Ⅰ 誰那有聚合物基復合材料這本書
聚合物基復合材料的種類主要有:(1)玻璃纖維增強樹脂基復合材料;(2)天然纖維增強樹脂基復合材料;(3)碳纖維增強樹脂基復合材料;(4)芳綸纖維增強樹脂基復合材料;(5)金屬纖維增強樹脂基復合材料;(6)特種纖維增強聚合物基復合材料;(7)陶瓷顆粒樹脂基復合材料;(8)熱塑性樹脂基復合材料;(聚乙烯,聚丙烯,尼龍,聚苯硫醚(PPS),聚醚醚酮(PEEK),聚醚酮酮(PEKK))(9)熱固性樹脂基復合材料;(環氧樹脂,聚醯亞胺,聚雙馬來醯亞胺(PBMI),不飽和聚酯等)(10)聚合物基納米復合材料
Ⅱ 特種工程塑料的聚醯胺-醯亞胺
英 文 名 Poly(amide-Imide),簡稱PAI 1964年Amoco公司開發了電器絕緣用清漆(AI),1967年日立化成公司開發了HI-400系列清漆,1972年Amoco公司開發了模製材料(Torlon),1976年Torlon商品化。1979年美國聚醯胺-醯亞胺的消費量為1000噸,1988年美國的需要量為2000噸。世界有六家公司研製生產聚醯胺-醯亞胺。這些公司的商品:是美國Amoco公司的Torlon模塑料,日本東麗公司的TI-5000模塑料,TI-1000模塑料(熱固性),Amoco/三菱化成公司的Torlon,Amoco/GE公司的AI線纜塗料,日立化成公司的HI-400系列線纜塗料,Amoco公司的AmocoA-I塗料,法國Rhone-Poulenc公司的Kermel纖維。
中國上海市合成樹脂研究所、長春應用化學研究所、上海電磁線廠、哈爾濱油漆顏料總廠和天津絕緣材料廠,於70年代中期就開始對聚醯胺亞胺進行研究開發。薄膜、油漆均有產品銷售。 (1)醯氯法
(2)異氰酸酯法
(3)直接聚合法
(4)亞胺二碳酸法
苯三酸酐的醯氯與芳族二胺反應制備聚醯胺-醯亞胺是一種重要的方法,其工藝如下:
反應釜內加入定量的4,4′-二氨基聯苯醚、二甲基乙醯胺、二甲苯,啟動攪拌。待物料全部溶解後,再加入1,2,4-偏苯三甲酸醯氯。反應溫度控制在25~35℃。當粘度達最大值時,用二甲基乙醯胺和二甲苯稀釋。然後,用環氧乙烷中和發應副產出鹽酸,可得到可溶性的聚醯胺-醯胺酸預聚體。若將此預聚體在高溫下脫水環化,即可製得不熔不溶的聚醯胺-醯亞胺。 聚醯胺-醯亞胺的強度是當今世界上任何工業未增強塑料不可比擬的,其拉伸強度超過172MPa,在1.8MPa負荷下熱變形溫度為274℃。
Torlon聚合物在製造後還可能進行固態聚合物,通過後固化增加分子量提供更優良的性能。後固化在260℃下發生,固化所需的時間和溫度主要取決於零件的厚度和形狀。
它可在220℃下長期使用,300℃下不失重,450℃左右開始分解。其粘接性、柔韌性及耐鹼性更佳,可與環氧樹脂互混交聯固化,耐磨性良好。 (1)模塑
注射成型前應將料進行預乾燥。乾燥條件為150℃、8小時。料筒溫度上限為360℃,模加工溫度為200℃。注射壓力盡量大,關閉增壓泵後降至保壓14~28MPa,背壓為0.3MPa。後固化時間,在170~260℃條件下,約三天左右。
(2)薄膜
聚醯胺-醯亞胺薄膜採用連續浸漬法制備。用400mm寬、0.05mm厚的鋁箔作連續載體。浸有預聚體溶液的鋁箔進入立式烘爐,於190℃下烘乾,以除去溶劑。然後,於200~210℃下處理2~4小時,使預聚體膜脫水環化。待冷卻後,將薄膜由鋁箔上剝下即可。
(3)漆包線
一般大規格的漆包圓線與漆包扁線均在立式漆包機上塗制,而細線則在卧式漆包機上塗制,均採用毛氈塗線法。爐溫與浸漬速度隨漆包線的規格不同而變化。如1mm漆包線,爐溫控制在200~300℃,浸漬速度為每分鍾4~6米。 聚氨基雙馬來醯亞胺的生產方法有兩種:一是以順丁烯二酸酐與芳族二元胺反應合成雙馬來醯亞胺中間體,然後與芳族二胺反應制備而成,此種方法一般稱為間接合成法;二是以順丁烯二酸酐與芳族二胺一步反應制備而成,一般稱為直接法制備聚氨基雙馬來醯亞胺。
