Ⅰ 大孔吸收樹脂在現代中葯生產中的應用
大孔吸收樹脂在現代中葯生產中的應用
大孔吸附樹脂是近代發展起來的一類有機高聚物吸附劑,70年代末開始將其應用於中草葯成分的提取分離。中國醫學科學院葯物研究所植化室試用大孔吸附樹脂對糖、生物鹼、黃酮等進行吸附,並在此基礎上用於天麻、赤勺、靈芝和照山白等中草葯的提取分離,結果表明大孔吸附樹脂是分離中草葯水溶性成分的一種有效方法。用此法從甘草中可提取分離出甘草甜素結晶。以含生物鹼、黃酮、水溶性酚性化合物和無機礦物質的4種中葯有效部位的單味葯材(黃連、葛根、丹參、石膏)水提液為樣本,在LD605型樹脂上進行動態吸附研究,比較其吸附特性參數。結果表明除無機礦物質外,其它中葯有效部位均可不同程度的被樹脂吸附純化。不同結構的大孔吸附樹脂對親水性酚類衍生物的吸附作用研究表明不同類型大孔吸附樹脂均能從極稀水溶液中富集微量親水性酚類衍生物,且易洗脫,吸附作用隨吸附物質的結構不同而有所不同,同類吸附物質在各種樹脂上的吸附容量均與其極性水溶性有關。用D型非極性樹脂提取了絞股藍皂甙,總皂甙收率在2.15%左右。用D1300大孔樹脂精製「右歸煎液」,其干浸膏得率在4~5%之間,所得干浸膏不易吸潮,貯藏方便,其吸附回收率以5-羥甲基糖醛計,為83.3%。用D-101型非極性樹脂提取了甜菊總甙,粗品收率8%左右,精品收率在3%左右。用大孔吸附樹脂提取精製三七總皂甙,所得產品純度高,質量穩定,成本低。將大孔吸附樹脂用於銀杏葉的提取,提取物中銀杏黃酮含量穩定在26%以上。江蘇色可賽思樹脂有限公司整理用大孔吸附樹脂分離出的川芎總提物中川芎嗪和阿魏酸的含量約為25%~29%,收率為0.6%。另外大孔吸附樹脂還可用於含量測定前樣品的預分離。
黃酮精製純化
張紀興等對地錦草的提取工藝進行了研究,旨在提高總黃酮的收率,選用D101型大孔樹脂,以地錦草總黃酮含量為考察指標,採用L9(34)正交試驗表,以直接影響地錦草總黃酮收率的上柱量、吸附時間及洗脫液的濃度為實驗因素,每個因素取3個水平。結果10ml樣品液(每1ml75%乙醇液含地錦草干浸膏0.5g)上柱、靜置吸附時間30min、用95%乙醇洗脫地錦草總黃酮為最佳工藝;洗脫液乾燥後的總固體物中的地錦草總黃酮含量大於16%,高於醇提干浸膏的7.61%,且洗脫率大於93%。高紅寧等採用紫外分光光度法測定苦參中總黃酮的含量,使用AB-8型大孔吸附樹脂對苦參總黃酮的吸附性能及原液濃度、pH值、流速、洗脫劑的種類對吸附性能的影響進行了研究,結果AB-8型樹脂對苦參總黃酮的適宜吸附條件為原液濃度0.285mg/ml、pH值4、流速每小時3倍樹脂體積、洗脫劑用50%乙醇時,解吸效果較好,表明AB-8型樹脂精製苦參總黃酮是可行的。麻秀萍等用不同型號的大孔吸附樹脂研究了中葯銀杏葉的提取物銀杏葉黃酮的分離,發現S-8型樹脂吸附量為126.7mg/g,洗脫溶劑的乙醇濃度90%,解吸率52.9%,AB-8型樹脂吸附量102.8mg/g,用溶劑為90%的乙醇解吸,解吸率是97.9%,表明不同型號的樹脂對同一成分的吸附量、解吸率不同。