1. 怎樣做樹脂膠水
製作方法:樹脂來膠水需自要利用原料混合然後通過微波反應釜攪拌加熱合成。通過不同的應用行業需要不同的環氧樹脂膠水混合比例,根據生產經驗調節微波反應釜分段溫度和時間即可以製作出不同特性的膠水。
性能特點: 樹脂膠水毒性低,揮發性小,配用比例寬,操作簡便,可常溫固化,粘接力強,韌性好,明顯地優越於一般的單體胺類固化劑。
2. 如何加速使液體樹脂快速凝固且不變形無氣泡
配方工藝調整下,固化用量很關鍵
不飽和聚酯樹脂中阻聚劑及其他添加劑的影響
為了不飽和聚酯樹脂的穩定,常在其中加入阻聚劑或緩聚劑。這是一種能與鏈自由基反應形成非自由基或不能再引發的低活性自由基,使交聯固化速率降低為零的物質。因此,低反應活性的樹脂有可能因為其中加入的阻聚劑量很少而顯得反應活性很高,而高反應活性的樹脂也可能因其中加入了過量的阻聚劑而變得不甚活潑。另外其他添加劑例如:阻燃劑、色漿、低收縮劑、各種填料的加入,引入了磷、鹵、金屬離子或其他因素,都會影響樹脂交鏈反應活性。
(6)固化劑、阻聚劑用量的影響
用JX-196樹脂作固化實驗,不同固化劑、阻聚劑用量的影響如下:
組號 BPO TBC HQ N-Cu 凝膠時間min 放熱峰溫度℃ 固化時間min
1 0.3 0 0 0 3.7 178 1.7
2 0.3 0.02 0.07 0.07 12.9 143 3.05
3 0.3 0.02 0.07 0.02 12.3 167 2.7
4 0.3 0.04 0.04 0.04 11.3 164 2.6
5 0.6 0.02 0.07 0.07 8.3 181 1.7
6 0.6 0.02 0.07 0.02 6.4 184 1.5
7 0.6 0.04 0.04 0.04 7.6 185 1.3
8 0.9 0.04 0.04 0.04 4.2 191 1.2
從上述實驗可以看出:三組不同固化劑用量固化結果形成三個階梯,用量越大,固化越快,放熱峰越高。不同的阻聚劑和不同的用量固化效果也為不相同。因此在樹脂製造和使用過程中,掌握好阻聚劑、固化劑的合理匹配十分重要。
2 不飽和聚酯樹脂固化網路結構分析
2.1不飽和聚酯樹脂交聯網路結構
不飽和聚酯中的雙鍵與交聯劑中的雙鍵聚合形成不溶不熔的交聯網路結構,網路中含有兩種聚合物分子鏈結構。網路主體由不飽和聚酯分子鏈的無規線團組成,苯乙烯共聚分子鏈穿插其中,將不飽和聚酯分子鏈連接和固定起來,形成一個巨大的網。在網中不飽和聚酯分子鏈平均分子量為1000-3000。連接在不飽和聚酯分子鏈間苯乙烯分子鏈的長度為1-3個,而從某個引發點開始,聚酯分子 → 苯乙烯 鏈 → 聚酯分子 → 苯乙烯鏈 → 這樣的連續重復,最多也只有7-8個交替,這樣苯乙烯共聚物分子鏈平均分子量可達8000-14000。整個網路結構平均分子量為10000-30000。如果網路分子量小於10000會直接影響製品的力學性能 ,如強度、彈性和韌性等。
2.2 不飽和聚酯樹脂交聯網路的長壽命自由基
不飽和聚酯樹脂交聯網路在固化過程中,不飽和聚酯和苯乙烯各自雙鍵的聚合進程及殘留率的變化具有一定的特色。實驗表明不管聚酯樹脂交聯網路完善與否,都會產生一些自由基無法終止的空間位阻的死點,形成長壽命自由基。這些長壽命自由基又只會存在於不飽和聚酯鏈上,而不會出現在只有兩個官能度的小分子的交聯劑上。由於長壽命自由基的存在,不飽和聚酯樹脂固化後交聯反應仍能進行。溫度的升高,特別是接近樹脂玻璃化溫度時,分子的可動性大大增加,長壽命自由基得以活動,可以和殘余的交聯劑單體繼續進行交聯反應,這就是樹脂後固化可以提高固化度的原因。
2.3 聚酯樹脂網路結構中的微相分離現象
