導航:首頁 > 耗材問題 > 磺酸樹脂催化合成雙酚A機理

磺酸樹脂催化合成雙酚A機理

發布時間:2023-01-25 03:59:54

Ⅰ 醯化反應的作用機理是什麼

醯化反應或稱(醯基化反應),為有機化學中,氫或者其它基團被醯基取代的反應,而提供醯基的化合物,稱為醯化劑。 醯化反應可用下列通式表示:RCOZ+SH → RCOS+HZ 通式中RCOZ為醯化劑,Z代表OCOR,OH,ORˊ等;SH為被醯化物,S代表RO 、R″NH、Ar等。

基本信息

中文名
醯化反應
別名
醯基化反應
范圍
有機化學
例子
氧原子上的醯化反應
反應機理
1. O-醯化、N-醯化、羰基a位C-醯化機理為親核過程;

2.芳烴C-醯化、烯烴C-醯化機理為親電過程。

氧原子上的醯化反應
定義:氧原子上的醯化反應是指醇或酚分子中的羥基氫原子被醯基所取代而生成酯的反應,因此又叫酯化反應。

規律:其反應難易程度取決於醇或酚的親核能力、位阻及醯化劑的活性。

(1)醇的O-醯化一般規律是伯醇易於反應,仲醇次之,叔醇最難醯化。

(2)伯醇中的苄醇、烯丙醇雖然不是叔醇,但由於易於脫羥基形成穩定的碳正離子,所以也表現出與叔醇相類似的性質。

(3)酚羥基由於受芳烴的影響使羥基氧原子的親核性降低,其醯化比醇難。

醯化劑:醇、酚的O-醯化常用的醯化劑有羧酸、羧酸酯、酸酐、醯氯、烯酮等。

羧酸為醯化劑

由於羧酸是較弱的醯化試劑,其對醇進行醯化為可逆平衡反應,反應式如下:

反應機理一般為酸催化下的醯氧斷裂的雙分子反應。

反應溫度和催化劑
對於許多酯化反應,溫度每升高10℃,反應速度可增加一倍。

高沸點的醇和高沸點酸通常需要加入催化劑,並在較高的溫度下反應。

(1)質子酸主要有濃硫酸、高氯酸、四氟硼酸、氯化氫氣體等無機酸及苯磺酸、對甲苯磺酸等有機酸。

①濃硫酸由於具有較好的催化活性及吸水性,因而其應用最為廣泛。

②某些對無機酸敏感的醇,可採用苯磺酸、對甲苯磺酸等有機酸為催化劑。如下列兩個反應中,醇分子中含有對酸敏感的化學鍵與官能團,所以可選用苯磺酸、對甲苯磺酸為催化劑,其中(8)為中樞興奮葯甲氯芬酯(Meclofenoxate)。質子酸催化的最大優點是簡單,但對於位阻大的酸及叔醇易脫水。

(2)Lewis酸常用的Lewis酸催化劑有三氟化硼(BF3)、三氯化鋁(AlCl3)、二氯化鋅(ZnCl2)及硅膠等。Lewis酸作催化劑具有收率高、產品純度好,並可避免雙鍵的分解或重排副反應等優點。如:

(3)強酸型離子交換樹脂由於強酸型離子交換樹脂能離解出H+,所以可作為酯化反應的催化劑。採用離子交換樹脂為催化劑的優點主要有:反應速度快,反應條件溫和,選擇性好,收率高;產物後處理簡單,無需中和及水洗;樹脂可循環使用,並可連續化生產;對設備無腐蝕,廢水排放少等。

如醋酸甲酯的制備,在離子交換樹脂及硫酸鈣乾燥劑存在下,反應僅10分鍾,收率即可達94%。醋酸苄酯的制備,由原來的硫酸催化改為離子交換樹脂催化後,收率等各方面也得到了很大改善。常用的離子交換樹脂為磺酸型(R—SO3H)大孔(如D72、D61型)樹脂。

4)二環己基碳二亞胺(DCC)及其類似物為脫水劑

DCC(Dicyclohexylcarbodiimide,9)是一個良好的醯化脫水劑。它在過量酸或有機鹼催化下進行,首先與羧酸作用產生具有較大醯化活性的中間體(10)與酸酐,中間體(10)及酸酐與醇作用生成酯。其過程如下:

與DCC相似的還有下列化合物:

