此不能再生。復合材料的樹脂基體,以熱固性樹脂為主。早在40年代,在戰斗機、轟炸機上就開始採用玻璃纖維增強塑料作雷達罩。60年代美國在F—4、F—111等軍用飛機上採用了硼纖維增強環氧樹脂作方向舵、水平安定面、機翼後緣、舵門等。在導彈製造方面,50年代後期美國中程潛地導彈「北極星A—2」第二級固體火箭發動機殼體上就採用了玻璃纖維增強環氧樹脂的纏繞製件,較鋼質殼體輕27%;後來採用高性能的玻璃纖維代替普通玻璃纖維造「北極星A—3」,使殼體重量較鋼制殼體輕50%,從而使「北極星A—3」導彈的射程由2700千米增加到4500千米。70年代後採用芳香聚醯胺纖維代替玻璃纖維增強環氧樹脂,強度又大幅度提高,而重量減輕。碳纖維增強環氧樹脂復合材料在飛機、導彈、衛星等結構上得到越來越廣泛的應用。
在化學工業上的應用
編輯
環氧乙烯基酯樹脂在氯鹼工業中,有著良好的應用。
氯鹼工業是玻璃鋼作耐腐材料最早應用領域之一,目玻璃鋼已成為氯鹼工業的主要材料。玻璃鋼已用於各種管道系統、氣體鼓風機、熱交換器外殼、鹽水箱以至於泵、池、地坪、牆板、格柵、把手、欄桿等建築結構上。同時,玻璃鋼也開始進入化工行業的各個領域。在造紙工業中的應用也在發展,造紙工業以木材為原料,造紙過程中需要酸、鹽、漂白劑等,對金屬有極強的腐蝕作用,唯有玻璃鋼材料能抵抗這類惡劣環境,玻璃鋼材料已、在一些國家的紙漿生產中顯現其優異的耐蝕性。
在金屬表面處理工業中的應用,則成為環氧乙烯基酯樹脂重要應用,金屬表面處理廠所使用的酸,大多為鹽酸、基本上用玻璃鋼是沒有問題的。環氧樹脂作為纖維增強復合材料進入化工防腐領域,是以環氧乙烯基酯樹脂形態出現的。它是雙酚A環氧樹脂與甲基丙烯酸通過開環加成化學反應而製成,每噸需用環氧樹脂比例達50%,這類樹脂既保留了環氧樹脂基本性能,又有不飽和聚酯樹脂良好的工藝性能,所以大量運用在化工防腐領域。
其在化工領域的防腐主要包括:化工管道、貯罐內襯層;電解槽;地坪;電除霧器及廢氣脫硫裝置;海上平台井架;防腐模塑格柵;閥門、三通連接件等。為了提高環氧乙烯基酯樹脂優越的耐熱性、防腐蝕性和結構強度,樹脂還不斷進行改性,如酚醛、溴化、增韌等環氧乙烯基酯樹脂等品種,大量運用於大直徑風葉、磁懸浮軌道增強網、賽車頭盔、光纜纖維牽引桿等。
樹脂基復合材料作為一種復合材料,是由兩個或兩個以上的獨立物理相,包含基體材料(樹脂)和增強材料所組成的一種固體產物。樹脂基復合材料具有如下的特點:
(1)各向異性(短切纖維復合材料等顯各向同性);
(2)不均質(或結構組織質地的不連續性);
(3)呈粘彈性行為;
(4)纖維(或樹脂)體積含量不同,材料的物理性能差異;
(5)影響質量因素多,材料性能多呈分散性。
樹脂基復合材料的整體性能並不是其組分材料性能的簡單疊加或者平均,這其中涉及到一個復合效應問題。復合效應實質上是原相材料及其所形成的界面相互作用、相互依存、相互補充的結果。它表現為樹脂基復合材料的性能在其組分材料基礎上的線性和非線性的綜合。復合效應有正有負,性能的提高總是人們所期望的,但有進材料在復合之後某些方面的性能出現抵消甚至降低的現象是不可避免的。
復合效應的表現形式多樣,大致上可分為兩種類型:混合效應和協同效應。
