㈠ 水楊酸生產廢水處理辦法及工藝。在生產水楊酸過程中產生的廢水如何處理。
水楊酸生產廢水是典型的高鹽、含酚且難生物降解的強酸性有毒有機工業廢水,其pH值為2、含鹽量高達2.5%、含酚高、B/C僅為0.07,不適宜採用常規的生物法處理,而物理法的處理成本又很高,因此基本採用化學氧化法中的Fenton法來處理該廢水。針對傳統Fenton工藝中存在的產泥量大的問題,可通過對納米Fe3O4顆粒的制備和表面改性,在基於新型磁納米催化劑的Fe3O4-H2O2類Fenton體系中,通過該類Fenton體系對水楊酸生產廢水的處理效能,優化工藝的運行參數,是為該廢水可行的處理方法。
首先採用化學共沉澱法合成納米Fe3O4,用四甲基氫氧化銨(TMAH)和2,3-二巰基丁二酸(DMSA)對其進行表面改性,共合成5種催化劑,分別為:1#Fe3O4、2#Fe3O4-TMAH(1mL)、3#Fe3O4-TMAH(2mL)、4#Fe3O4-DMSA和5#Fe3O4-TMAH-DMSA。納米顆粒的平均粒徑約為30nm,並在20~80nm的范圍內呈現良好的粒度分布,改性後的納米Fe3O4表面有甲基、巰基、羧基包覆,顆粒的分散性提高。
利用納米Fe3O4-H2O2類Fenton體系對苯酚廢水的處理效果進行探討。12±2℃時,催化劑投量為0.8mmol/L、H2O2濃度為2.0mmol/L、pH為4.5、反應180min後,COD去除率最高可達72%,揮發酚去除率接近100%。在催化劑穩定性方面的回用性最好。
與傳統Fenton法相比,該類Fenton體系在降低鐵泥產量方面有較好的改善,反應結束後,磁納米Fe3O4在外磁場作用下可快速分離回收,並且催化劑可以重復利用。
該類Fenton體系對水楊酸生產廢水的處理效能,並優化反應器的工藝運行參數。15±2℃時,催化劑投量為2.0mmol/L、H2O2濃度為7.0mmol/L、pH為5.0、反應120min後,水楊酸生產廢水的處理效果達到最佳,出水COD值為34~42mg/L,揮發酚值為0.21~0.43mg/L;使用TMAH和DMSA對納米Fe3O4進行表面改性能提高催化劑的穩定性,綜合考慮最佳催化劑。
20±2℃時,調節進水pH為5.0、停留時間60min,將H2O2混合在進水中連續投加且濃度在7.0mmol/L附近,催化劑維持在1.0~2.0mmol/L,連續運行反應器後,出水COD值在40~50mg/L左右,揮發酚值在0.2mg/L附近波動,色度為2~4倍,調節pH後能穩定達標排放。
應用納米Fe3O4-H2O2類Fenton體系處理實際的工業廢水,並且連續運行反應器使催化劑循環使用,是技術的創新。該類Fenton體系一定程度上改善了傳統Fenton法在鐵泥產生量方面的不足。
㈡ 環氧樹脂廢水如何處理
近年來我國環氧樹脂行業快速發展,與此同時產生了大量高鹽有機廢水。該類廢回水治理難度極大,已答成為制約環氧樹脂行業可持續發展的瓶頸。環氧樹脂廢水的主要污染物包括老化樹脂、環氧氯丙烷、揮發酚、甲苯、二甲苯、氯化鈉和氫氧化鈉等。國內主要採用稀釋生化或蒸發脫鹽與生化組合工藝處理該類廢水。稀釋生化法不僅消耗大量淡水資源,還增加了廢水的排放體積,不符合國家的污染減排政策。而蒸發脫鹽與生化組合工藝中的蒸發單元設備投資和運行成本都很高,且蒸發析出的鹽往往帶有一些有機污染物,不能作為一般的工業鹽使用,可能被視為危險固體廢物,必須委託有資質的單位進行無害化處置,費用非常高。希望能夠幫助到您。
工業污水處理方式太多太多,第一工業污水中污染物極其復雜,處理難度較大。如果只想用內一種固定的處理辦容法,基本上是處理不達標的。針對工業污水處理方法,智迪環保建議你採用多種方式組合的處理技術。例如:酸鹼污水
採用