Ⅱ 上海三井中石化生產雙酚A使用的催化劑和上海拜耳生產雙酚A使用的催化劑是一樣的嗎

不一樣,雙酚A催化劑種類繁多。請看介紹:
雙酚A(簡稱BPA)主要用於生產聚碳酸酯、環氧樹脂、阻燃劑等多種化工產品,近年來其消費量持續增長。目前,國內外主要採用改性離子交換樹脂合成雙酚A。然而,現有的改性樹脂也存在一些問題:容易中毒而失去活性,文獻[3]報道了金屬離子、醇、氧氣都能使其失活,這就使得工業化中對原料、設備等要求非常高;另外,樹脂不易在線再生活化、催化劑強度差、對床層阻力影響大、不易長期保存、熱穩定性差、容易結垢等。因此,人們一方面立足於樹脂的改性工作,以期能得到滿意的改性樹脂;另一方面著手尋求更優的催化劑。近年來,各種固體酸催化劑、離子液體等新型催化劑體系研究活躍,並將其應用於雙酚A反應中,取得了較好的效果。

1 改性離子交換樹脂

改性樹脂中巰基與磺酸樹脂之間主要以共價鍵和離子鍵結合,實現途徑可以是通過樹脂酸與改性催化劑間的還原作用、酯化反應、中和反應等。到目前為止,人們研究了多種類型的改性樹脂。以共價鍵方式結合的有:含硫酚、巰基烷基磺醯胺、巰基烷基磺酸酯等類型的樹脂;以離子鍵結合的主要是巰基烷基胺類改性樹脂,主要有含單氨基烷基硫醇、叔氨基烷基硫醇、氮原子雜環結構的烷基硫醇、季銨鹽型烷基硫醇等類型的樹脂。其中以離子鍵結合的各種不同結構巰基烷基胺類改性樹脂已成為現代雙酚A工業的主流,所用改性劑結構的微小差別可以導致樹脂性能的很大不同。目前,人們對離子交換樹脂的改性工作主要集中於對現有樹脂的進一步改性。

三菱化學株式會社早期研究發現:當巰基烷基胺類改性樹脂中氮原子沒有氫原子,並且巰基和氮原子間有3~4個C原子時,丙酮的轉化率和穩定性都比較好,由此得出:N,N-二甲基-3-巰基丙胺、N,N-二甲基-4-巰基丁胺應該是兩種比較好的助催化劑。在此基礎上,陳群等以N,N-二甲基-3-巰基丙胺與鹵代烷反應先生成季銨鹽,然後用此季銨鹽對磺酸型陽離子交換樹脂進行改性,得到丙酮轉化率高、雙酚A選擇性好的合成催化劑,其中鹵代烷為Cl或 Br取代的碳原子數為2~4的烷基。

隨後,陳群等在以巰基烷基胺改性的樹脂上引進鹵素(包括氟、氯、溴)、硝基或羰基等吸電子基團,結果發現,樹脂的耐溫性能明顯提高、磺酸基降解率低,並具有活性中心利用率高、催化劑孔道不易堵塞的優點,催化活性、選擇性和壽命均能滿足雙酚A生產的需要。

工業上基本採用固定床式反應器生產雙酚A,這種反應器存在一個弊端:混合物料的流動方向是垂直的,當物料向下流動時,通過磺酸樹脂催化劑床層的壓降是一個大問題,它限制了反應物與產物的流通,最終阻礙了雙酚A的生成。磺酸樹脂被壓縮變形是產生壓降的主要因素,另外,催化劑床層的壓力促使流動管道變形,導致反應物的流動不均勻,所以催化劑不能被利用完全。Lundquist將碸交聯引入到由聚苯乙烯/二乙烯基苯(PS,DVB)共聚物製成的強酸性陽離子交換樹脂球中,結果發現,這種碸交聯提高了樹脂的耐變形性。但不會對該催化劑在雙酚A生產時的活性和選擇性產生不利影響且產率高。

通用電氣公司制備含有聚硫硫醇促進劑的磺化聚合物樹脂催化劑,並將其應用到雙酚A合成反應中,聚硫基是含有氮或磷的帶正電官能團的側鏈,優選氮雜環。

早期研究發現,即使用同樣的巰基化合物對同樣的樹脂改性,由於具體操作方法不同,樹脂活性可能有很大差異。岩原昌宏等在固定床反應器中填充強酸性離子交換樹脂,向其中注入酸水溶液和在該酸水溶液中達到平衡濃度量的含硫的胺化合物,將強酸性離子交換樹脂改性。結果發現,這種方法能夠制備不破損、改性均一且催化性能優異的用於雙酚A制備的改性催化劑。