崔成九等用大孔樹脂分離葛根中的總黃酮,將用70%乙醇提取的葛根濃縮液加到大孔樹脂柱上,先用水洗脫,再用70%乙醇洗脫至薄層色譜(TLC)檢查無葛根素斑點為止,結果葛根總黃酮收率為9.92%(占生葯總黃酮的84.58%),高於正丁醇法的5.42%。兩種方法的主要成分基本一致,但用大孔樹脂法分離葛根總黃酮具有收率高、成本低、操作簡便等優點,可供大生產使用。
皂苷精製純化
赤芍為中葯,其主要成分為芍葯苷、羥基芍葯苷、芍葯苷內酯等化合物,簡稱赤芍總苷。姜換榮等用大孔吸附樹脂分離赤芍總苷,芍葯以70%的乙醇迴流提取,減壓濃縮,過大孔吸附樹脂柱,分別用水、20%乙醇洗脫,收集20%乙醇洗脫液,減壓濃縮得赤芍總苷,並用高效液相色譜法(HPLC)對所得赤芍總苷中的芍葯苷含量進行測定,赤芍總苷的收率為5.4%,其中芍葯苷的含量為75%。本法操作簡便,得率穩定,產品質量穩定。金芳等用D101型大孔吸附樹脂吸附含芍葯中葯復方提取液,以排除其他成分的干擾,並將50%乙醇洗脫液用HPLC法測定,結果可以快速准確地測定復方中葯制劑中的芍葯苷含量,且重現性好,回收率較高。臧琛等以中葯抗感冒顆粒中芍葯苷含量為指標,比較了醇沉、超濾及大孔吸附樹脂精製3種方法,結果芍葯苷的含量大小依次為醇沉、大孔樹脂、超濾法。醇沉法含量雖高,但工藝較為復雜,耗時長。陳延清採用HPLC法測定丹參素、芍葯苷的含量,選用7種不同類型的大孔吸附樹脂(X-5,AB-8,NK-2,NKA-2,NK-9,D3520,D101,WLD),精製後提取物的含固率顯著降低,丹參素的損失都很大,X-5,AB-8,WLD3種樹脂對芍葯苷的保留率都在80%以上。7種大孔樹脂在樂脈膠囊的精製中對丹參素保留率都很低,因而對丹參葯材不宜採用;部分類型樹脂對精製芍葯苷類成分可以採用。苟奎斌等採用大孔吸附樹脂,用HPLC法測定肝得寧片中的連翹苷的含量,用DA-101型樹脂吸附樣品,以水洗脫干擾成分,將70%乙醇洗脫液用於含量測定。利用HPLC法檢測大孔樹脂柱處理過的樣品液,操作步驟少,色譜性污染小,柱壓低,具有分離度高、專屬性強及重現性好、靈敏度高等特點。蔡雄等研究D101型大孔吸附樹脂富集、純化人參總皂苷的工藝條件及參數。人參提取液45ml(5.88mg/ml)上大孔樹脂柱(15mm×90mm,乾重2.52g),用蒸餾水100ml、50%乙醇100ml依次洗脫,人參總皂苷富集於50%乙醇洗脫液中,且該法除雜質能力強;通過大孔吸附樹脂富集與純化後,人參總皂苷洗脫率在90%以上,50%乙醇洗脫液乾燥後總固物中人參總皂苷純度可達60.1%。劉中秋等研究了大孔樹脂吸附法富集保和丸中有效成分的工藝條件及參數,以保和丸中的陳皮的主要成分橙皮苷和總固物為評價指標。結果保和丸提取液(500mg/ml)5ml上D101型大孔樹脂柱(15mm×10mm),吸附30min後,先用100ml蒸餾水洗脫除去雜質,然後用100ml50%乙醇洗脫橙皮苷為最佳工藝條件;通過大孔樹脂富集後橙皮苷洗脫率在95%以上,50%乙醇洗脫液乾燥後總固物約為處方量的4%。