間接法制備聚氨基雙馬來醯亞胺的過程如下:
馬來酸與4,4′-二氨基二苯基甲烷(MDA)在氯仿和二甲基甲醯胺(DMF)存在下,反應生成雙馬來醯亞胺,經加熱或化學轉換,脫水或脫醋酸環化,製取雙馬來醯亞胺(MBI)。然後,MBI和MDA加成反應制備而成聚氨基雙馬來醯亞胺。
1970年以來用直接法合成聚氨基雙馬來醯亞胺逐漸增多。西德、日本相繼發表了不少這方面的文獻。歸納起來大致有三種方法。
(1)氨基醯胺酸法:
順丁烯二酸酐與芳族二胺作用生成聚氨基雙馬來醯亞酸,再用聚氨基雙馬來醯亞酸分子上的羧基和醯胺基反應,在加熱情況下,通過與氨基的氫離子移位加成反應,製得聚氨基醯胺酸,然後,加熱脫水閉環生成聚氨基雙馬來醯亞胺。
(2)酯胺鹽法:
順丁烯二酸酐與甲醇反應製取順丁烯二酸單甲酯,接著與芳族二胺作用生成氨基酯銨鹽,經加熱脫水生成單甲酯醯銨鹽,然後,氫離子位移加成反應,生成聚單甲酯醯胺,脫醋酸閉環化,最後製得聚氨基雙馬來醯亞胺。
(3)醋酸催化法:
此法是以醋酸作催化劑和反應介質,讓順丁烯二酸酐與芳族二胺直接反應,制備聚氨基雙馬來醯亞胺。 Kinel成型材料大致可分成構造用共混料和滑動零件用混料兩類。前者摻混了不同長度的玻璃纖維;後者摻混了石墨或石墨和二硫化鉬或聚四氟乙烯粉末。
構造用混料的成型加工性和成型條件如下:
Kinel5504含有長度為6mm的玻璃纖維,其體積因素高達8.3(密度0.25g/cm3),通過壓縮成型可以得到力學性能優良的成型品。造粒條件為120~130℃和20~40MPa,成型條件是加工溫度230~250℃,壓力10~30MPa,固化時間1mm厚/2分鍾,成型時預熱溫度為200℃左右,成型品放在乾燥爐中於250℃後固化24小時。
為了改善其脫模性,可用硅油或聚四氟乙烯氣溶膠仔細塗布模子,模型表面要求鍍鉻。
Kinel5514所含玻璃纖維量稍低,且玻纖長度為3mm,體積因素為4.7(密度0.25g/cm3 ),可壓縮成型制小型精密零件。成型條件同Kinel5504一樣。
Kinel5515流動性好,固化速度快,用傳遞成型加工製品。造粒和預熱條件和前述品種一樣。傳遞模塑的成型溫度、固化時間和注入壓力分別為200℃,1mm厚/1分鍾,30~60MPa。後固化條件以200℃,24小時為適宜。
滑動零件用共混料的成型條件,雖因品種而異,但大體相同。
Kinel5505、Kinel5508,前者含25%粉狀石墨,後者含40%粉狀石墨均系壓縮成型材料。體積因素分別為4.0(密度0.36g/cm3 )和4.6(密度0.34g/cm3 )。造粒和預熱條件和其它品種相同,但在造粒時可利用冷壓縮或造粒機,造粒壓力為10~40MPa。成型溫度、成型壓力和固化時間分別為220~260℃,10~30MPa,1mm厚/2~4分鍾,後固化條件是250℃,24hr。
Kinel5518是含聚四氟乙烯粉末的微粉狀壓縮成型用材料,可用於泡沫薄片。成型條件和加石墨的品種相同。唯後固化溫度採用200℃為好。
Kinel5517是含石墨和二硫化鉬的品種,可用於減摩擦零件.可進行壓縮成型和燒結成型.體積因素為5.0(密度0.3g/cm3 )。壓縮成型條件和其它化滑動零件用材料相同。
