A. 窩溝封閉技術什麼時候產生的經歷了怎樣的發展
窩溝封閉是60年代在樹脂技術上產生的。其作用原理同樹脂一樣。是甲基丙烯酸甲酯的單聚混合體。現在臨床應用的大多以光固化為主。窩溝封閉現在仍然在發展階段,雖然對於點隙裂溝的封閉效果較好,但是本身強度,耐磨還不太理想。
窩溝封閉劑本身氣泡問題也是個小麻煩。
B. 離子交換樹脂的發展狀況
在國外離子交換吸附科學技術發展很快,各種新的離子交換材料與吸附材料不斷出現年,Raghunathan 首次提出葯物樹脂給葯系統,此後的幾十年中這一技術的研究不
C. 充填技術的發展
礦山充填技術在地下采礦中一直發揮著重要的作用,完善充填工藝技術及發明新型充填材料,是采礦技術的重要發展方向:(1)要大力發展和使用低成本的可靠充填物料;(2)要做好尾砂、全尾砂高濃度、自流輸送和膏體泵送的研究,以減少充填成本,減少環境污染,建設無廢料礦山;(3)在推廣充填采礦的同時,注意采礦能力的適應,加大機械化采礦進程,綜合提高采礦能力;(4)要注意影響充填采礦效率,降低成本;(5)採用新型的膠結固化材料替代水泥,改善充填料漿的輸送條件,是膠結充填采礦今後研究的重要課題;(6)針對礦山充填料漿的濃度和流量檢測儀表壽命短、故障多、檢測失准,使得制備的充填料漿達不到設計要求,應加強對充填監測儀表新產品的研製與開發。
D. 哪位高人告訴我一下聚丙烯酸鈉吸水樹脂的發展歷史啊,十萬火急,萬分感謝阿
高吸水聚合物是上世紀60年代末發展起來的。1961年美國農業部北方研究所首次將澱粉接枝於丙烯腈,製成一種超過傳統吸水材料的 HSPAN澱粉丙烯腈接枝共聚物。1978年日本三洋化成株式會社率先將高吸水聚合物用於一次性尿布,從此引起了世界各國科學工作者的高度重視。上世紀70年代末,美國UCC公司提出用放射線處理交聯各種氧化烯烴聚合物,合成了非離子型高吸水聚合物,其吸水能力達到2000倍,從而打開了合成非離子型高吸水聚合物的大門。1983年,日本三洋化成又採用丙烯酸鉀在甲基二丙烯醯胺等二烯化合物存在下,進行聚合製取高吸水聚合物。之後,該公司又連續製成了各種改性聚丙烯酸和聚丙烯醯胺組合的高吸水聚合物體系。上世紀末,各國科學家又相繼進行開發,使高吸水聚合物在世界各國迅速發展。目前,已形成日本觸媒、三洋化成和德國Stockhausen公司三大生產集團三足鼎立態勢,它們控制著當今世界70%的市場,彼此之間又以技術合作方式進行國際性聯合經營,壟斷世界所有國家的高吸水聚合物銷售權。
http://ke..com/view/1216821.html
E. 樹脂塗料的發展、前景和市場
人類生產和使用塗料已有悠久的歷史。一般可分為天然成膜物質的使用、塗料工業的形成和合成樹脂塗料的生產三個發展階段。西班牙阿米塔米拉洞窟的繪畫、法國拉斯科洞穴的岩壁繪畫和中國仰韶文化時期殘陶片上的漆繪花紋等大量考古資料證實,公元前5000年新石器時代,人們就使用野獸的油脂、草類和樹木的汁液以及天然顏料等配製原始塗飾物質,用羽毛、樹枝等進行繪畫。