劉中秋等將D101型大孔樹脂用於分離三七皂苷,結果吸附量為174.5mg/g,用50%乙醇解吸,解吸率達80%,產品純度71%。金京玲用D101型樹脂提取分離蒺藜總皂苷,結果吸附量為6mg/g,用濃度為80%的乙醇解吸,解吸率為96%。劉中秋等研究了中葯毛冬青中的有效成分毛冬青總皂苷的提取分離工藝,選用D101型大孔吸附樹脂,結果吸附量為120mg/g,用50%乙醇解吸,解吸率為95%,產品純度71%。上述結果表明同一型號的樹脂對不同成分的吸附量不同。杜江等將D3520型大孔吸附樹脂用於黃褐毛忍冬總皂苷的提取分離,並與原工藝有機溶劑提取法進行比較,結果總皂苷的純度、得率均明顯高於原法,且工藝簡化、成本降低。
生物鹼精製純化
傳統方法一般用陰離子交換樹脂分離純化生物鹼,解吸時需要用酸、鹼或鹽類洗脫劑,會引入雜質,給後來的分離帶來不便,換用吸附樹脂則可避免此類問題。劉俊紅等將3種大孔吸附樹脂(D101,DA-201,WLD-3)應用於延胡索生物鹼的提取分離,方法是讓延胡索水提取液通過已處理過的樹脂柱,用水洗至流出液無色,然後分別用30%,40%,50%,60%,70%,80%,90%,95%乙醇依次洗脫,收集各段洗脫液,進行薄層鑒別。結果從樹脂上洗脫的延胡索乙素占總生葯量D101型為0.069%,WLD-3型為0.072%,DA-201型為0.053%。樹脂柱用40%乙醇洗脫後除去了干擾性成分,便於用HPLC法測定,保護了色譜柱,且經過大孔吸附樹脂提取分離的延胡索生物鹼成品體積小,相對含量高,產品質量穩定,具有良好的生理活性。羅集鵬等將大孔吸附樹脂用於小檗鹼的富集與定量分析,把黃連粉末以70%甲醇超聲提取30min,加到已處理的大孔樹脂小柱上,用pH值為10~11的水洗脫,再用含0.5%硫酸的50%甲醇80ml洗脫,洗脫液用10%氫氧化鈉調至鹼性後,於水浴上揮去大部分溶劑,並轉移至10ml量瓶中,用水稀釋至刻度,以HPLC法測定,結果小檗鹼與其他生物鹼能很好地分離。表明大孔吸附樹脂對醛式或醇式小檗鹼具有良好的吸附性能,且不易被弱鹼性水解吸,可用於黃連及其制劑尤其是含糖制劑中小檗鹼的富集和水溶性雜質的去除。楊樺等採用大孔吸附樹脂比較並篩選烏頭類生物鹼的提取分離最佳工藝條件,將川烏水提取液制備成8ml/g濃縮液,上柱,測定總生物鹼的含量,結果該方法可分離出樣品中85%以上的烏頭類生物鹼,同時可除去浸膏中總量為82%的水溶性固體雜質。
復方制劑精製純化
饒品昌等用大孔樹脂D1300,通過正交試驗探討了右歸煎液的精製工藝,結果影響精製的主要因素為右歸煎液濃度、流速和徑高比,樹脂最大吸附量為1.10g生葯/ml,吸附回收率為83.34%(以5-羥甲基糖醛計)。晏亦林等將四逆湯提取液上大孔樹脂,水洗後用70%乙醇洗脫,四逆湯精製樣品的TLC測試結果表明,經大孔樹脂處理後3味主要成分基本能檢出,樹脂處理前後樣品的HPLC圖譜峰位、峰形基本相似,但TLC及HPLC圖譜中烏頭鹼特徵峰不明顯。