在燒結成型時,首先將粉末成型材料加入冷模具內,以100~200MPa的壓力進行高壓成型。打開模具取出成型物移入加熱爐中,以程序控制於180~250℃加熱製品(例如180~185℃,30min,185~200℃/1hr,200℃,4hr,200~250℃,1hr,250℃,4hr,共約11小時)。將成型品冷卻到室溫,從爐中取出成型品。沒有必要進行後固化。 聚氨基雙馬來醯亞胺(PAMB)的力學性能、耐熱性、電絕緣性、耐輻照特性和熱鹼水溶液性良好,作為構造材料應用適用於電機、航空機、汽車零件和耐輻照材料等。滑動零件用Kinel材料的主要用途是止推軸承,軸頸軸承、活塞環、止推墊圈、導向器、套管和閥片等。
在汽車領域,可用於發動機零件、齒輪箱、車輪、發動機部件、懸架干軸襯、軸桿、液力循環路線和電器零件等。
在電器領域,可用於電子計算機印刷基板、耐熱儀錶板、二極體、半導體開關元件外殼、底板和接插件等。
在航空航天領域,可用於噴氣發動機的管套、導彈殼體等。
在機械領域,可用以製作齒輪、軸承、軸承保持架、插口、推進器、壓縮環和墊片等。
在其它領域,可用以製作原子能機器零件、砂輪粘合劑等。 1972年美國GE公司開始研究開發PEI,經過10年時間試制、試用,於1982年建成5000噸生產裝置,並正式以商品Ultem在市場銷售。全世界年需要量為10000噸左右。以後,為提高產品的耐熱性,GE公司還開發了ULtemⅡ。由於ULtemⅡ中含有對苯二胺結構,致使玻璃化溫度(tg)從215°提高到227°,因而適應電子零件超小型電子管表面粘貼技術(SMT)的需要。該公司以開發了耐化學葯品品級CRS5000、電線被覆用品級有機硅共聚合體D9000。為了進一步提高耐熱性、耐化學葯品性和流動性,該公司還開發了特種式程塑料合金,如PEI/PPS合金JD8901、PEI/PC合金D8001、D8007和SPEI/PA合金等。
上海市合成樹脂研究所對聚醚醯亞胺的研究開發工作始於20世紀80年代初,現有10t/aPEI裝置一套,目前處於供不應求狀態。該所正准備建設100t/a PEI生產裝置,以滿足國防軍工的需要。該所的聚醚醯亞胺YS30,結構中含有二苯醚二胺,其產品耐水解性能更佳。 聚醚醯亞胺是由4,4′-二氨基二苯醚或間(或對)苯二胺與2,2′-雙[4-(3,4-二羧基苯氧基)苯基]丙烷二酐在二甲基乙醯胺溶劑中經加熱縮聚、成粉、亞胺化而製得。
在上述方法中,又可分成多硝基取代法和多環縮聚過程。前者首先進行環化反應,生成醯亞胺環,然後進行芳族親核硝基取代反應,形成柔性醚鉸鏈。後者是先進行環化反應,然後進行環化反應,聚合物的生成工序是多環縮聚過程。
PEI可用熔融縮聚法制備。這一方法從經濟上,生態和技術的觀點來看,都是有發展前途的。由於該法不使用溶劑,聚合物中不會含有溶劑,這對加工和使用都有重要意義。
PEI還可用連續法直接在擠出機製造。該法操作步驟是:起始化合物的混合物依次通過擠出機內具有不同溫度的區域,由單體混合的低溫區移向最終產品溶融的高溫區。環化反應生成的水,經適當的口孔從擠出機中不斷排出,通常在擠出機的最後區域藉助真空減壓抽出。從擠出機的出料口可得到聚合物粒料或片材。還可在擠出機內直接使PEI和各種填料混合,製得以PEI為主的配混料。
在這些方法中,溶液聚合是工業生產的方法。然而擠出機連續擠出聚合方法已由上海市合成樹脂研究所在小型裝置上開發成功,可以推向工業生產。 聚醚醯亞胺可用注塑和擠出成型,且易後處理和用膠粘劑與各種焊接法同其它材料接合。由於熔融流動性好,通過注塑成型可以製取形狀復雜的零件。加工前須在150℃充分乾燥4小時,注塑溫度為337~427℃,模具溫度為65~117℃。YS30的注塑條件如下:
預熱 150℃,4小時
料筒溫度:
前段 300~320℃
後段 330~410℃
注塑壓力 60~100MPa
保壓時間 5~30秒
冷卻時間 5~30秒。 聚醚醯亞胺具有優良的綜合平衡性能,卓有成效地應用於電子、電機和航空等工來部門,並用作傳統產品和文化生活用品的金屬代用材料。