混合效應也稱作平均效應,是組分材料性能取長補短共同作用的結果,它是組分材料性能比較穩定的總體反映,對局部的擾動反應並敏感。協同效應與混合效應相比,則是普遍存在的且形式多樣,反映的是組分材料的各種原位特性。所謂原位特性意味著各相組分材料在復合材料中表現出來的性能並不只是其單獨存在時的性能,單獨存在時的性能不能表徵其復合後材料的性能。
樹脂基復合材料的力學性能
力學性能是材料最重要的性能。樹脂基復合材料具有比強度高、比模量大、抗疲勞性能好等優點,用於承力結構的樹脂基復合材料利用的是它的這種優良的力學性能,而利用各種物理、化學和生物功能的功能復合材料,在製造和使用過程中,也必須考慮其力學性能,以保證產品的質量和使用壽命。
1、樹脂基復合材料的剛度
樹脂基復合材料的剛度特性由組分材料的性質、增強材料的取向和所佔的體積分數決定。樹脂基復合材料的力學研究表明,對於宏觀均勻的樹脂基復合材料,彈性特性復合是一種混合效應,表現為各種形式的混合律,它是組分材料剛性在某種意義上的平均,界面缺陷對它作用不是明顯。
由於製造工藝、隨機因素的影響,在實際復合材料中不可避免地存在各種不均勻性和不連續性,殘余應力、空隙、裂紋、界面結合不完善等都會影響到材料的彈性性能。此外,纖維(粒子)的外形、規整性、分布均勻性也會影響材料的彈性性能。但總體而言,樹脂基復合材料的剛度是相材料穩定的宏觀反映。
對於樹脂基復合材料的層合結構,基於單層的不同材質和性能及鋪層的方向可出現耦合變形,使得剛度分析變得復雜。另一方面,也可以通過對單層的彈性常數(包括彈性模量和泊松比)進行設計,進而選擇鋪層方向、層數及順序對層合結構的剛度進行設計,以適應不同場合的應用要求。
2、樹脂基復合材料的強度
材料的強度首先和破壞聯系在一起。樹脂基復合材料的破壞是一個動態的過程,且破壞模式復雜。各組分性能對破壞的作用機理、各種缺陷對強度的影響,均有街於具體深入研究。
樹脂基復合材強度的復合是一種協同效應,從組分材料的性能和樹脂基復合材料本身的細觀結構導出其強度性質。對於最簡單的情形,即單向樹脂基復合材料的強度和破壞的細觀力學研究,還不夠成熟。
單向樹脂基復合材料的軸向拉、壓強度不等,軸向壓縮問題比拉伸問題復雜。其破壞機理也與拉伸不同,它伴隨有纖維在基體中的局部屈曲。實驗得知:單向樹脂基復合材料在軸向壓縮下,碳纖維是剪切破壞的;凱芙拉(Kevlar)纖維的破壞模式是扭結;玻璃纖維一般是彎曲破壞。
單向樹脂基復合材料的橫向拉伸強度和壓縮強度也不同。實驗表明,橫向壓縮強度是橫向拉伸強度的4~7倍。橫向拉伸的破壞模式是基體和界面破壞,也可能伴隨有纖維橫向拉裂;橫向壓縮的破壞是因基體破壞所致,大體沿45°斜面剪壞,有時伴隨界面破壞和纖維壓碎。單向樹脂基復合材料的面內剪切破壞是由基體和界面剪切所致,這些強度數值的估算都需依靠實驗。
雜亂短纖維增強樹脂基復合材料盡管不具備單向樹脂基復合材料軸向上的高強度,但在橫向拉、壓性能方面要比單向樹脂基復合材料好得多,在破壞機理方面具有自己的特點:編織纖維增強樹脂基復合材料在力學處理上可近似看作兩層的層合材料,但在疲勞、損傷、破壞的微觀機理上要更加復雜。