使用方法
在運用大孔吸附樹脂進行分離精製工藝時,其大致操作步驟為:大孔吸附樹脂預處理——樹脂上柱——葯液上柱——大孔吸附樹脂的解吸——大孔吸附樹脂的清洗、再生。由於每一個操作單元都會影響到大孔吸附樹脂的分離效果,因此對大孔吸附樹脂的精製工藝和分離技術的要求就相對較高。
使用注意事項
該類樹脂在通常的儲存及使用條件下性質十分穩定,不溶於水、酸、鹼及有機溶劑,也不與它們發生化學反應。
搬運、裝卸操作應輕緩,堆放穩定、規則,勿猛烈摔打。如灑落會導致地面濕滑,要注意防止滑倒。
儲存此種材料的儲存溫度請勿高於90℃,最高使用溫度180℃。
濕態0℃以上保存。儲存狀態下請保持包裝密封完好,以防失水;如發生乾燥失水,應以乙醇浸泡干態樹脂約2小時,用清水洗干凈後再重新包裝或使用。
嚴防冬季將球體凍裂。如發現凍結現象,請於室溫下緩慢融化。
運輸或儲存過程中嚴防和有異味、有毒物品及強氧化劑混雜堆放。
前景
大孔吸附樹脂純化技術在中葯制葯工業中是有發展前景的實用新技術之一,盡管它在中葯有效成分的精製純化方面還存在著一些問題。隨著研究的深入以及相關標准、法規的進一步完善,一定會開發出高選擇性的樹脂,以進一步提高中葯有效成分的提取、分離、富集效率。
Ⅱ 甾體皂甙的提取分離
皂甙是一類極性較強的大分子化合物,不容易結晶,易溶於水和醇,難溶於有機溶劑,而且在同一植物中往往有很多結構相近的皂甙共存,更增加了分離純化的困難。一般採取先用甲醇或含水乙醇提取,然後將醇浸膏懸浮於水,用水飽和的正丁醇萃取,即得到總皂甙。粗皂甙的分離除使用常規的正相硅膠柱層析外,還可選用反相硅膠、大孔吸附樹脂及葡聚糖凝膠柱層析等,可使分離效果顯著提高。反相柱層析在皂甙的分離和純化時使用比較多,最常用的是ODS (C18反相填料),該法主要選用水和醇以不同的比例洗脫,對於極性大的化合物有較好的分離效果,而且對樣品的吸附比較少,可減少樣品損失。凝膠柱層析是60年代發展起來的分離水溶性化合物的常用方法,主要根據分子大小進行分離。當植物提取物中同時含皂甙、黃酮、香豆精及內酯等成分時,可用Sephadex LH-20進行組分分離。大孔吸附樹脂為多孔性的聚合體,常用的有Diaion HP-20, D-101,RA樹脂,一般用於皂甙的粗分。將醇提物懸浮於水,直接通過大孔吸附樹脂柱,皂甙被吸附,再用不同濃度的醇洗脫,可將總皂甙分成幾部分,而且可以有效去除葉綠素。有時僅靠一種柱層析的方法很難解決所有的分離問題,所以要得到一個純皂甙往往需要幾種方法配合使用,才能達到滿意的分離效果。隨著各種新型填料的出現,皂甙的提取、分離及純化目前已達到高效、快速,可在短時間內從同一植物中分離一系列結構及化學性質極為相近的皂甙。劉承來等[3~5]從叉蕊薯蕷的根莖中分離得到4個約莫皂甙元(yamogenin)的甾體皂甙,又從盾葉薯蕷的根莖中得到5個甾體皂甙,甙元為薯蕷皂甙元(diosgenin)。此外,我們從東一號劍麻葉汁的發酵物中分離到5個替告皂甙元(Tigogenin)的多糖甙[6,7]。