在電器、電子工業部門,聚醚醯亞胺材料製造的零部件獲得了廣泛的應用,包括強度高和尺寸穩定的連接件、普通和微型繼電器外殼、電路板、線圈、軟性電路、反射鏡、高精度密光纖元件。特別引人注目的是,用它取代金屬製造光纖連接器,可使元件結構最佳化,簡化其製造和裝配步驟,保持更精確的尺寸,從而保證最終產品的成本降低約40%。
耐沖擊性板材Ultem1613用於制飛機的各種零部件,如舷窗、機頭部部件、座件靠背、內壁板、門覆蓋層以及供乘客使用的各種物件。PEI和碳纖維組成的復合材料已用於最新直升飛機各種部件的結構。
利用其優良的機械特性、耐熱特性和耐化學葯品特性,PEI被用於汽車領域,如用以製造高溫連接件、高功率車燈和指示燈、控制汽車艙室外部溫度的感測器(空調溫度感測器)和控制空氣和燃料混合物溫度的感測器(有效燃燒溫度感測器)。此外,PEI還可用作耐高溫潤滑油侵蝕的真空泵葉輪、在180℃操作的蒸鎦器的磨口玻璃接頭(承介面)、非照明的防霧燈的反射鏡。
聚醚醯亞胺泡沫塑料,用作運輸機械飛機等的絕熱和隔音材料。
PEI耐水解性優良,因此用作醫療外科手術器械的手柄、托盤、夾具、假肢、醫用燈反射鏡和牙科用具。
在食品工業中,用作產品包裝和微波爐的托盤。
PEI兼具優良的高溫機械性能和耐磨性,故可用於製造輸水管轉向閥的閥件。由於具有很高的強度、柔韌性和耐熱性,PEI是優良的塗層和成膜材料,能形成適用於電子工業的塗層和薄膜,並可用於製造孔徑< 0.1μm、具有高滲透性的微孔隔膜。還可用作耐高溫膠粘劑和高強度纖維等。 以PEEK 為基體的先進熱塑性復合材料已成為航空航天領域最具實用價值的復合材料之一。碳纖維/聚醚醚酮復合材料已成功應用到F117A 飛機全自動尾翼、C-130 飛機機身腹部壁板、陣風飛機機身蒙皮及V-22 飛機前起落架等產品的製造。特殊碳纖維增強的PEEK 吸波復合材料具有極好的吸波性能,能使頻率為0.1MHZ-50GHZ 的脈沖大幅度衰減,型號為APC 的此類復合材料已經應用於先進戰機的機身和機翼。另外,ICI 公司開發的APC-2 型PEEK 復合材料是CelionG40-700 碳纖維與PEEK 復絲混雜紗單向增強復合材料,特別適合製造直升機旋翼和導彈殼體,美國隱身直升機LHX 已經採用此種復合材料。C L Ong 等研製了PEEK/石墨纖維復合材料,並將其固化成戰斗機頭部的著陸裝置,具有較短的製造周期及優良的耐環境適應性等特點。由於其具有優異的阻燃性,也常用於制備飛機內部零件,降低飛機發生火災的危害程度。
利用PEEK 具有阻燃、包覆加工性好(可熔融擠出,而不用溶劑)、耐剝離性好、耐磨耗性好及耐輻照性強等特點,已經用作電纜、電線的絕緣或保護層,廣泛應用於原子能、飛機、船舶等領域。PEEK 還可以用於製造原子能發電站用接插件和閥門零件,火箭用電池槽以及火箭發動機的零部件等。用吹塑成型法還可做成核廢料的容器。
Ⅲ 聚醚醯亞胺的應用領域
聚醚醯亞胺具有優良的綜合平衡性能,卓有成效地應用於電子、電機和航空等工來部門,並用作傳統產品和文化生活用品的金屬代用材料。
在電器、電子工業部門,聚醚醯亞胺材料製造的零部件獲得了廣泛的應用,包括強度高和尺寸穩定的連接件、普通和微型繼電器外殼、電路板、線圈、軟性電路、反射鏡、高精度密光纖元件。特別引人注目的是,用它取代金屬製造光纖連接器,可使元件結構最佳化,簡化其製造和裝配步驟,保持更精確的尺寸,從而保證最終產品的成本降低約40%。
耐沖擊性板材Ultem1613用於制飛機的各種零部件,如舷窗、機頭部部件、座件靠背、內壁板、門覆蓋層以及供乘客使用的各種物件。PEI和碳纖維組成的復合材料已用於最新直升飛機各種部件的結構。