起點 1855年,英國人A.帕克斯取得了用硝酸纖維素(硝化棉)製造塗料的專利權,建立了第一個生產合成樹脂塗料的工廠。1909年,美國化學家L.H.貝克蘭試製成功醇溶酚醛樹脂。隨後,德國人K.阿爾貝特研究成功松香改性的油溶性酚醛樹脂塗料。第一次世界大戰後,為了打開過剩的硝酸纖維素的銷路,適應汽車生產發展的需要,找到了醋酸丁酯、醋酸乙酯等良好溶劑,開發了空氣噴塗的施工方法。1925年硝酸纖維素塗料的生產達到高潮。與此同時,酚醛樹脂塗料也廣泛應用於木器傢具行業。在色漆生產中,輪碾機被逐步淘汰,球磨機、三輥機等機械研磨設備在塗料工業中推廣應用。
突破 1927年,美國通用電氣公司的R.H.基恩爾突破了植物油醇解技術,發明了用乾性油脂肪酸制備醇酸樹脂的工藝,醇酸樹脂塗料迅速發展為塗料品種的主流,擺脫了以乾性油和天然樹脂混合煉制塗料的傳統方法,開創了塗料工業的新紀元。到1940年,三聚氰胺-甲醛樹脂與醇酸樹脂配合制漆,進一步擴大了醇酸樹脂塗料的應用范圍,發展成為裝飾性塗料的主要品種,廣泛用於工業塗裝。
大發展年代 第二次世界大戰結束後,合成樹脂塗料品種發展很快。美、英、荷(殼牌公司)、瑞士(汽巴公司)在40年代後期首先生產環氧樹脂,為發展新型防腐蝕塗料和工業底漆提供了新的原料。50年代初,性能廣泛的聚氨酯塗料在聯邦德國法本拜耳公司投入工業化生產。1950年,美國杜邦公司開發了丙烯酸樹脂塗料,逐漸成為汽車塗料的主要品種,並擴展到輕工、建築等部門。第二次世界大戰後,丁苯膠乳過剩,美國積極研究用丁苯膠乳制水乳膠塗料。20世紀50~60年代,又開發了聚醋酸乙烯酯膠乳和丙烯酸酯膠乳塗料,這些都是建築塗料的最大品種。1952年聯邦德國克納薩克·格里賽恩公司發明了乙烯類樹脂熱塑粉末塗料。殼牌化學公司開發了環氧粉末塗料。美國福特汽車公司1961年開發了電沉積塗料,並實現工業化生產。此外,1968年聯邦德國法本拜耳公司首先在市場出售光固化木器漆。乳膠塗料、水溶性塗料、粉末塗料和光固化塗料,使塗料產品中的有機溶劑用量大幅度下降,甚至不使用有機溶劑,開辟了低污染塗料的新領域。隨著電子技術和航天技術的發展,以有機硅樹脂為主的元素有機樹脂塗料,在50~60年代發展迅速,在耐高溫塗料領域占據重要地位。這一時期開發並實現工業化生產的還有雜環樹脂塗料、橡膠類塗料、乙烯基樹脂塗料、聚酯塗料、無機高分子塗料等品種。
隨著合成樹脂塗料的發展,逐步採用了大型的樹脂反應釜(見釜式反應器),研磨工序逐步採用高效的研磨設備,如高速分散機和砂磨機得到推廣使用,取代了40~50年代的三輥磨。
為配合合成樹脂塗料的推廣應用,塗裝技術也發生了根本性變化。20世紀50年代,高壓無空氣噴塗在造船工業和鋼鐵橋梁建築中推廣,大大提高了塗裝的工作效率。靜電噴塗是60年代發展起來的,它適用於大規模流水線塗裝,促進了粉末塗料的進一步推廣。電沉積塗裝技術是60年代適應於水溶性塗料的出現而發展的,尤其在超過濾技術解決了電沉積塗裝的廢水問題後,進一步擴大了應用領域