Ⅲ 聚醯胺、硅膠、大孔樹脂色譜柱適合分離的成分分別是什麼
聚醯胺與硅膠對極性大的有機物吸附強
大孔樹脂主要用於水溶性成分的分離純化,尤其是大分子的親水性成分如多糖、皂苷、黃酮、生物鹼、三萜類化合物
Ⅳ 大豆皂苷的提取
目前大豆皂苷純化方法主要有:正丁醇萃取法、有機溶劑沉澱法、酸鹼水解-乙酸乙酯內萃取法、鉛容鹽沉澱法、柱層析法、柱層析與有機溶劑沉澱結合法、制備色譜法。
(1)原料處理將脫脂豆粕粉碎,並要求脫脂豆粕的殘油率<1%。
(2)浸提將粉碎後的脫脂豆粕用甲醇溶液進行浸提。浸提條件是在60℃~80℃條件下(有研究指出以80℃為最佳溫度),採用質量分數為90%的甲醇溶液,每次提取的固液比為1:16,提取時問為3小時,加熱迴流浸提3次,合並浸提液,將浸提液過濾,收集濾液。同時,對殘油進行迴流浸提,對浸提液減壓蒸干,回收浸提溶劑,得到粉末。
(3)粗分離由於皂苷不溶於石油醚、苯或乙醚等脂溶性溶劑,而粉末中的油脂、色素則能夠溶解於上述溶劑,因此,用上述溶劑進行分離皂苷。然後用親水性強的丁醇(丁醇:水為1:1)作為溶劑提純,使皂苷轉入丁醇,收集丁醇溶液,減壓蒸干,即得粗皂苷。
(4)精製粗皂苷中含有糖類、鞣質、色素、異黃酮,以及無機鹽等雜質,採用層析柱氯化鎂吸附法或大孔樹脂吸附法進行精製,即可得到精製皂苷。提取率一般可達到94%左右。
Ⅳ 大孔吸附樹脂用於白頭翁皂苷的分離時洗脫次序有何規律
大孔吸附樹脂用於白頭翁皂苷的分離時洗脫次序規律為:分離、純化、除雜、濃縮。
以酒精為例,酒精溶劑浸提得到較粗的白頭翁總皂苷,脫脂後,經大孔樹脂層析得到高產,高純的白頭翁總皂苷,得率為9.4%。總皂苷經硅膠柱層析得到無色的,純度較高的單體皂苷,得率為22.8%。
通過薄層層析把純化的單體皂苷與標准品白頭翁皂苷Ⅲ進行對照,分離純化的單體皂苷與標准品相同,是3-O-[α-L-鼠李糖基(1→2)-α-L-阿拉伯糖苷]-3β,23-羥基-△20(29)-羽扇豆烯-28-O-[α-L-鼠李糖基(1→4)-β-D-葡萄糖基(1→6)]-β-D-葡萄糖酯苷。
大孔吸附樹脂吸附機理
大孔吸附樹脂的吸附實質為一種物體高度分散或表面分子受作用力不均等而產生的表面吸附現象,這種吸附性能是由於范德華引力或生成氫鍵的結果。同時由於大孔吸附樹脂的多孔結構使其對分子大小不同的物質具有篩選作用。
通過這種吸附和篩選原理,有機化合物根據吸附力的不同及分子量的大小,在大孔吸附樹脂上經一定溶劑洗脫而達到分離、純化、除雜、濃縮等不同目的。
非極性物質在極性介質+(水)+內被非極性吸附劑吸附,極性物質在非極性介質中被極性吸附劑吸附,帶強極性基團的吸附劑在非極性溶劑里能很好的吸附極性化合物。
聚苯乙烯樹脂一般適用於非極性和弱極性物質的化合物,如皂苷類和黃酮類;聚丙烯酸類樹脂,一般帶有酯基或醯氨基,對中極性和極性化合物如黃酮醇和酚類的吸附較好。
參考資料來源:網路-大孔吸附樹脂