利用其優良的機械特性、耐熱特性和耐化學葯品特性,PEI被用於汽車領域,如用以製造高溫連接件、高功率車燈和指示燈、控制汽車艙室外部溫度的感測器(空調溫度感測器)和控制空氣和燃料混合物溫度的感測器(有效燃燒溫度感測器)。此外,PEI還可用作耐高溫潤滑油侵蝕的真空泵葉輪、在180℃操作的蒸鎦器的磨口玻璃接頭(承介面)、非照明的防霧燈的反射鏡。
聚醚醯亞胺泡沫塑料,用作運輸機械飛機等的絕熱和隔音材料。
PEI耐水解性優良,因此用作醫療外科手術器械的手柄、托盤、夾具、假肢、醫用燈反射鏡和牙科用具。
在食品工業中,用作產品包裝和微波爐的托盤。
PEI兼具優良的高溫機械性能和耐磨性,故可用於製造輸水管轉向閥的閥件。由於具有很高的強度、柔韌性和耐熱性,PEI是優良的塗層和成膜材料,能形成適用於電子工業的塗層和薄膜,並可用於製造孔徑< 0.1μm、具有高滲透性的微孔隔膜。還可用作耐高溫膠粘劑和高強度纖維等。
Ⅳ 氧化處理對c/c復合材料的力學性能有何影響
有哪些主要因素影響環氧樹脂質量復合材料由於質量輕且具有比一般金屬材料高的比強度、比模量,熱固性樹脂特別是環氧樹脂通常用作復合材料基體樹脂,對基體樹脂進行增韌改性是提高復合材料的性能的關鍵措施之一。上世紀80年代初首次報道用Ulteml000R聚醚醯亞胺(PEI)改性環氧樹脂的研究:李善君等合成了一系列與環氧樹脂具有良好相容性的結構新穎的可溶性聚醚醯亞胺PEI,在EPOn-828和TGD-DM環氧樹脂體系中取得了非常優異的增韌效果,材料斷裂能提高5倍、模量和玻璃化溫度維持不變。那麼聚醚醯亞胺到底如何影響環氧樹脂性能?專家從化學結構和使用數量2個方面進行了介紹。
Ⅳ 聚合物復合材料是如何分類的
聚合物基復合材料的種類主要有:
(1)玻璃纖維增強樹脂基復合材料;
(2)天然纖維增強樹脂基復合材料;
(3)碳纖維增強樹脂基復合材料;
(4)芳綸纖維增強樹脂基復合材料;
(5)金屬纖維增強樹脂基復合材料;
(6)特種纖維增強聚合物基復合材料;
(7)陶瓷顆粒樹脂基復合材料;
(8)熱塑性樹脂基復合材料;(聚乙烯,聚丙烯,尼龍,聚苯硫醚(PPS),聚醚醚酮(PEEK),聚醚酮酮(PEKK))
(9)熱固性樹脂基復合材料;(環氧樹脂,聚醯亞胺,聚雙馬來醯亞胺(PBMI),不飽和聚酯等)
(10)聚合物基納米復合材料
Ⅵ 制備陶瓷基,金屬基及聚合物基納米復合材料主要有哪些方法
聚合物基復合材料種類主要:
(1)玻璃纖維增強樹脂基復合材料;
(2)纖維增強樹脂基復合材料;
(3)碳纖維增強樹脂基復合材料;
(4)芳綸纖維增強樹脂基復合材料;
(5)金屬纖維增強樹脂基復合材料;
(6)特種纖維增強聚合物基復合材料;
(7)陶瓷顆粒樹脂基復合材料;
(8)熱塑性樹脂基復合材料;(聚乙烯聚丙烯尼龍聚苯硫醚(PPS)聚醚醚酮(PEEK)聚醚酮酮(PEKK))
(9)熱固性樹脂基復合材料;(環氧樹脂聚醯亞胺聚雙馬醯亞胺(PBMI)飽聚酯等)
(10)聚合物基納米復合材料
Ⅶ 什麼是聚合物基復合材料
聚合物基復合材料的種類主要有:
(1)玻璃纖維增強樹脂基復合材料;專
(2)天然纖維增強樹脂基復屬合材料;
(3)碳纖維增強樹脂基復合材料;
(4)芳綸纖維增強樹脂基復合材料;
(5)金屬纖維增強樹脂基復合材料;
(6)特種纖維增強聚合物基復合材料;
(7)陶瓷顆粒樹脂基復合材料;
(8)熱塑性樹脂基復合材料;(聚乙烯,聚丙烯,尼龍,聚苯硫醚(PPS),聚醚醚酮(PEEK),聚醚酮酮(PEKK))
(9)熱固性樹脂基復合材料;(環氧樹脂,聚醯亞胺,聚雙馬來醯亞胺(PBMI),不飽和聚酯等)
(10)聚合物基納米復合材料
Ⅷ 我想要一份國產聚醯亞胺與杜邦聚醯亞胺薄膜的的性能比較資料.