新階段 1973年以來,由於石油危機的沖擊,塗料工業向節省資源、能源,減少污染、有利於生態平衡和提高經濟效益的方向發展。高固體塗料、水型塗料和粉末塗料的開發,低能耗固化品種如輻射固化塗料的開發,是其具體表現。1976年,美國匹茲堡平板玻璃工業公司研製的新型電沉積塗料──陰極電沉積塗料,提高了汽車車身的防腐蝕能力,得到迅速推廣。70年代開發了有機-無機聚合物乳液,應用於建築塗料等領域。功能性塗料(見塗料)成為70年代塗料工業的研究課題,並推出了一系列新品種。80年代各種建築塗料發展很快。電子計算機已在塗料生產和測試、管理中使用。機器人(機械手)已廣泛應用於特殊場合或危險場合代替人工進行塗裝。這一階段有如下特點:①以現代的科學理論為指導,有目的地進行研究開發工作,加快了發展的進程,例如:現代化學的理論應用在塗料工業中,塗料助劑得到廣泛推廣使用,從而使塗料工業的產品性能和生產效率都有了大幅度提高。②利用共聚、改性和混合方法,使具備特色的合成樹脂品種日益增多,提高了塗料的性能,且使功能性塗料品種日益增多。③對塗料質量的測試,已從測定表面現象轉向測定塗料內在質量的趨勢,例如更加重視測定合成樹脂的分子量與分子量分布以了解合成樹脂的質量,用掃描電鏡觀察塗膜的微觀結構等指導產品的生產。
F. 大孔吸附樹脂的前景
大孔吸附樹脂純化技術在中葯制葯工業中是有發展前景的實用新技術之一,盡版管它在中葯有權效成分的精製純化方面還存在著一些問題。隨著研究的深入以及相關標准、法規的進一步完善,一定會開發出高選擇性的樹脂,以進一步提高中葯有效成分的提取、分離、富集效率。
G. 了解樹脂發光字的發展前景如何 應用范圍怎麼樣
LED樹脂發光字。亞克力熱
塑性塑料,高氣溫下就過熱變型,冬天低溫脆化專嚴重,受環境影屬響退色太快,哪怕用得再好的進口板這都避免不了,(市場上有什麼進口板能用個五年不退色,真正有又有誰能保證真的不退色。真正好的樹脂字使用壽命是普通亞克力發光字的使用壽命幾倍。可以預見在將來如果亞克力不改進的話,樹脂字恐怕會替代亞克力發光 字,因為樹脂字在廣告效果上、能源消耗、環保方面都優越於亞克力發光字。LED樹脂發光字技術相信一定是未來的主流廣告製作項目!
H. 乙烯基樹脂的技術的發展
1低收縮型乙烯基樹脂的發展
乙烯基酯樹脂作為不飽和聚酯樹脂的范疇,活性較高,固化反應速度較快,造成乙烯基酯樹脂固化後有較大的固化收縮率,一般不飽和聚酯樹脂(包括常規乙烯基樹脂)固化時收縮較大,可達到7-10%左右的體收縮,隨著國內外對於高性能樹脂技術要求的提高,希望尋找一些固化收縮較低的乙烯基酯樹脂,這是一個21世紀初期國內外許多廠家努力尋求的技術突破點。 低收縮樹脂的機理較為復雜,而原來一些廠家為了克服樹脂的固化收縮,通過加入低收縮添加劑(LPA)的方法來達到目的,但有其應用的局限性,而更多的廠家是努力通過樹脂合成方法以及分子設計水平上來解決這個技術問題,
超低收縮環氧乙烯基酯樹脂以其具有的足夠的機械強度和剛度、足夠的尺寸穩定性、耐熱循環、耐腐蝕的獨特性能更好的滿足高品質FRP產品的要求。
2耐沖擊型乙烯基酯樹脂:
乙烯基酯目前應用最多的場合是耐腐蝕場合,但是由於乙烯基樹脂中具有較多的仲羥基,可以改善對玻璃纖維的濕潤性與粘結性,提高了層合製品的力學強度;另外在分子兩端交聯,因此分子鏈在應力作用下可以伸長,以吸收外力或熱沖擊,表現出耐微裂或開裂。因此,乙烯基樹脂在一些要求高力學性能、耐沖擊場合中得到應用,但是常規的乙烯基樹脂在耐力學沖擊方面還是有待於提高的,尤其是採用富馬酸性改性的一些乙烯基樹脂,因為該類型樹脂的固化交聯密度高,交聯點間的分子鏈段較短,所以耐沖擊性能較差。在這些樹脂的合成設計中,要求樹脂分子主鏈上的醚鍵較多,這樣能夠充分的提高樹脂的耐沖擊性,2013年又出現了另外一種方式,即在通過橡膠改性,即採用端羧基丁腈橡膠(CTBN)和丁腈橡膠(BNR)增韌甲基丙烯酸型環氧乙烯基酯樹脂,在此之後國內外也就後種方法作了不少的工作,自然橡膠改性乙烯基樹脂的延伸率等得到大幅度的提高,可以達到12%。
一般乙烯基樹脂的沖擊強度(無缺口)不大於14.00 KJ/M2,而一些21世紀新開發的耐沖擊型非橡膠改性乙烯基樹脂可以達到22 KJ/M2以上,橡膠改性的乙烯基樹脂可達到25KJ/M2,這樣這些耐沖擊乙烯基樹脂就可以很好的應用於一些高耐沖擊的FRP製作,如運動雪撬、運動頭盔等。
3 增稠用乙烯基酯樹脂
作為一種高性能的不飽和樹脂,乙烯基樹脂的增稠特性一直是各廠家研究的方向,這是因為BMC/SMC的獨特應用特性得到廣大客戶的認可,尤其隨著BMC/SMC在汽車零部件上的應用,增稠型乙烯基樹脂能夠較通用的不飽和樹脂承受更高的沖擊力,並具有良好的抗蠕變性和抗疲勞性。這些零部件包括車輪、座椅、散熱架、柵口板、發動機閥套等。當然,增稠型乙烯基樹脂能夠廣泛應用於電絕緣、工業用泵閥的製作、高爾夫球頭等。
作為一種增稠用乙烯基樹脂,自然要求樹脂具有以下的特點:①與增強材料和填料的良好浸潤性;②初始的低粘度和快速增稠特性;③良好的力學特性,包括韌性和耐疲勞特性等;④較長的存放周期;⑤較低的固化放熱峰和較低的苯乙烯揮發等。為了達到使用效果,在乙烯基樹脂的合成研究中,原來較通用的方法是:在乙烯基酯分子上引入酸性官能團(羧酸),再利用這些羧基與鹼土金屬氧化物(如氧化鎂、氧化鈣等),但這種方法增稠時間長,一般需要幾天時間,況對含水量敏感。由此也發展了另外一種方法,即用聚異氰酸鹽和多元醇反應以產生網狀結構,從而達到樹脂的快速稠化,該方法可適合於低壓成型,具有粘度控制穩定、對溫濕度要求低、存放期長的特點,同時製品的層間結合強度高的特點,同時也可以用帶過量醇的低酸值樹脂作稠劑。
4耐高溫型乙烯基樹脂
乙烯基樹脂的分子骨架是環氧樹脂,若採用酚醛環氧樹脂作為原料,則合成的NOVOLAC型乙烯基樹脂具有良好的耐腐蝕性、耐溶劑性及耐高溫型,我們對國內外的知名廠家的酚醛環氧乙烯基酯樹脂按中國國家有關標准測試,結果表明,這些樹脂的熱變形溫度(HDT)均在132-137℃之間,而國內一些廠家的酚醛環氧乙烯基樹脂的熱變形溫度則更低,要低於125℃,但在一些工業實踐應用中,剛對樹脂的耐熱性提出了更高的要求,而21世紀初期國內外少數廠家如上海富晨提供的高交聯密度型乙烯基樹脂898的熱變形溫度可達到150℃以上,該類型樹脂分子結構已作改性,優化了樹脂的耐熱特性,苯乙烯含量也作了合理調滿足實際使用要求。較常規的酚醛環氧乙烯基樹脂具有更高的耐溫溫度,可長期應用於200℃氣相的強腐蝕環境,同時我們的使用經驗表明,該類型型樹脂可在2-3min內承受300℃的溫度沖擊,該獨特應用是絕緣應用中,可完全達到C級絕緣等級以上。
