❶ 大孔吸附樹脂分離的原理是什麼
記得學功能高分子的時候學過,我也有點模糊,給你說說。
吸附樹脂上應當有大回小不同的空洞通道, 而且這些孔答的直徑最小要大於所要分離的顆粒的最小粒徑,而且最大還要小於要分離的最大顆粒的粒徑,否則起不到分離的效果。
這樣當大小不等的顆粒通過吸附樹脂的時候,大粒徑的顆粒由於無法通過孔徑通道而從樹脂外部通過,最先分離出來,其他不同粒徑的顆粒會在樹脂中在適合自己直徑的通道通過,由於這樣不同粒徑顆粒在樹脂中通過的時間不同,宏觀上就會出現不同時間段流出顆粒不同從而起到分離的作用。
希望我的解釋你能明白,不明白再問,繼續幫你解答!系哇嘎多你有幫助~
❷ 求助MCI 和大孔吸附樹脂的區別
離子交換樹脂主要是根據官能團上的功能基團(如H+,OH-離子)與料液中的陰陽離子發生置換反應,從而達到凈化或純化分離的目的;大孔吸附劑主要是根據比表面積的吸附和孔容孔徑的攔截完成吸附、分離和純化的目的,當然部分大孔吸附劑同時具備離
❸ 怎麼區分離子大孔吸附樹脂和直接說的大孔吸附樹脂呀 急急急急
肉眼無法區分!離子樹脂主要用途:離子交換;大孔吸附樹脂(非離子)主要用於:吸附分離有機分子!
❹ 大孔吸附樹脂適用於分離哪些類型的物質
問題中提到大孔吸附樹脂、分離類型。
首先,每一類高分子吸附劑回都可以制備成大孔型。具答體能分離何種類型物質,主要看吸附樹脂所用的材料。
例如:非離子型的:聚苯乙烯型樹脂、甲基丙烯酸酯類吸附樹脂,聚丙烯腈、聚乙烯醇、聚醯胺、聚丙烯醯胺、聚乙烯亞胺、纖維素衍生物等。弱極性的,主要用於水或極性溶劑中非極性物質的吸附;中極性的,可用於水中非極性物質的吸附或非極性溶劑中極性物質的吸附;極性,強極性,可吸附非極性溶劑中的極性雜質。
又如,離子交換樹脂,除了具有離子交換功能外,還有脫水、脫色,吸附、催化等功能,常見如水處理制備去離子水、糖和多元醇的脫色精製、廢水處理回收貴金屬,抗生素和生化葯物的分離精製等。應用的最多的離子交換樹脂的母體是交聯聚苯乙烯。
再如:螯合樹脂,根據螯合劑對金屬離子有選擇性的絡合,富集的原理,可用於提煉貴金屬和稀有元素。
❺ 離子交換樹脂 大孔吸附樹脂 是同一個概念么 具體是有什麼區別
離子交換樹脂是水處理用到的所有種類,大孔吸附樹脂,就是陽離子交換樹脂。內陽樹脂是起吸附作用的容,沒看到用陽柱,陰柱的時候水先通過陽柱吸附在到陰柱啊!陽樹脂也分很多種,你說的陽樹脂型號是D113外觀為乳白色或淡黃色。批發離子交換樹脂(名字電話),我對這個可是專業!