2 分子篩

分子篩是一類典型的固體酸催化劑材料,活性高,選擇性好,同時具有很高的熱穩定性,不被有機和無機溶劑溶解和溶脹。因而催化劑活性組分不易流失,使用壽命長,容易活化再生,且本身無毒,無腐蝕性,不會對環境造成污染。

Singh最先報道了用沸石催化合成雙酚A反應。將RE-Y、H-Y、H-mordenite、H-ZSM-5沸石與Amberlyst-15型離子交換樹脂進行比較,在363 K、大氣壓下合成雙酚A。研究結果表明,幾種沸石對雙酚A合成反應都有活性,孔開口大的沸石催化活性高,但遠低於Amberlyst-15型樹脂,可能是雙酚A分子太大而無法進入沸石孔道內。主要反應產物是雙酚A、雙酚A異構體。異構體與丙酮縮合而成的色滿量很大(4.6%~15%)。色滿的存在不僅降低了反應收率,而且由於其含有游離羥基,在下游產品聚碳酸酯的合成中,游離羥基阻礙了聚合物鏈的生成,使聚合物的相對分子質量降低,影響了產品質量。

Perego等研究了沸石的空間指數對雙酚A轉化率的影響,並報道了沸石催化劑再生的方法。在反應物的物質的量比5:1、1g催化劑、180℃條件下反應12h,分別考察了β型、Y型、ERB-1和 ZSM-12沸石對雙酚A反應的轉化率和產物選擇性的影響。4種沸石中β型沸石催化的轉化率和選擇性最高。基本的規律是隨著沸石本身空間指數的下降,丙酮轉化率明顯下降,表現為:β型沸石>ERB-1沸石>ZSM-12沸石。除了空間指數外,轉化率和選擇性還與沸石本身的孔道和孔穴有關,例如β型沸石的空間指數低於Y型沸石,而雙酚A的轉化率和選擇性卻高於Y型沸石。

Knifton利用酸性蒙脫土黏土催化雙酚A合成反應,酸性黏土用酸預處理,可用的酸為氫氟酸、硫酸、三氟甲基磺酸。

美國Mobil公司的科學家成功的合成了X41S系列分子篩,如MCM-41、MCM-48、MCM-50,吸引了許多研究者的注意。介孔分子篩以其大孔徑比、高比表面積、高孔隙率、表面富含不飽和基團等優點,成為合成大分子底物的潛能催化劑,為催化領域開辟了新天地。

雖然介孔材料孔尺寸大,但酸性比微孔沸石弱得多,為了增加其酸性可以引入酸性基團。Debasish等研究了介孔硅基分子篩MCM-41和MCM-48的制備及催化行為,著重比較了它們對雙酚A合成反應的催化性能。他們首先制備了MCM-41、 MCM-48介孔分子篩,由於介孔分子篩表面具有大量的硅醇基團,硅烷化試劑與其反應能夠形成牢固的Si-O-Si鍵,將帶有巰基的硅烷化試劑與其作用,巰基就被大量地引入到MCM硅基分子篩中,進而調變為磺酸型固體酸催化劑(MCM-SO3H),用於催化雙酚A合成反應。結果表明,轉化率和選擇性大大高於β型、Y型、ZSM-5型沸石,且選擇性高於商用的離子交換樹脂Amberlite-120。

3 雜多酸

近年來,雜多酸及其鹽類作為一種新型催化材料,以其獨特的酸性、氧化還原性和「假液相」行為等優勢引起了人們的重視。

雜多酸法合成雙酚A,綜合了硫酸法和氯化氫法的優點。具有反應時間短(只有硫酸法的1/3),雜多酸可反復使用等特點。

金昌范以磷鎢酸H3PW12O40•nH2O為主催化劑,以巰基乙酸為助催化劑,甲苯為溶劑,在40~80℃的條件下,苯酚和丙酮縮合得到含量為25%左右的雙酚A。在新工藝中採用「循環套用合成」方法和「含酚無離子水閉路循環」,實現了無排放含酚廢水的雙酚A生產工藝,製得聚碳酸酯級雙酚A。