Ⅵ 用大孔吸附樹脂D101提取人參皂苷時,水洗、醇洗各洗脫產物是
水洗的是 多糖液 醇洗的是人參皂苷
Ⅶ 皂苷的檢測方法
本方法適用於功能性食品中總皂苷的測定
本方法人參皂苷Re的低檢出量為2μg/mL
一、方法提要
樣品中總皂苷經提取、PT—大孔吸附樹脂柱預分離後,在酸性條件下,香草醛與人參皂苷生成有色化合物,以人參皂苷Re為對照品,於560nm處比色測定。
二、儀器
1.722分光光度計。
2.PT—大孔吸附樹脂柱(河北省津楊濾材廠)。
3.超聲波振盪器。
三、試劑
1.甲醇(分析純)
2.乙醇(分析純)
3.人參皂苷Re標准品(中國葯品生物製品檢定所)
4.5%香草醛溶液:稱取5g香草醛,加冰乙酸溶解並定容至l00mL
5.高氯酸(分析純)
6.冰乙酸(分析純)
7.人參皂苷Re標准溶液:稱取人參皂苷Re標准品20.0mg,用甲醇溶解並定容至10mL,即每1mL含人參皂苷Re2.0mg
8.重蒸水
四、測定步驟
1.樣品處理:
(1)固體樣品
稱取1.0g左右樣品於100mL燒杯中,加入20~40mL 85%乙醇,超聲波振盪30min,再定容至50mL,搖勻,放置,吸取上清液1.0mL揮干後以水溶解殘渣,進行柱分離
(2)液體樣品
含乙醇的酒類樣品:准確吸取1.0mL樣品放於蒸發皿中,蒸干,用水溶解殘渣,用此液進行柱層析;非乙醇類液體樣品:准確吸取1.0mL樣品(如濃度高或顏色深,需稀釋一定體積後再取1.0mL)直接進行柱分離
2.柱層析
以PT—大孔吸附樹脂柱進行層析分離,准確吸取上述已處理好的樣品溶液1.0mL上柱,用15mL水洗柱,以洗去糖分等水溶性雜質,棄去洗脫液,再用20mL85%乙醇洗脫總皂苷,收集洗脫液於蒸發皿中,於水浴上蒸干,以此作顯色用
Ⅷ 類葉牡丹中的單雙糖皂苷是什麼
皂苷是一類結構復雜的螺甾烷及其相似生源的甾體化合物及三萜類化合物的低聚糖苷, 可溶於水, 其水溶液經強烈振搖能產生大量持久性的肥皂樣泡沫
皂苷有多種分類方法.按照皂苷元的化學結構不同,可以將皂苷分為甾體皂苷和三萜皂苷;按照皂苷分子中糖鏈數目的不同,可分為單糖鏈皂苷(單皂苷)(只含1條糖鏈的皂苷)、雙糖鏈皂苷(雙皂苷)(含有2條糖鏈的皂苷)和三糖鏈皂苷(三皂苷)(含有3條糖鏈的皂苷)等;按照皂苷分子中是否含有酸性基團(如羧基),可將皂苷分成中性皂苷和酸性皂苷.1、單糖鏈皂苷和雙糖鏈皂苷
2、正相色譜和反相色譜
3、在四環三萜中不同類型化合物的結構主要有何不同?
4、在三萜皂苷中, 一般糖的端基碳原子的化學位移在多大范圍內?
5、寫出四種確定苷鍵構型的方法, 並簡要說明如何確定?
6、某化合物的水溶液振搖後未產主持久性泡沫, 能否判斷此化合物一定不是皂苷類成分?
7、皂苷為何能溶血?
8、DCCC法為何比較適合分離皂苷類成分?
9、三萜皂苷易溶於下列何種溶劑 (氯仿、乙醚、正丁醇、醋酸乙酯)
二、提取與分離
用大孔吸附樹脂D101提取人參皂苷時, 將人參的水提液通過樹脂柱。先用水洗, 再用70%乙醇洗脫, 請問各洗脫液的主產物是什麼?