❻ 大孔弱酸性丙烯酸系陽離子交換樹脂用什麼解吸原理是什麼
弱酸來性陽離子交換樹脂,再源生時一般使用適當濃度的HCl溶液或NaCl溶液
弱酸陽樹脂使用時,料液中的金屬陽離子與樹脂上的H離子(Na離子)發生交換,從而達到脫除料液中陽離子的作用
所以再生時,要使用酸或鹽,使H離子(Na離子)將樹脂交換上的金屬陽離子重新交換下來,用於下一周期使用。
❼ 大孔吸附樹脂的使用方法
在運用抄大孔吸附樹脂進行分離襲精製工藝時,其大致操作步驟為:大孔吸附樹脂預處理——樹脂上柱——葯液上柱——大孔吸附樹脂的解吸——大孔吸附樹脂的清洗、再生。由於每一個操作單元都會影響到大孔吸附樹脂的分離效果,因此對大孔吸附樹脂的精製工藝和分離技術的要求就相對較高。
❽ 大孔吸附樹脂有哪些缺點
靜態吸附就是把需要吸附處理的溶液與一定量的樹脂加入到碘量瓶中,然後放到恆溫振版盪器中震盪,再控制一定的權時間。需要測吸附前後溶液中你想要測的物質的濃度;
動態吸附就是把樹脂置於吸附柱中,讓待處理的溶液從上部流入,下部流出,並隔一定時間取流出水樣測物質的濃度,這樣就可以測出樹脂吸附的動態曲線,以時間為橫坐標,流出水樣的濃度為縱坐標。
❾ 大孔吸附樹脂型號有哪些
這是我自己總結的 一 大孔樹脂 1.原理:大孔吸附樹脂是以苯乙烯和丙酸酯為單體,加入乙烯苯為交聯劑,甲苯、二甲苯為致孔劑,它們相互交聯聚合形成了多孔骨架結構. 不同於以往使用的離子交換樹脂,大孔吸附樹脂為吸附性和篩選性原理相結合的分離材料. 吸附性是由於范德華力或產生氫鍵的結果. 篩選性是由於其本身多孔性結構所決定. 因此,有機化合物根據吸附力的不同及分子量的大小,在樹脂的吸附機理和篩分原理作用下實現分離. 2.類型按其極性和所選用的單體分子結構分為: (1)非極性大孔樹脂 苯乙烯、二乙烯苯聚合物,也稱芳香族吸附劑.(如HPD-100,D-101等) (2)中等極性大孔樹脂 聚丙烯酸酯型聚合物,以多功能團的甲基丙烯酸酯作為交聯劑,也稱脂肪族吸附劑. (3)極性大孔樹脂 含硫氧、醯胺基團,如丙烯醯胺. (4)強極性大孔樹脂 含氮氧基團,如氧化氮類. 3 選擇選擇樹脂要綜合各方面的因素(如:待分離化合物的分子大小、所含特有基團等)適當孔徑下,應有較高的比表面積;具有適宜的極性;與被吸附物質有相似的功能基. 二 聚醯胺 1.原理:聚醯胺(polyamide,PA)是由醯胺聚合而成的一類高分子物質,又叫尼龍、錦綸色譜中常用的聚醯胺有:尼龍-6(己內醯胺聚合而成)和尼龍-66(己二酸與己二胺聚合而成).既親水又親脂,性能較好,水溶性物質和脂溶性物質均可分離.錦綸11,1010的親水性較差,不能使用含水量高的溶劑系統.原理暫時有2種: ①氫鍵吸附原理:酚、酸的羥基與聚醯胺中羰基形成氫鍵;芳香硝基、醌類化合物的硝基或羥基(醌)與聚醯胺中游離氨基形成氫鍵;脫吸附通過溶劑分子形成新氫鍵取代原有氫鍵而完成. ②雙重層析原理:聚醯胺既有非極性的脂肪鍵,又有極性的醯胺鍵. 當用含水極性溶劑作流動相時,聚醯胺作為非極性固定相,其色譜行為類似反相分配色譜,所以苷比苷元容易洗脫. 當用非極性氯仿-甲醇作為流動相時,聚醯胺則作為極性固定相,其色譜行為類似正相分配色譜,所以苷元比其苷容易洗脫. 2.適用:聚醯胺層析可用於黃酮、酚類、有機酸、生物鹼、萜類、甾體、苷類、糖類、氨基酸衍生物、核苷類等的化合物的分離,尤其是對黃酮類、酚類、醌類等物質的分離遠比其它方法優越. 特點:對黃酮等物質的層析是可逆的;分離效果好,可分離極性相近的類似物,其柱層析的樣品容量大,適用於制備分離.