該類型樹脂可以廣泛的應用於一些冶煉、電力脫硫(FGD)設備等高溫應用,如冷卻塔、煙囪和化學管道等,同時該類型樹脂也具有耐強溶劑、強氧化性介質的特點。
5光敏乙烯基樹脂
由於乙烯基樹脂樹脂的中的不飽和雙鍵在分子鏈端,由於活性較高,同時配以分子設計,如採用高環氧值的環氧樹脂,採用丙烯酸取代甲基丙烯基酸合成後的乙烯基樹脂,加入光引發劑(如苯醌、苯偶姻醚等),用以吸收紫外線能量,並傳遞給樹脂系統,而使乙烯基樹脂進行聚合固化。
此類樹脂可以用於印刷、光敏油墨等,在油漆工業上用作光敏塗料,在無線電工業中用作PCB上的光致抗蝕膜。另外,在拉擠工藝中,如採用光敏乙烯基樹脂,則可極大的提高拉擠速度,如在光纜芯拉擠工藝中,速度可以達到10m/min。
6氣乾性
乙烯基酯樹脂與不飽和聚酯樹脂一樣,常溫固化時,製品表面有發粘現象,給應用帶來不便。主要原因是由於空氣中氧氣參加了乙烯基酯樹脂表面的聚合反應。為克服此缺點,科研人員開發出了多種有效方法。其中之一就是採用在乙烯基酯樹脂結構中接入烯丙基醚(CH2=CH—CH2—O—)基團的方法來合成氣乾性乙烯基酯樹脂。該種樹脂適合於製作高檔氣乾性膠衣、塗層、封面料等。
值得注意的是烯丙基醚在樹脂中的含量有一合適的值,太小了樹脂不能很好地吸氧,太大則由於「自動阻聚」作用,氣乾性也會下降。
7 低苯乙烯揮發技術
乙烯基樹脂一般含有35%左右的苯乙烯單體,而苯乙烯的蒸汽壓較低,因此在手糊成型和噴射成型中,樹脂是一層層地鋪復於開口模具上的,特別是噴射成型,樹脂一部分成霧狀,因而在樹脂充分固化之前,苯乙烯不斷從樹脂中揮發出來,這樣在造成苯乙烯損失的同時,更是污染了環境,也是造成了對工人的健康損害,因此各國相繼提高了對於苯乙烯閾限值(TLV)的要求,因此對於以苯乙烯為稀釋單體的不飽和樹脂包括乙烯基樹脂,要努力尋求一種低苯乙烯揮發技術(LSE)以解決這個問題,原來一些廠家和國家採用添加石蠟等作為揮發抑制劑,但易造成鋪層間的分層,但對於21世紀早期的發展的趨勢是:一是採用一種附著促進劑的化合物,可為丙烯酸、帶2個烴基(含雙鍵的疏水醚或酯)等;二是採用蒸汽壓相對較高的單體,如甲基苯乙烯或乙烯基甲苯等;三是分子結構等方式,或是在保持總體性能的同時使主鏈分子的縮短,以降低苯乙烯用量,或是通過在分子鏈段上引入其它基團或者是鏈段,使樹脂內部分子間的相互作用進一步降低苯乙烯的揮發等。在多年的研究和試驗基礎上,世界上許多的生產商相繼推出了各具特色的低苯乙烯揮發性技術。這個技術可廣泛的應用於樹脂膠衣、絕緣應用等方面,尤其是在中高溫成型的絕緣應用。
8乙烯基樹脂品種衍化