樹脂基復合材料強度性質的協同效應還表現在層合材料的層合效應及混雜復合材料的混雜效應上。在層合結構中,單層表現出來的潛在強度與單獨受力的強度不同,如0/90/0層合拉伸所得90°層的橫向強度是其單層單獨實驗所得橫向拉伸強度的2~3倍;面內剪切強度也是如此,這一現象稱為層合效應。
樹脂基復合材料強度問題的復雜性來自可能的各向異性和不規則的分布,諸如通常的環境效應,也來自上面提及的不同的破壞模式,而且同一材料在不同的條件和不同的環境下,斷裂有可能按不同的方式進行。這些包括基體和纖維(粒子)的結構的變化,例如由於局部的薄弱點、空穴、應力集中引起的效應。除此之外,界面粘結的性質和強弱、堆積的密集性、纖維的搭接、纖維末端的應力集中、裂縫增長的干擾以及塑性與彈性響應的差別等都有一定的影響。
樹脂基復合材料的物理性能
樹脂基復合材料的物理性能主要有熱學性質、電學性質、磁學性質、光學性質、摩擦性質等(見表)。對於一般的主要利用力學性質的非功能復合材料,要考慮在特定的使用條件下材料對環境的各種物理因素的響應,以及這種響應對復合材料的力學性能和綜合使用性能的影響;而對於功能性復合材料,所注重的則是通過多種材料的復合而滿足某些物理性能的要求。
樹脂基復合材料的物理性能由組分材料的性能及其復合效應所決定。要改善樹脂基復合材料的物理性能或對某些功能進行設計時,往往更傾向於應用一種或多種填料。相對而言,可作為填料的物質種類很多,可用來調節樹脂基復合材料的各種物理性能。值得注意的是,為了某種理由而在復合體系中引入某一物質時,可能會對其它的性質產生劣化作用,需要針對實際情況對引入物質的性質、含量及其與基體的相互作用進行綜合考慮。
樹脂基復合材料的化學性能
大多數的樹脂基復合材料處在大氣環境中、浸在水或海水中或埋在地下使用,有的作為各種溶劑的貯槽,在空氣、水及化學介質、光線、射線及微生物的作用下,其化學組成和結構及各種性能會發生各種變化。在許多情況下,溫度、應力狀態對這些化學反應有著重要的影響。特別是航空航天飛行器及其發動機構件在更為惡劣的環境下工作,要經受高溫的作用和高熱氣流的沖刷,其化學穩定性是至關重要的。
作為樹脂基復合材料的基體的聚合物,其化學分解可以按不同的方式進行,它既可通過與腐蝕性化學物質的作用而發生,又可間接通過產生應力作用而進行,這包括熱降解、輻射降解、力學降解和生物降解。聚合物基體本身是有機物質,可能被有機溶劑侵蝕、溶脹、溶解或者引起體系的應力腐蝕。所謂的應力腐蝕,是摜材料與某些有機溶劑作用在承受應力時產生過早的破壞,這樣的應力可能是在使用過程中施加上去的,也可能是鑒於製造技術的某些局限性帶來的。根據基體種類的不同,材料對各種化學物質的敏感程度不同,常見的玻璃纖維增強塑料耐強酸、鹽、酯,但不耐鹼。一般情況下,人們更注重的是水對材料性能的影響。水一般可導致樹脂基復合材料的介電強度下降,水的作用使得材料的化學鍵斷裂時產生光散射和不透明性,對力學性能也有重要影響。不上膠的或僅只熱處理過的玻璃纖維與環氧樹脂或聚酯樹脂組成的復合材料,其拉伸強度、剪切強度和彎曲強度都很明顯地受沸水影響,使用偶聯劑可明顯地降低這種損失。水及各種化學物質的影響與溫度、接觸時間有關,也與應力的大小、基體的性質及增強材料的幾何組織、性質和預處理有關,此外還與復合材料的表面的狀態有關,纖維末端暴露的材料更易受到損害。