深圳的麥克斯泰也有生產聚醯亞胺泡沫,聚醯亞胺板材,棒材,粉體
Ⅸ 復合材料的力學性能的主要影響因素都有哪些,如纖
有哪些主要因素影響環氧樹脂質量復合材料由於質量輕且具有比一般金屬材料內高的比強度、比模量,熱固性樹脂容特別是環氧樹脂通常用作復合材料基體樹脂,對基體樹脂進行增韌改性是提高復合材料的性能的關鍵措施之一。上世紀80年代初首次報道用Ulteml000R聚醚醯亞胺(PEI)改性環氧樹脂的研究:李善君等合成了一系列與環氧樹脂具有良好相容性的結構新穎的可溶性聚醚醯亞胺PEI,在EPOn-828和TGD-DM環氧樹脂體系中取得了非常優異的增韌效果,材料斷裂能提高5倍、模量和玻璃化溫度維持不變。那麼聚醚醯亞胺到底如何影響環氧樹脂性能?專家從化學結構和使用數量2個方面進行了介紹。
Ⅹ 國內外聚醯亞胺薄膜比較
聚醯亞胺的市場及技術分析
2007年,全球聚醯亞胺(PI)的年消費量為6萬噸左右,美國、日本、歐洲是世界上聚醯亞胺最主要的消費市場。2007年,美國、日本、歐洲聚醯亞胺的消費量分別約為1.8萬噸、1.6萬噸和0.7萬噸。專家預測,世界對聚醯亞胺的需要將以每年6%的速度遞增,到2012年總消費量將達到約8萬噸。
2007年,全球聚醯亞胺(PI)的年消費量為6萬噸左右,美國、歐洲、日本是世界上聚醯亞胺最主要的消費市場。2007年,美國、歐洲、日本聚醯亞胺的消費量分別約為1.8萬噸、1.6萬噸和0.7萬噸。
專家預測,世界對聚醯亞胺的需要將以每年6%的速度遞增,到2012年總消費量將達到約8萬噸。
PI是綜合性能最佳的有機高分子材料之一,已廣泛應用在航空、航天、微電子、納米、液晶、分離膜、激光等領域,各國都在將聚醯亞胺的研究、開發及利用列入21世紀最有希望的工程塑料之一。由於聚醯亞胺在性能和合成化學上的特點,其應用也十分廣泛,聚醯亞胺有包括工程塑料、纖維、薄膜、先進復合材料、泡沫塑料、膠粘劑、分離膜、液晶顯示用的取向排列劑等數十種。
目前,聚醯亞胺在各個國家和地區消費構成有所不同,美國主要消費領域是塑料,占消費量的80%左右;歐洲主要消費領域是漆包線漆,占消費量的70%~80%;日本主要消費領域是薄膜和塑料,合計占消費量的95%左右。
高端纖維市場潛力大
在種類眾多的特種工程塑料中,由於聚醯亞胺的耐高溫性能、抗拉強度均優於同類產品,因此價格也相對較貴。但對性能要求不高的領域,如果使用PI替代其他材料,依然存在一定的困難。
據不完全統計,目前世界上聚醯亞胺的主要生產廠家約有50家,主要的生產廠家有美國杜邦公司、日本三井東亞公司以及日本宇部興產公司等。
據了解,同聚醯亞胺纖維競爭的纖維品種主要有:PTFE(聚四氟乙烯)、PPS(聚苯硫醚)、玻纖、Nomex(芳綸)。各纖維由於性能不同,應用領域及應用環境也不盡相同,但從相關性能來看PI纖維競爭優勢明顯。
高溫濾料主要應用於環保行業的袋式除塵領域,主要與鋼鐵、冶金、水泥、化工行業以及電力和垃圾焚燒爐等有密切關系,而袋式除塵替代電除塵是大勢所趨。
隨著國家對環保的日益重視,政府和民間資本在這一領域的投入越來越大,環保產業因而呈現出了高速發展的態勢。相比2008年,2009年高溫過濾材料大幅增加,尤其是高端產品發展較快。2008年,我國濾料總產量中低端濾料約佔40%,中端濾料約佔40%,高端濾料約佔20%,未來發展空間巨大。