由於雜多酸自身比表面積較小(低於10 m2/g),不利於充分發揮其催化活性且回收比較困難。人們發現將雜多酸進行固載化,可以大大提高其比表面積,並激發雜多酸更高的催化活性和選擇性,同時利於催化劑回收。Krystyna等研究介孔分子篩MCM-41負載的酸銫/銨鹽雜多酸催化劑合成雙酚A反應,並與ZSM-5、H-Y、H-DY型沸石比較。結果表明50%(質量分數)負載量的 Cs2:5H0:5PW12O40/MCM-41具有最高的反應選擇性,且明顯高於沸石催化劑。研究發現,當有極性溶劑存在時,HPA就會從MCM-41孔道中脫落下來,為了避免這一現象,Krystyna等通過Soleds方法將雜多酸原子固定在分子篩的內部。

Yadav等利用黏土K-10負載的DTP(十二磷鎢酸)催化劑DTP/K-10進行了對雙酚A反應的研究。對催化劑表徵結果發現,極性溶劑存在時, DTP無丟失,說明DTP是通過化學吸附到載體表面,催化劑穩定性好;並考察了攪拌速率、催化劑負載量、溫度、原料比、助催化劑對反應的影響,與酸性離子交換樹脂Amberlyst-15、Amberlyst-31、 Amberlyst-XE-717P對比,其活性和選擇性均高於 Amberlyst-15樹脂;同時熱穩定性明顯高於上述幾種樹脂。研究還發現,通過適當減少催化劑活性中心控制其酸性,可以降低副產物,提高選擇性。

趙景聯等制備了NaY、USY-1、USY-2和ZSM-5分子篩擔載H3PW12O40的固載雜多酸催化劑,並用其催化縮合雙酚A。研究結果表明:4種負載催化劑中,PW12/USY-1效果最佳,雙酚A收率可達62.6%,但該催化劑穩定性較差,重復使用僅兩次後,其活性則降低到50%以下。這主要是由於固載雜多酸的流失,以及反應生成的水對分子篩上吸附的雜多酸有遷移作用,而在孔口處形成聚簇現象,堵塞分子篩的孔口,從而降低催化劑的活性。

雜多酸存在易脫附、失活等缺點。由於納米材料具有獨特的量子尺寸效應、表面效應和宏觀隧道效應,具有大的比表面積和高的反應活性等優點,將兩者結合可以很好地克服雜多酸易脫附、失活的缺點。李明軒等用溶膠凝膠法制備新型納米復合雜多酸催化劑H3PW12O40/SiO2,並將其應用於雙酚A的合成,具有較高的催化活性,催化劑重復使用3次,穩定性較好。

4 新型固體酸

Hou等由硼酸、磷酸、硫酸幾種常見的無機酸通過簡單的方法合成了一種新型的固體酸催化劑,驚奇地發現,這種固體酸催化劑可以高效地催化雙酚A反應。催化劑表徵結果證實:這種新型的催化劑可以看作由氧化硼和氧化磷的共聚物負載 SO42-的固體酸,具有超強酸的性質。SO42-對固體酸的酸性起決定性作用,硼酸對其無影響,但它可以縮短催化劑的固化時間。

當n(P):n(B):n(S)=1:2:3時,產物雙酚A的收率和選擇性可達到91.8%和88.9%,這是迄今為止報道的固體酸催化雙酚A反應的最高的收率和選擇性。但這種催化劑存在致命的缺點——非常容易失活,歸因於反應中SO42-的丟失和磷酸與羥基的結合。

Ⅲ 全氟磺酸樹脂怎麼產生,通過反應還是天然存在最強的超強液體酸是什麼,怎麼配製

全氟乙烯基醚單體合成方法如下:


採用含有磺醯氟基團的全氟乙烯基醚與四氟乙烯、六氟丙稀單體共聚,即可得到全氟磺酸樹脂。這樣得到的聚合物是磺醯氟型(-SO2F),在電解槽中使用時需要將其水解成離子型(-SO3M)其中M為H或K、Na等金屬離子。最強的超強液體酸是三氟甲基磺酸。