酸鹼中和+生物處理的工藝、
含油污水採用氣浮法+生物處理+沉澱法
重金屬離子污水採用
絮凝沉澱+生物處理+活性碳吸附
,總之工業污水處理辦法原則就是:針對性處理,多種組合方式處理。
㈣ 酚醛樹脂廢水,電鍍廢水處理的處理方法工藝
微電解技術是目前處理高濃度、難降解有機廢水的一種理想工藝、又稱內電回解。它是在無需外接電答源的情況下自身產生1.2伏電位差對廢水進行電解處理能達到降解有機污染的目的。當系統通水後設備內會形成無數的微電池系統構成磁場產生電位差。鐵在酸性條件下釋放鐵離子生成新生態Fe2+。Fe2+具有氧化--還原的作用、能與廢水中的許多組分發生氧化還原反;⑴將六價鉻還原為三價鉻;⑵將汞離子還原為單質貢;⑶將硝基還原為氨基;⑷將偶氮廢水的有色基團或助色基團氧化--還原;達到降解脫色作用;提高了廢水的可生化性。生成的Fe2+加減調PH值進一步產生Fe3+;Fe3+是一種很好的絮凝劑。它們的水合物具有較強的吸附-絮凝作用、Fe3+在減的作用下進一步產生氫氧化亞鐵和氫氧化鐵膠體絮凝劑。它們的吸附能力遠遠高於那些外加化學葯劑水解得到的絮凝劑;分散在水污中的懸浮物、、有毒物、金屬離子及有極大分子能被吸附-絮凝沉澱。其工作原理:電化學、氧化—還原、物理吸附及絮凝--沉澱的共同作用對廢水進行處理。
其它數據以及產品圖片可以查看參考資料內容
㈤ 離子樹脂在廢水處理過程中的工作原理是什麼
離子交換樹脂在廢水處理過程中的工作原理主要是用來吸附及脫附,下面就介紹一下工藝的運用。
吸附原理
漂萊特樹脂在實際應用過程中,廢水中的有毒有機物質通過吸附樹脂(吸附劑)床時,吸附劑和溶質分子之間產生了范德瓦爾引力,溶質分子被吸附在吸附劑表面(一般吸附劑比表面積越高,吸附量越大)。當吸附劑分子與溶質分子能形成氫鍵時,則可大大提高吸附選擇性,有利於溶質分子同水溶液的分離,從而使有毒有機廢水得到凈化。
脫附原理:
被吸附的溶質選用適當的方式即可完全洗脫,英國離子交換樹脂可重復利用。溶液經大孔樹脂固定床吸附,吸附流出液有些可直接達標排放,有些稍加調節pH值即可達標排放,有些經深度處理方可達標排放,有的還可作為洗滌水加以重復利用。吸附達飽和的樹脂用脫附劑脫附,低濃度脫附液可在下一批次繼續作為脫附劑使用,高濃度脫附液可回用到生產工段,或者直接回收產品加以綜合利用,實現污染物的資源化。
因此,選用比表面積高、孔徑適中、孔分布窄、機械強度高的漂萊特軟化樹脂可提高樹脂的吸附、脫附能力,適當調節樹脂極性的大小,使吸附劑和溶質分子之間人為的產生氫鍵作用,可大大提高樹脂的吸附選擇性和樹脂固定床吸附工藝的效率。
~~~~~~~~~有問題可以追問!
㈥ 求大孔吸附樹脂處理廢水工藝流程
通過靜態吸附和動態吸附相結合的方法得出H-103大孔吸附樹脂處理苯甲酸廢水的最適合的工藝條件。結果在苯甲酸濃度3000mg/L、溫度室溫18℃~20℃時,最佳吸附條件是動態吸附流速7BV/h;最佳洗脫條件乙醇用量為80mL。靜態吸附後,苯甲酸的濃度去除率為78·7%,動態吸附後濃度去除率為99·98%,樹脂的反復使用性能良好。結論用H-103大孔吸附樹脂處理苯甲酸廢水效果良好。
㈦ 吸附樹脂處理廢水有那些優勢
優勢主要有以下幾抄點:
1)樹脂選擇性好,處理精度高,能針對某種成分進行選擇性吸附,實現物質分離的同時完成資源化回收;
2)運行能耗低,根據吸附物質性質選擇使用酸、鹼、溶劑、蒸汽的再生工藝;
3)產品穩定好,使用壽命長,吸附樹脂結構穩定,耐酸、鹼、耐高溫,可在多種環境下穩定運行。
㈧ 酚醛樹脂生產過程中產生廢水最佳處理方法,處理廢水成本低投資少的方法
含有少量的游離酚等廢水,含有少量的甲醛等廢氣,只通過收集處理,沒問題。
㈨ 不飽和樹脂產生的廢水怎樣處理
燃燒掉,好多企業都在這么做