薄膜市場仍將高速增長
在我國的PI產品中,90%以上是薄膜。截至2009年,Pl薄膜規模達到約4700噸/年,生產廠家在40家以上,年產量達到2000~3000噸。國內90%以上企業都採用普通流延法,產品低端,主要應用於絕緣材料和柔性覆銅板(FCCL)兩大領域。
目前,我國90%以上的Pl薄膜應用於絕緣材料領域,年消費量2000~3000噸,應用領域包括機車、電機、核電設備絕緣、耐高溫電線電纜、揚聲器音圈骨架、電磁線、耐高溫導線、耐高溫壓敏膠帶、絕緣復合材料等,對PI薄膜質量要求不高。
柔性覆銅板是廣泛應用於電子工業、汽車工業、信息產業和各種國防工業所用撓性印刷電路板(FPC)的主要材料。在該領域,PI薄膜主要用做絕緣基膜,此外還可用做FPC高溫膠帶。在家電下鄉、3G通訊、信息家電及汽車電子等方面的高速增長,都成為了推動FCCL市場發展的動力。
然而,我國FCCL領域應用的PI薄膜85%以上依賴進口,年進口量為800~900噸。國內僅漂陽華晶、江陰天華科技、無錫高拓和山東萬達微電子材料公司等廠家能生產。
以電子領域的12.5nmPI雙向拉伸薄膜為例,我國企業最高報價是每千克1500元左右,一般報價只有幾百元,而美國杜邦、日本宇部興產公司報價在3000元以上。在絕緣材料領域,國產PI薄膜價格一般在每千克10~30元,而進口產品價格在1800~3000元。
隨著中國電子工業的快速發展,預計未來幾年我國PI薄膜市場將以年均12%以上的速率快速增長,2013年我國PI薄膜需求量將達5000噸左右。
產能不足成本高
聚醯亞胺品種繁多、形式多樣,在合成上具有多種途徑,因此可以根據各種應用目的進行選擇,這種合成上的易變通性也是其他高分子材料所難以具備的。
從歷史文獻的研究中,由於各國對聚醯亞胺的詳細情況披露有限,所以成本數據並不透明。從深圳惠程相關資料中可以看出,聚醯亞胺的原料構成主要有二酐、二胺、異構二酐、二甲基乙醯胺、去離子水等。
其中,目前國內二酐即均苯四甲酸二酐(PMDA)的生產方法多採用均四甲苯以釩鈦氧化物為催化劑。國內PMDA生產廠家雖有幾家,但產能不足萬噸。市場缺口仍然需要進口,均酐生產主要集中在杜邦、赫司特等少數大公司。據了解,目前國內PMDA報價在5.2萬~5.6萬元/噸不等,而噸聚醯亞胺需原料為0.5噸左右。
二胺即二苯醚二胺(又稱二氨基二苯醚,ODA),主要用作聚醯亞胺樹脂、聚醯胺樹脂、環氧樹脂的原料和交聯劑。目前,國內ODA生產量不大,全年大約1000多噸,價格約為7.8萬元/噸。
另外,異構二酐包括異構BP鄄DA、異構ODPA、異構TDPA等。而二甲基乙醯胺(DMAC)是無色透明的可燃液體,主要用於耐熱合成纖維、塑料薄膜、塗料、醫葯、丙烯腈紡絲的溶劑,目前市場報價在1.08萬元/噸。
根據上述各單項成本的估算,噸聚醯亞胺成本為8萬元/噸左右。
生產新技術成功面世
聚醯亞胺產品可用於汽車和飛行器發動機、通訊儀器、建築機械、工業機械、商用設備、電子電器和微電子、分析和醫療設備以及傳輸和紡織設備等領域。
由於其昂貴的價格,依然對部分應用領域具有擠出效應。長春應用化學研究所開發的聚醯亞胺及製品合成新工藝,改變了傳統聚醯亞胺的合成方法,開辟了一條新的氯代苯酐合成聚醯亞胺反應途徑。經綜合測算,新加工工藝可使聚醯亞胺的生產成本降低30%以上。