Ⅳ 水性環氧樹脂是由什麼制備而成的

根據制備方法的不同,環氧樹脂水性化有以下四種方法:機械法、化學改性法、相反轉法和固化劑乳化法等。
1)機械法
機械法即直接乳化法,可用球磨機、膠體磨、均氏器等將固體環氧樹脂預先磨成微米級的環氧樹脂粉末,然後加入乳化劑水溶液,再通過機械攪拌將粒子分散於水中; 或將環氧樹脂和乳化劑混合,加熱到適當的溫度,在激烈的攪拌下逐漸加入水而形成乳液。用機械法制備水性環氧樹脂乳液的優點是工藝簡單,所需乳化劑用量較少,但乳液中環氧樹脂分散相微粒尺寸較大,粒子形狀不規則且尺寸分布較寬,所配得的乳液穩定性差,粒子之間容易相互碰撞而發生凝結現象,並且該乳液的成膜性能也欠佳。當然提高攪拌分散時的溫度可以促進乳化劑分子在環氧樹脂微粒表面更為有效地吸附,使得環氧樹脂微粒能較為穩定地分散在水相中。
2)化學改性法
化學改性法又稱自乳化法,即將一些親水性的基團引入到環氧樹脂分子鏈上,或嵌段或接枝,使環氧樹脂獲得自乳化的性質, 當這種改性聚合物加水進行乳化時,疏水性高聚物分子鏈就會聚集成微粒,離子基團或極性基團分布在這些微粒的表面,由於帶有同種電荷而相互排斥,只要滿足一定的動力學條件,就可形成穩定的水性環氧樹脂乳液,這是化學改性法制備水性環氧樹脂的基本原理。根據引入的具有表面活性作用的親水基團性質的不同,化學改性法制備的水性環氧樹脂乳液可分為陰離子型、陽離子型和非離子型三種。
a、陰離子型
通過適當的方法在環氧樹脂分子鏈中引入羧酸、磺酸等功能性基團,中和成鹽後的環氧樹脂就具備了水可分散的性質。常用的改性方法有功能性單體擴鏈法和自由基接枝改性法。功能性單體擴鏈法是利用環氧基與一些低分子擴鏈劑如氨基酸、氨基苯甲酸、氨基苯磺酸等化合物上的胺基反應,在環氧樹脂分子鏈中引入羧酸、磺酸基團,中和成鹽後就可分散在水相中。自由基接枝改性法是利用雙酚A環氧樹脂分子鏈中的亞甲基活性較大,在過氧化物作用下易於形成自由基,能與乙烯基單體共聚,可將丙烯酸、馬來酸酐等單體接枝到環氧樹脂分子鏈中,再中和成鹽後就可製得能自乳化的環氧樹脂。
b、陽離子型
含胺基的化合物與環氧樹脂反應生成含叔胺或季胺鹼的環氧樹脂,再加入揮發性有機一元弱酸如醋酸中和得到陽離子型的水性環氧樹脂。這類改性後的環氧樹脂在實際中應用較少,這是因為水性環氧固化劑通常是含有胺基的鹼性化合物,兩個組分混合後,體系容易出現破乳和分層現象而影響該體系的使用性能。
c、非離子型
一般多在環氧樹脂鏈上引入親水性聚氧乙烯基團,同時保證每個改性環氧樹脂分子中有兩個或兩個以上環氧基,所得的改性環氧樹脂不用外加乳化劑即能自分散於水中形成乳液。如用分子量為4000~20000的雙環氧端基乳化劑與環氧當量為190的雙酚A環氧樹脂和雙酚A混合,以三苯基膦化氫為催化劑進行反應,可製得含親水性聚氧乙烯、聚氧丙烯鏈端的環氧樹脂,該樹脂不用外加乳化劑便可溶於水,且耐水性增強。另外,這種方法製得的粒子較細,通常為納米級,前面兩種方法製得的粒子較大,通常為微米級。從此意義上講,化學法雖然制備步驟多,成本高,但在某些方面具有實際意義。
在環氧樹脂鏈上引入親水性聚氧乙烯基團,同時保證每個改性環氧樹脂分子上有兩個或兩個以上環氧基,所得的改性環氧樹脂不用外加乳化劑即能自分散於水中形成乳液。如先用聚氧乙烯二醇、聚氧丙烯二醇和環氧樹脂反應,形成端基為環氧基的加成物,利用此加成物和環氧當量為190的雙酚A環氧樹脂和雙酚A混合,以三苯基磷為催化劑進行反應,可得到含有親水性聚氧乙烯、聚氧丙烯鏈段的環氧樹脂。這種環氧樹脂不用外加乳化劑即可溶於水中,且由於親水鏈段包含在環氧樹脂分子中,因而增強了塗膜的耐水性。並且在引入聚氧化乙烯、氧化丙烯鏈段後,交聯固化的網鏈分子量有所提高,交聯密度下降,形成的塗膜有一定的增韌作用。
3) 相反轉法
相反轉是一種制備高分子量環氧樹脂乳液較為有效的方法,II型水性環氧樹脂塗料體系所用的乳液通常採用相反轉方法制備。相反轉原指多組分體系(如油/水/乳化劑)中的連續相在一定條件下相互轉化的過程,如在油/水/乳化劑體系中,其連續相由水相向油相(或從油相向水相)的轉變,在連續相轉變區,體系的界面張力最低,因而分散相的尺寸最小。通常的制備方法是在高剪切力條件下先將乳化劑與環氧樹脂均勻混合,隨後在一定的剪切條件下緩慢地向體系中加入水,隨著加水量的增加,整個體系逐步由油包水型轉變為水包油型,形成均勻穩定的水可稀釋體系。乳化過程通常在常溫下進行,對於固態環氧樹脂,往往需要藉助於少量溶劑和加熱使環氧樹脂粘度降低後再進行乳化。
4)固化劑乳化法
水性環氧樹脂體系通常採用固化劑乳化法來制備水性環氧樹脂乳液。這類體系中的環氧樹脂一般預先不乳化,而由水性環氧固化劑在使用前混合乳化,因而這類固化劑必須既是交聯劑又是乳化劑。水性環氧固化劑是以多胺為基礎,對多胺固化劑進行加成、接枝、擴鏈和封端,在其分子中引入具有表面活性作用的非離子型表面活性鏈段,對低分子量的液體環氧樹脂具有良好的乳化作用。用固化劑乳化法制備水性環氧樹脂體系的優勢是在使用前由固化劑直接乳化環氧樹脂,不需考慮環氧樹脂乳液的儲存穩定性和凍融穩定性;缺點是配得的乳液適用期短。