實驗分析表明,在交聯良好的不飽和聚酯樹脂中也存在著一種微相分離結構。這種微相分離很可能是在聚合過程中,由於不同分子鏈的相互排斥作用,聚酯鏈和交聯劑以某種方式分別斂集在一起而產生了分相。固化初期的放熱峰使兩相相互溶合在一起,這是不飽和聚酯樹脂形成均勻網路的重要條件。但放熱峰後相分離的過程又在隨著時間的延續不斷進行和發展。低溫的處理可加速該微相分離的發展,相反,熱處理可以消除這種微相分離。當溫度升高時首先可以使斂集較松的分相區破壞,溫度再升高又可使斂集較緊的分相區破壞,最後,玻璃化溫度以上的高溫就可使所有分相區消除。相區一經破壞,再重新聚集分相就不象聚合時單體運動、排列自如,而要受到網路的限制。而在兩相玻璃化溫度以上的高溫處理導致在網路均勻狀態下進一步的聚合和交聯,可從根本上消除這種微相分離。
微相分離現象的存在對材料的性能有相當大的影響。實驗表明,同一條件下聚酯澆鑄體樣品,25℃室溫固化30天,固化度達到90.2%,其巴柯硬度為38.5。而經高溫處理後,雖然固化度提高不大為92.6%,但由於消除了相分離的影響,巴柯硬度竟達到44.4。可見微相分離對樹脂的硬度影響很大。同時也可以理解高溫後處理試樣剛度大大超過室溫固化試樣的原因所在。因此,我們要十分強調不飽和樹脂玻璃鋼製品,尤其是防腐蝕、食品用等玻璃鋼設備,一定要經過高溫後處理,消除微相分離現象再投入使用。
2.4交聯劑對網路結構的影響
上面已經說到,兩種單體交聯固化時,競聚率在影響不飽和聚酯樹交聯網路的均勻性方面起著關鍵性的作用。因此在選擇交聯劑時必須注意競聚率,使交聯劑與不飽和聚酯能很好的交替共聚,形成均勻的網路結構。此外交聯劑分子量要小一點,官能度要低,與聚酯要有優良的相容*聯劑用量的選擇上,一般說來交聯劑用量過少,不飽和聚酯的雙鍵不能完全反應,用量過多又必然形成大量的塑性鏈,這兩種情況都不能使樹脂形成均勻緊密地網路。實驗表明,交聯劑苯乙烯的用量通常為35%左右,即與聚酯雙鍵之比在1:1.6-2.4之間。
2.5不飽和聚酯分子量對交聯網路的影響
聚酯分子量越大,分子鏈越長,分子量越小,分子鏈越短。實驗表明,隨著聚酯分子量的增加,形成完整網路的概率也越大,分子量小,形成完整網路就較困難。隨著分子量增加,網路中端基減少,節點增加,耐熱性越好。因此分子量大的樹脂耐熱性能較高。
2.6 不飽和聚酯分子結構對網路性能的影響
不飽和聚酯交聯點間分子結構對網路熱性能有直接的影響。不飽和聚酯分子結構單元由雙鍵、酯鍵、醚鍵、亞甲撐、芳環類等集團組成。一般情況下,雙鍵之間的鏈節越短,樹脂的熱變性溫度就越高。雙鍵間鏈節延長會使熱變性溫度降低。
彎曲強度是材料拉伸強度和抗壓強度的綜合體現,是材料性能重要的指標。樹脂的交聯密度越高,承受負荷的分子鏈越多,彎曲強度也應越高。但有時實際上卻非如此。這是因為樹脂網路是極不均勻的,而且均勻*聯密度的增加而下降。因此在外力的作用下,各分子鏈的受力也不均勻。再有,高交聯密度樹脂其分子張緊而難以運動,變性量很小,在外力作用下寧折不彎。可見高交聯樹脂由於均勻性差,分子鏈難以鬆弛雙重原因會造成他們彎曲強度不高。一個有高溫使用價值的樹脂,其理想的分子結構應該是在雙鍵間主鏈中引入一連串非對稱的芳雜環結構,最好能帶有少量的極性鍵。
2.7 引發劑及固化條件對樹脂網路結構的影響
(1)引發劑種類不同 ,樹脂交聯固化性能也不同。以過氧化環己酮(HCH)/環烷酸鈷(CoN)和過氧化苯甲醯(BPO)/二甲基苯胺(DMA)兩種氧化-還原體系為例進行固化實驗可以看到:以BPO/DMA體系引發以苯乙烯為交聯劑的樹脂,固化達80h的過程中用丙酮萃取的百分率緩慢下降至24.9%,而以HCH/CoN體系引發同樣以苯乙烯為交聯劑的樹脂固化至4.5h後即下降至24.5%,可見以HCH/CoN體系引發固化不飽和聚酯樹脂要比BPO/DMA體系引發更為有效。同時發現,以HCH/CoN引發體系固化的樹脂網路中長壽命自由基的數量10個月後仍然不低於固化80天後的數量。相比之下,以BPO/DMA引發體系固化的樹脂網路中長壽命自由基的數量卻很快消失殆盡了,充分說明該體系對樹脂網路的形成有很大影響。尤其固化後期要達到較高的固化程度比較困難。