目前,世界上只有美國通用電氣(GE)公司採用以硝基酞醯亞胺為原料生產聚醚醯亞胺,其規模已經達到萬噸級。但是,以硝基酞醯亞胺生產聚醚醯亞胺路線存在有大量廢酸,提純使用有機溶劑,難以用直接法合成聚醯亞胺,副產物是產生對反應不利並污染環境的亞硝酸鈉,且存在不能生產聯苯二酐等缺點。而採用氯代苯酐路線,這些缺點全部可以克服,因此可以認為氯代苯酐路線是目前世界上產生聚醯亞胺最先進和最經濟的路線。
聚醯亞胺定義
聚醯亞胺是分子結構含有醯亞胺基團的芳雜環高分子化合物,英文名Polyimide(簡稱PI),可分為均苯型PI、可溶性PI、聚醯胺-醯亞胺(PAI)和聚醚亞胺(PEI)四類。PI是綜合性能最佳的有機高分子材料之一,耐高溫達400℃以上,長期使用溫度范圍-200℃~300℃,無明顯熔點,具有高絕緣性能。另外,PI作為一種特種工程材料,已廣泛應用在航空、航天、微電子、納米、液晶、分離膜、激光等領域,各國都在將聚醯亞胺的研究、開發及利用列入21世紀最有希望的工程塑料之一。
聚醯亞胺性能
聚醯亞胺樹脂的綜合性能非常優秀,它具有抗腐蝕、抗疲勞、耐高溫、耐磨損、耐沖擊、密度小、噪音低、使用壽命長等特點。
聚醯亞胺類型
由於聚醯亞胺在性能和合成化學上的特點,其應用也十分廣泛,聚醯亞胺的形態也達數10種之眾。但我們主要分析5種形態:工程塑料、纖維、薄膜、先進復合材料、泡沫塑料。其他形態包括泡沫塑料、膠粘劑、分離膜、液晶顯示用的取向排列劑等。
主要產品
工程塑料:工程塑料分為熱塑性和熱固性樹脂兩大類。熱塑性聚醯亞胺材料由於它的不熔性質,影響了這類高性能材料的廣泛應用。而熱固性工程塑料融優良的加工成型性能和高性能於一體。其中,聚醯亞胺特種工程塑料具有較高的玻璃化轉變溫度(243℃)和熔點(334℃),負載熱變型溫度高達316℃,可在250℃下長期使用;PI樹脂不僅耐熱性比其他耐高溫塑料優異,而且具有高強度、高模量、高斷裂韌性以及優良的尺寸穩定性。
纖維:聚醯亞胺纖維又被稱為芳醯亞胺纖維,分為普通耐熱和高強度兩類。前者用於高溫介質的過濾材料、主要電纜護套、消防服等。後者的力學性能可達到碳纖維水平,是先進復合材料的增強劑,也可以用於防彈背心及其他防護盾甲。目前,用於製造高溫過濾材料應用廣泛且迫切。其中,國內市場廣泛使用的袋式除塵裝置的核心關鍵——耐高溫濾料,普遍應用的是底端的PPS纖維,高端的聚醯亞胺纖維全部進口。
薄膜:1961年美國杜邦首次生產出PI薄膜,目前世界PI薄膜生產技術主要集中於三大生產商:美國杜邦、日本宇部興產和日本鍾淵化學。
先進復合材料:聚醯亞胺復合材料是目前最耐高溫的樹脂基復合材料,主要應用於航空航天等。
泡沫塑料:聚醯亞胺泡沫塑料是聚合物中熱穩定性最好的泡沫材料之一,長期可耐250℃~300℃的溫度,短時可耐400℃~500℃的高溫。自從20世紀70年代開發成功以來,已有近40年的發展歷史。聚醯亞胺泡沫塑料按結構可分為熱固性聚醯亞胺泡沫、熱塑性聚醯亞胺泡沫兩類。
從全球范圍來看,掌握聚醯亞胺核心技術並進行產業化的生產商只有奧地利Evonic公司,而且公司利用二酐和二胺合成聚醯亞胺的工藝相比Evonic成本更低,技術的排他性、市場的不充分競爭、一體化程度造就了公司的稀缺性。