Ⅳ 全氟磺酸樹脂的主要反應

研究在95%乙醇中廢棄的全氟磺酸樹脂膜(簡稱PFSR)催化松香樹脂酸異構化反應,直接結晶內分離樅酸的可行性。結果表明,在常容壓加熱反應條件下,PFSR能夠較好地催化松香樹脂酸的異構化反應;催化劑用量和反應溫度對樹脂酸異構化反應速度和異構反應平衡溶液中樅酸相對含量有較大的影響;在松香質量為20 g,溶劑體積為20 mL,PFSR用量為松香質量的20%,反應溶液沸騰溫度條件下反應5 h,樹脂酸異構反應達到平衡,樅酸相對含量高達78%;過濾分離回收催化劑後,將異構松香溶液直接冷卻結晶,析出樅酸粗產品,再在95%乙醇中重結晶提純3次,得到純度為95%、產率為35%的樅酸。

Ⅵ 磺酸樹脂有毒嗎

一般情況下,樹脂是由聚合物反應獲得,反應不完全,總會含有甲醛,酚之類的有毒物質版。 固化劑權,通常情況下,大多使用的是磺酸類的固化劑,它主要由苯、甲苯、二甲苯經硫酸磺化,分離製得。苯之類的本就是有毒的物質。

Ⅶ 全氟磺酸樹脂的介紹

全氟磺酸樹脂(Nafion-H)是現在已知的最強固體超強酸,具有耐熱性能好、化學穩定性和機械強度高等特點。

閱讀全文

與磺酸樹脂催化合成雙酚A機理相關的資料

熱點內容
杭州凱德湖墅水垢 瀏覽:826
巧去廁所水垢 瀏覽:547
什麼濾芯半年一換 瀏覽:275
超濾膜凈水器沒效果 瀏覽:993
純水手機什麼意思 瀏覽:973
耐火型酚醛樹脂氧指數 瀏覽:986
12時蒸餾水的ph 瀏覽:926
神剛挖機提升器 瀏覽:184
簾式超濾膜組件 瀏覽:829
樹脂濾芯發黃 瀏覽:279
小飲水機怎麼放置好 瀏覽:365
什麼叉車安裝凈化器 瀏覽:233
拖拉機提升器的工作原理 瀏覽:632
空氣源熱泵過濾 瀏覽:508
3m反滲透還是ao 瀏覽:5
青羊區凈水器多少錢 瀏覽:51
ph值反滲透膜 瀏覽:186
汽油機油濾芯一般多少錢一個 瀏覽:820
凈化器內部打火是怎麼回事 瀏覽:741
燃氣熱水器拆除除垢 瀏覽:460