聚合物的熱降解有多種模式和途徑,其中可能幾種模式同時進行。如可通過"拉鏈"式的解聚機理導致完全的聚合物鏈的斷裂,同時產生揮發性的低分子物質。其它的方式包括聚合物鏈的不規則斷裂產生較高分子量的產物或支鏈脫落,還有可能形成環狀的分子鏈結構。填料的存在對聚合物的降解有影響,某些金屬填料可通過催化作用加速降解,特別是在有氧存在的地方。樹脂基復合材料的著火與降解產生的揮發性物質有關,通常加入阻燃劑減少著火的危險。某些聚合物在高溫條件下可產生一層耐熱焦炭,這些聚合物與尼龍、聚酯纖維等復合後,因這些增強物本身的分解導致揮發性物質產生可帶走熱量而冷卻燒焦的聚合物,進一步提高耐熱性,同時賦予復合材料以優良的力學性能,如良好的坑震性。
許多聚合物因受紫外線輻射或其它高能輻射的作用而受到破壞,其機理是當光和射線的能量大於原子間的共價鍵能時,分子鏈發生斷裂。鉛填充的聚合物可用來防止高能輻射。紫外線輻射則一般受到更多的關注,經常使用的添加劑包括炭黑、氧化鋅和二氧化鈦,它們的作用是吸收或者反射紫外線輻射,有些無面填料可以和可見光一樣傳輸紫外線,產生熒光。
力學降解是另一種降解機理,當應力的增加頻率超過一個鍵通過平移所產生的響應能力時,就發生鍵的斷裂,由此形成的自由基還可能對下一階段的降解模式產生影響。硬質和脆性聚合物基體應變小,可進行有或者沒有鏈斷裂的脆性斷裂,而較軟但粘性高的聚合物基體大多是力學降解的。
樹脂基復合材料的工藝特點
樹脂基復合材料的成型工藝靈活,其結構和性能具有很強的可設計性。樹脂基復合材料可用模具一次成型法來製造各種構件,從而減少了零部件的數量及接頭等緊固件,並可節省原材料和工時;更為突出的是樹脂基復合材料可以通過纖維種類和不同排布的設計,把潛在的性能集中到必要的方向上,使增強材料更為有效地發揮作用。通過調節復合材料各組分的成分、結構及排列方式,既可使構件在不同方向承受不同的作用力,還可以製成兼有剛性、韌性和塑性等矛盾性能的樹脂基復合材料和多功能製品,這些是傳統材料所不具備的優點。樹脂基復合材料在工藝方面也存在缺點,比如,相對而言,大部分樹脂基復合材料製造工序較多,生產能力較低,有些工藝(如製造大中型製品的手糊工藝和噴射工藝)還存在勞動強度大、產品性能不穩定等缺點。
樹脂基復合材料的工藝直接關繫到材料的質量,是復合效應、"復合思想"能否體現出來的關鍵。原材料質量的控制、增強物質的表面處理和鋪設的均勻性、成型的溫度和壓力、後處理及模具設計的合理性都影響最終產品的性能。在成型過程中,存在著一系列物理、化學和力學的問題,需要綜合考慮。固化時在基體內部和界面上都可能產生空隙、裂紋、缺膠區和富膠區;熱應力可使基體產生或多或少的微裂紋,在許多工藝環節中也都可造成纖維和纖維束的彎曲、扭曲和折斷;有些體系若工藝條件選擇不當可使基體與增強材料之間發生不良的化學反應;在固化後的加工過程中,還可進一步引起新的纖維斷裂、界面脫粘和基體開裂等損傷。如何防止和減少缺陷和損傷,保證纖維、基體和界面發揮正常的功能是一個非常重要的問題。
樹脂基復合材料的成型有許多不同工藝方法,連續纖維增強樹脂基復合材料的材料成型一般與製品的成型同時完成,再輔以少量的切削加工和連接即成成品;隨機分布短纖維和顆粒增強塑料可先製成各種形式的預混料,然後進行擠壓、模塑成型。