(2)固化條件不同樹脂固化網路的性能也將有很大差異。以天津巨星公司JX-196樹脂為例:取JX-196樹脂,加入HCH/CoN引發體系後分成兩份,分別置於25℃恆溫水浴和25℃空氣浴中,記錄下每一試樣在固化過程中溫度的變化情況。可以看到,在固化前期樹脂的溫度情況水浴與
空氣浴基本一致,但是在凝膠以後,在空氣浴中固化樣品放熱峰較高,而在水浴中固化樣品放熱峰溫度比前者要低20-30℃。再將兩種樣品進行後固化處理以後測定,在空氣浴中固化的試樣各種性能參數都明顯優於在水浴中固化的試樣。這說明同一樹脂在經歷不同固化條件時,起始的固化度有明顯差別。雖然只要有足夠的引發劑存在並經高溫後處理,最終固化度將趨於一致,可是固化性能卻有顯著差別。這就是說,初始的固化條件奠定了交聯網路結構基礎,因而也就在相當大的程度上確定了材料的物性。所以在固化工藝中有一種所謂成夾生飯無法再煮熟之說。樹脂固化以後分子就難以穿插運動了,因此影響網路結構的關鍵時刻是凝膠時刻的一段時間,在這段時間,為了保證樹脂網路結構的均勻性和連續性,要求交聯劑繼續滲透和溶脹,而此時出現的放熱峰起到了這種作用,雖然交聯產物最終固化度未見得更高,但性能卻要比無放熱峰者為好。
JX-196樹脂在空氣浴與水浴中固化性能比較
凝膠時間min 放熱峰溫度℃ 巴柯硬度 彎曲強度KPa
空氣浴℃ 9.7 184 43 211
水浴℃ 11.6 163 30 188
3. 怎麼做膠水最簡單
樹脂加固化劑即可
4. 怎樣以最快的速度學習樹脂工藝品製作技術
這個問題,你看下 參考資料把,如果有什麼不明白的,隨時溝通。
5. 有哪些膠水可以快速固化,然後用水煮能快速脫落的
101 但它水煮不去來 我這有幾個源去除的方法
1.用香蕉水滴在膠水漬上,同時用舊牙刷不斷攪刷,待膠水跡變軟脫下,再用清水漂凈,反覆刷洗,刷凈為止。在有膠水痕跡的衣物背面墊上吸水布,然後往膠水痕跡上塗些白醋,最後用棉花蘸水擦洗干凈
2. 在原處滴上101使原來的101融化,然後迅速用水洗掉,很靈的!
3. 用絕緣油,倒點變壓器里的絕緣油在桌上,101膠水很快變軟,可以很快搓掉了。 3丙同溶液可洗
101膠水是一種樹脂膠,只要用溶解樹脂的有機溶劑就可以,比如丙酮。但吸入丙酮有毒,注意使用方法,可以把粘膠的部分塞到瓶子里。據說放到冰箱中冷凍,膠也會掉下來,可以先試一下
小面積粘上101膠水,只要用熱水浸泡一下就可以,如果大面積沾上101膠水,塗上丙酮,大約等5~10分鍾就可以除去。
推薦丙酮、汽油、麻油等,倒了點變壓器里的絕緣油在手上,101膠水很快變軟,終於搓掉了。
6. 關於怎麼加快環氧樹脂固化速度。。
1、提高溫度:如果要從理論上來說它的溫度每升高10℃,那麼固化速度就可以快1倍。
2、提高促進劑用量:比如說促進劑越多,那麼就會固化得越快。
3、改變促進劑類型:最好就是使用活性更高的促進劑,注意就是活性更高,那麼潛伏性就差,如果是單組份的產品,那麼就可以找一個平衡,雙組份就不要考慮這個了。
4、固化劑加量:可以考慮改變固化劑量那麼就會改變固化物結構,這樣也就改變了漆膜或者塗層或者製品的性能,這點一定要考慮清楚。
5、改變固化劑類型:這樣做也是能夠使用更高活性的固化劑,此法風險跟上面兩點差不多,使用的時候要注意,最好提前試驗比較好。