當前,乙烯基樹脂由於共較好的耐腐蝕特性和改良的工藝特性,而成功的大量應用於防腐蝕場合,包括耐腐蝕FRP製作、防腐蝕工程等,但是在一些非耐腐蝕場合並有高力學性能要求的復合材料製作時,目前國內外客戶只能選擇環氧乙烯基樹脂,就就實際上造成了樹脂應用或設計上的浪費,因此國內外一些廠家在努力尋找一種保持乙烯基樹脂的力學性能、合理成本的新型材料,部分公司通過新研發及時的推出了一種新型的高性能不飽和樹脂,稱乙烯基聚酯樹脂,英文名為vinyl polyester resin,國內簡稱「VPR「,該樹脂綜合了乙烯基酯樹脂和通用不飽和樹脂的特點,從而讓用戶有更多的選擇。
VPR乙烯基聚酯樹脂是一種溶於苯乙烯液含有不飽和雙鍵的特殊結構的不飽和聚酯樹脂,VPR乙烯基聚酯樹脂具有較好的耐蝕性能,優於間苯型不飽和樹脂,力學性能與標准型環氧乙烯基樹脂相當的,尤其是耐疲勞性能和動態載荷性能;另外,較通用樹脂,VPR乙烯基聚酯樹脂又具有良好的耐候性能,同時VPR乙烯基聚酯樹脂又具有良好的玻纖浸潤性能和工藝性能,適合於各種FRP成型工藝,包括纖維纏繞、拉擠、手糊、噴射等各種復合材料工藝。
由於VPR乙烯基聚酯樹脂的獨特性能以及較為合理的成本,使該新型材料具有廣泛的應用前景:①混凝土中的玻璃鋼加強筋;②船舶製品中的結構材料;③大型FRP產品製作中的結構層材料,尤其是整體現場大罐製作中代替常的規乙烯基樹脂結構層;④耐疲勞FRP拉擠型材,如運動FRP單杠等。
I. 樹脂的主要用途是什麼該行業發展前景怎麼樣
樹脂是製造塑料的主要原料,也用來制塗料、黏合劑、絕緣材料等,合成樹脂在工業生產中,被廣泛應用於液體中雜質的分離和純化,有大孔吸附樹脂、離子交換樹脂、以及一些用樹脂。
樹脂通常是指受熱後有軟化或熔融范圍,軟化時在外力作用下有流動傾向,常溫下是固態、半固態,有時也可以是液態的有機聚合物。
樹脂定義
相對分子量不確定但通常較高,常溫下呈固態、中固態、假固態,有時也可以是液態的有機物質。具有軟化或熔融溫度范圍,在外力作用下有流動傾向,破裂時常呈貝殼狀。
廣義上是指用作塑料基材的聚合物或預聚物。一般不溶於水,能溶於有機溶劑。按來源可分為天然樹脂和合成樹脂;按其加工行為不同的特點又有熱塑性樹脂和熱固性樹脂之分。
合成樹脂行業前景展望:
中國PP合成樹脂在將來的幾年裡產量會有較大的增長,但生產仍然供不應求,中國已經成為全球最大的PP合成樹脂凈進口國。但由於國內產量很快增長,進口依存度總體上呈下降趨勢。中國PP合成樹脂未來幾年內,表觀消費量依然會保持較高增速,進口量將會增大。
同時,國家已出台一系列刺激經濟計劃及十大產業振興規劃,將拉動塑料產口的需求和消費,推動塑料行業發展。政府相繼出台各種救市措施,包括4萬億元的投資項目,布置實施擴大內需的十項措施,加快鐵路公路和機場等重大基礎設施建設、加快城市電網改造等重大工程都會應用到聚氯乙烯塑料製品。2017年塑料製品產量都將有較大增長,增幅都將在50%以上,但是區域分布不平衡格局改變不大,能耗高、加工技術含量低、勞動密集型的產品逐漸流向經濟欠發達地區。受塑料行業的需求拉動,合成樹脂需求增長,市場前景廣闊。
J. 封孔的介紹
封孔是煤礦抽放瓦斯鑽孔中的一項重要技術,鑽孔的密封性直接影響抽采效果。1封孔工藝包括水泥砂漿封孔法、木楔黃泥封孔法、聚氨酯泡沫封孔法(GSS封孔袋)1和合成樹脂和水泥漿加壓注漿(兩堵一注)