組合復合效應
復合體系具有兩種或兩種以上的優越性能,稱為組合復合效應貧下中農站這樣的情況很多,許多的力學性能優異的樹脂基復合材料同時具有其它的功能性,下面列舉幾個典型的例子。
1、光學性能與力學性能的組合復合
纖維增強塑料,如玻璃纖維增強聚酯復合材料,同時具有充分的透光性和足夠的比強度,對於需要透光的建築結構製品是很有用的。
2、電性能與力學性能的組合復合
玻璃纖維增強樹脂基復合材料具有良好的力學性能,同時又是一種優良的電絕緣材料,用於製造各種儀表、電機與電器的絕緣零件,在高頻作用下仍能保持良好的介電性能,又具有電磁波穿透性,適製作雷達天線罩。聚合物基體中引入炭黑、石墨、酞花菁絡合物或金屬粉等導電填料製成的復合材料具有導電性能,同時具有高分子材料的力學性能和其它特性。
3、熱性能與力學性能的組合復合
①耐熱性能
樹脂基復合材料在某些場合的使用除力學性能外,往往需要同時具有好的耐熱性能。
②耐燒蝕性能
航空航天飛行器的工作處於嚴酷的環境中,必須有防護材料進行保護;耐燒蝕材料靠材料本身的燒蝕帶走熱量而起到防護作用。玻璃纖維、石英纖維及碳纖維增強的酚醛樹脂是成功的燒蝕材料。酚醛樹脂遇到高溫立即碳化形成耐熱性高的碳原子骨架;玻璃纖維還可部分氣化,在表面殘留下幾乎是純的二氧化硅,它具有相當高的粘結性能。兩方面的作用,使酚醛玻璃鋼具有極高的耐燒蝕性能。
『陸』 2種110℃固化的環氧樹脂膠混到一起會產生反應嗎
早上好,有可能。110度固化的環氧體系應該是熱固性酸酐為主的屬於內酸性環境,它們和容常見雙組份環氧樹脂膠由烯胺、脂肪胺和芳香胺組成的鹼性環境正好相反,所以如果是這兩種體系接觸其中固化劑組份就會相互反應從而使環氧單體失去交聯能力一直保持不凝固的液態請酌情參考。就各自單獨體系來說,酸性和酸性以及鹼性和鹼性互相混合後通常只要體系正確是不分品牌的(兩者都對產生增強共聚,兩者不對雙重失效),建議你還是各自品牌分開使用以免造成不必要的損失。
『柒』 環氧樹脂膠B膠快慢干可以混合用嗎
使用環氧樹脂膠的時候需要首先了解一下它的使用說明,第一個頌拆方面就是它的基本特性膠水是分兩組的,所以在使用的時候需要混合使用,這樣的話,比較大的空隙也可以被填充起來。第二個就是它的操作環境,一般情況下,在平常的室內溫度中,膠水就會固化。在進行兩種膠水的混合操作時,可以直接用手混合,也可以使用一些專業的設備,如膠槍等。
使用時還需要注意周圍環境的溫度,零下50攝氏度到150攝氏度之間為最佳。環氧樹脂膠可以使用在一般的正常環境中,它可以防水,還可以防一些侵蝕性較強的物質,如強酸、強鹼等。在保存環氧樹脂膠的時候,還有一些必要的注意事項,它不能接受陽光的直射,所以陰涼處是保存的最佳環境,一般這種膠水的保存時間也是有一定的期限的,芹逗超過12個月之後就不能使用了。
使用環氧樹脂膠的時候,比較遵循一定的步驟,而且其中還會有一些注意事項,這都是我們必須要了解的。在使用的時候,首先要做的就是把要粘結的物體表面清理干凈,初步擦拭野首棗之後,再使用一些清潔劑進行第二遍的擦拭,以達到充分清潔的目的。
『捌』 有沒有雙酚A環氧樹脂膠黏劑的資料,謝謝大家幫忙
環氧樹脂及環氧樹脂膠粘劑的基本知識
(一)、環氧樹脂的概念:
環氧樹脂是指高分子鏈結構中含有兩個或兩個以上環氧基團的高分子化合物的總稱,屬於熱固性樹脂,代表性樹脂是雙酚A型環氧樹脂。
(二).環氧樹脂的特點(通常指雙酚A型環氧樹脂)
1.單獨的環氧樹脂應用價值很低,它需要與固化劑配合使用才有實用價值。
2.高粘接強度:在合成膠粘劑中環氧樹脂膠的膠接強度居前列。
3.固化收縮率小,在膠粘劑中環氧樹脂膠的收縮率最小,這也是環氧樹脂膠固化膠接高的原因之一。例如:
酚醛樹脂膠:8—10% ; 有機硅樹脂膠:6—8%
聚酯樹脂膠:4—8% ; 環氧樹脂膠:1—3%
若經過改性加工後的環氧樹脂膠收縮率可降為0.1—0.3%,熱膨脹系數為6.0×10-5/℃
4.耐化學性能工好:在固化體系中的醚基、苯環和脂肪羥基不易受酸鹼侵蝕。在海水、石油、煤油、10%H2SO4、10%HCl、10%HAc、10%NH3、10%H3PO4和30%Na2CO3中可以用兩年;而在50%H2SO4和10%HNO3常溫浸泡半年;10%NaOH(100℃)浸泡一個月,性能保持不變。
5.電絕緣性優良:環氧樹脂的擊穿電壓可大於35kv/mm
6.工藝性能良好、製品尺寸穩定、耐性良好和吸水率低。
雙酚A型環氧樹脂的優點固然好,但也有其缺點:
①.操作粘度大,這在施工方面顯的有些不方便
②.固化物性脆,伸長率小。
③.剝離強度低。
④.耐機械沖擊和熱沖擊差。
(三).環氧樹脂的應用與發展
1.環氧樹脂的發展史:
環氧樹脂是1938年由P.Castam申請瑞士專利,由汽巴公司在1946年研製出最早的環氧粘接劑,1949年美國的S.O.Creentee研製了環氧塗料,我國於1958年開始環氧樹脂的工業化生產。
2.環氧樹脂的應用:
①塗料工業:環氧樹脂在塗料工業中需用量最大,目前較廣泛使用的有水性塗料、粉末塗料和高固分塗料。可廣泛用於管道容器、汽車、船舶、航天、電子、玩具、工藝品等行業。
②電子電器工業:環氧樹脂膠可用於電氣絕緣材料,例如整流器、變壓器的密封灌注;電子元器件的密封保護;機電產品的絕緣處理與粘接;蓄電池的密封粘接;電容器、電阻、電感器的表面披覆。
③五金飾品,工藝品、體育用品品行業:可用於標牌、飾品、商標、五金、球拍、釣具、運動用品、工藝品等產品上。
④光電行業:可用於發光二極體(LED)、數碼管、像素管、電子顯示屏、LED燈飾等產品的封裝、灌注和粘接。
⑤建築工業:在道路、橋梁、地坪、鋼鐵結構、建築、牆體塗料、堤壩、工程施工、文物修補等行業也會廣泛用到。
⑥膠粘劑、密封劑和復合材料領域:如風力發電機葉片、工藝品、陶瓷、玻璃等各種物質之間的粘接,碳纖維板材的復合、微電子材料的密封等等。
(四).環氧樹脂膠的特性
1、環氧樹脂膠是在環氧樹脂的基礎上對其特性進行再加工或改性,使其性能參數等符合特定的要求,通常環氧樹脂膠也需要有固化劑搭配才能使用,並且需要混合均勻後才能完全固化,一般環氧樹脂膠稱為A膠或主劑,固化劑稱為B膠或固化劑(硬化劑)。
2、反映環氧樹脂膠固化前的主要特性有:顏色、粘度、比重、配比、凝膠時間、可使用時間、固化時間、觸變性(止流性)、硬度、表面張力等。
粘度(Viscosity):是指膠體在流動中所產生的內部摩擦阻力,其數值由物質種類、溫度、濃度等因素決定。
凝膠時間:膠水的固化是從液體向固化轉化的過程,從膠水開始反應起到膠體趨向固體時的臨界狀態的時間為凝膠時間,它由環氧樹脂膠的混合量、溫度等因素決定。
觸變性:該特性是指膠體受外力觸動(搖晃、攪拌、振動、超聲波等)時,隨外力作用由稠變稀,當外界因素停止作用時,膠體又恢復到原來時的稠度的現象。
硬度(Hardness):是指材料對壓印、刮痕等外力的抵抗能力。根據試驗方法不同有邵氏(Shore)硬度、布氏(Brinell)硬度、洛氏(Rockwell)硬度、莫氏(Mohs)硬度、巴氏(Barcol)硬度、維氏(Vichers)硬度等。硬度的數值與硬度計類型有關,在常用的硬度計中,邵氏硬度計結構簡單,適於生產檢驗,邵氏硬度計可分為A型、C型、D型,A型用於測量軟質膠體,C和D型用於測量半硬和硬質膠體。
表面張力(Surface tension):液體內部分子的吸引力使表面上的分子處於向內一種力作用下,這種力使液體盡量縮小其表面積而形成平行於表面的力,稱為表面張力。或者說是液體表面相鄰兩部分間單位長度內的相互牽引力,它是分子力的一種表現。表面張力的單位是N/m。表面張力的大小與液體的性質、純度和溫度有關。
3、反映環氧樹脂膠固化後特性的主要特性有:電阻、耐電壓、吸水率、抗壓強度、拉伸(引張)強度、剪切強度、剝離強度、沖擊強度、熱變形形溫度、玻璃化轉變溫度、內應力、耐化學性、伸長率、收縮系數、導熱系數、誘電率、耐候性、耐老化性等。
電阻(Resistivity):描述材料電阻特性通常用表面電阻或體積電阻。表面電阻簡單地說就是同一表面上兩電極之間所測得的電阻值,單位是Ω。將電極形狀和電阻值結合在一起通過計算可得到單位面積的表面電阻率。體積電阻也叫體積電阻率、體積電阻系數,指通過材料厚度的電阻值,是表徵電介質或絕緣材料電性能的一個重要指標。表示1cm2電介質對泄漏電流的電阻,單位是Ω•m或Ω•cm。電阻率愈大,絕緣性能愈好。
耐電壓(Proof voltage):又稱耐壓強度(絕緣強度),膠體兩端所加的電壓越高,材料內電荷受到的電場力就越大,越容易發生電離碰撞,造成膠體擊穿。使絕緣體擊穿的最低電壓叫做這個物體的擊穿電壓。使1毫米厚的絕緣材料擊穿時,需要加上的電壓千伏數叫做絕緣材料的絕緣耐壓強度,簡稱耐電壓,單位是:Kv/mm。絕緣材料的絕緣性能與溫度有密切的關系。溫度越高,絕緣材料的絕緣性能越差。為保證絕緣強度,每種絕緣材料都有一個適當的最高允許工作溫度,在此溫度以下,可以長期安全地使用,超過這個溫度就會迅速老化。
吸水率(Water absorption):是指物質吸水程度的量度。系指在一定的溫度下把物質在水中浸泡一定時間所增加的質量百分數。
拉伸強度(Tensile strength):拉伸強度是膠體拉伸至斷裂時的最大拉伸應力。有稱扯斷力、扯斷強度、抗張力、抗張強度。單位為MPa。
剪切強度(Shear strength):也稱抗剪強度,是指單位粘接面積上能夠承受平行於粘接面積的最大載荷,常用的單位為MPa。
剝離強度(Peel strength):也稱抗剝強度,是指每單位寬度所能承受的最大破壞載荷,是衡量線受力能力的,單位為kN/m。
伸長率(Elongation):是指膠體在拉力作用下長度的增加,以原長的百分數表示。
熱變形溫度(Heat deflection temperature under load):是指固化物耐熱性的一種量度,是將固化物試樣浸在一種等速升溫的適宜傳熱介質中,在簡支梁式的靜彎曲負荷作用下,測出試樣彎曲變形達到規定值時的溫度,即為熱變形溫度,簡稱HDT。
玻璃化溫度(Glass transition temperature):是指固化物從玻璃形態向無定形或高彈態或流態轉變(或相反的轉變)的較窄溫度范圍的近似中點,稱為玻璃化溫度,通常以Tg表示,是耐熱性的一個指標。
收縮率(Shrinkage ration):定義為收縮量與收縮前尺寸之比的百分數,收縮量則為收縮前後尺寸之差。
內應力(Internal stress):是指在沒有外力存在下,膠體(材料)內部由於存在缺陷、溫度變化、溶劑作用等原因所產生的應力。
耐化學性(Chemical resistance):是指耐酸、鹼、鹽、溶劑和其他化學物質的能力。
阻燃性(Flame resistance):是指材料接觸火焰時,抵制燃燒或離開火焰時阻礙繼續燃燒的能力。
耐候性(Weatherability):是指材料曝露在日光、冷熱、風雨等氣候條件下的耐受性。
老化(Aging):固化後膠體在加工、貯存和使用過程中,由於受到外界因素(熱、光、氧、水、射線、機械力和化學介質等)的作用,發生一系列物理或化學變化,使高分子材料交聯變脆、裂解發粘、變色龜裂、粗糙起泡、表麵粉化、分層剝落、性能逐漸變壞,以至喪失力學性能不能使用,這種變化的現象叫老化。
介電常數(Dielectric Constant):又稱電容率、誘電率(Permittivity)。是指每「單位體積」的物體,在每一單位之「電位梯度」下所能儲蓄「靜電能量」(Electrostatic Energy)的多少。當膠體的「透電率」越大(表示品質越不好),而兩逼近之導線中有電流工作時,就愈難到達徹底絕緣的效果,換言之就越容易產生某種程度的漏電。故絕緣材料的介質常數在通常情況下要愈小愈好。水的介電常數是70,很少的水分,會引起顯著的變化。
4、環氧樹脂膠大部分是熱固型的膠,它有以下主要特點:溫度越高固化越快;一次混合的量越多固化越快;固化過程中有放熱現象等。
『玖』 怎樣做樹脂膠水
製作方法:樹脂來膠水需自要利用原料混合然後通過微波反應釜攪拌加熱合成。通過不同的應用行業需要不同的環氧樹脂膠水混合比例,根據生產經驗調節微波反應釜分段溫度和時間即可以製作出不同特性的膠水。
性能特點: 樹脂膠水毒性低,揮發性小,配用比例寬,操作簡便,可常溫固化,粘接力強,韌性好,明顯地優越於一般的單體胺類固化劑。
『拾』 復合材料中易產生哪些缺陷,原因何在
色斑、顏色不均勻、變色 原因:樹脂中顏料混合不均勻,顏料分解耐溫性不好
措施:加強攪拌,使樹脂膠液混合均勻,更換顏料及類型
污染、異物混入 原因:樹脂膠液中混入異物,玻璃氈表面被污染,進入模具時夾帶進了異物
措施:細心檢查防止成型中異物的混入,更換被污染的原材料
表面凹痕 原因:缺紗或局部紗量過少,模具黏附造成碎片堆積,劃傷製品表面。
措施:增加紗量,清理模具,短暫停機後再重新啟動,選用好的脫模劑。
等等,給你列舉幾個