6、加入高活性成分:比如用鄰甲酚醛型環氧替換雙酚A型環氧,可以說這種在使用的時候也是有一定的風險。
7、使用高固分環氧或者粉末環氧:可以減少溶劑揮發時間。
(6)樹脂膠怎麼快速好起來擴展閱讀:
注意事項:
1、使用環氧樹脂膠的時候需要了解一下使用說明,第一個方面就是基本特性膠水是分兩組的,所以在使用的時候需要混合使用,這樣的話,比較大的空隙也可以被填充起來,第二個就是操作環境,在平常的室內溫度中,膠水就會固化,在進行兩種膠水的混合操作時,可以直接用手混合,也可以使用一些專業的設備,如膠槍等。
2、在保存環氧樹脂膠的時候,還有一些必要的注意事項,環氧樹脂不能接受陽光的直射,所以陰涼處是保存的最佳環境,這種膠水的保存時間也是有一定的期限的,超過12個月之後就不能使用了。
3、環氧樹脂膠在使用的時候,要做的就是把要粘結的物體表面清理干凈,初步擦拭之後,使用一些清潔劑進行第二遍的擦拭,以達到充分清潔的目的。
4、如果是常溫環境的話,環氧樹脂固化2到6個小時就可以了,如果溫度可以達到40到50度的話,環氧樹脂固化的時間達到1到3個小時就可以了,完成粘結後的第十天,粘結的效果可以達到最好。
參考資料來源:網路-環氧樹脂
參考資料來源:網路-環氧樹脂固化劑
參考資料來源:網路-固化速率
7. 環氧樹脂灌封膠按照比例調好,在10℃左右環境下,放了三四天還是沒有完全凝固,用指甲按下會有凹陷,
環氧樹脂水晶膠,滴好後,為什麼會出現不凝固,硬度不強有凹陷呢?
答:專原因有屬三個可能性:
第一,可能是重量比不夠標准,
第二,可能是攪拌不夠均勻所導致有地方不幹,
第三,也有可能是配方體系有問題,固化劑環氧強度達不到,而導致有的地方反應不完全,不幹現象。
推薦使用格瑞斯水晶膠,產品可先試樣品再購買,樣品是免費的。也可提供免費技術支持!現在一直在使用。很不錯。
別人的產品我們無法左右改變。我只能用我們的產品,去滿足你的要求和條件。
我們會根據客戶的要求調配好樣品。如有什麼其他技術問題,我們有專業工程師幫您解決問題。
8. 樹脂工藝品斷了用什麼東西能粘在一起
502膠水,或者是禹王牌495膠水都可以的。最常見的還有AB膠或者是哥倆好膠水都行的。最好的是禹王牌495膠水。
9. 環氧樹脂為什麼不固化怎麼急救
一、環氧樹脂不固化或者固化慢主要是固化劑選擇不正確或者是配比不合理所致。
二、環氧樹脂固化劑主要有以下幾個種類:
1、 脂肪族胺類:主要品種有乙二胺、二乙烯(撐)三胺、多乙烯(撐)多胺等。其特點是,室溫下固化,固化速度快,黏度耐高溫漆低,易於和其他樹脂混用,操作方便。塗膜具有較高的耐溶劑性能。但毒性較大,固化時放熱量大,使用期限短,固化受溫度、濕度條件的限制,在濕度較大的條件下漆膜泛白。產生桔皮、縮孔等弊病,固化後漆膜耐熱性、機械強度較差。
2、 芳香族胺類:主要為間苯二胺、間苯二甲胺等。其特點是,需在加熱條件下固化,與樹脂混合不便,固化物的耐熱、耐蝕性能較為突出。其主要用於加熱固化工藝,也可用於作改性胺固化劑的原料。
3、 胺改性固化劑:主要有胺加成固化劑(如590、593固化劑)、T31固化劑、酚氨基醇固化劑。這主要針對脂肪族胺和芳香族胺存在的毒性等問題,通過加成反應或縮合反應對原有胺固化劑進行改進,其特點為揮發性大大降低,稱為低毒或無毒固化劑,客服了泛白的缺點,不需誘導期。
4、 聚醯胺固化劑:其固化過程是通過聚醯胺末端的伯、仲胺上的氫(不是通過醯胺基上的氫)與環氧基反應,由於兩端氨基的分子間距較大,固化後的密度小,因此固化後的塗膜有優良的韌性;而且由於聚醯胺固化劑的用量要求不嚴格,因此可以根據需要通過聚醯胺的用量來調節韌性。
5、 酸酐固化體系:酸酐與環氧樹脂的固化是與羥基進行反應,反應很慢,往往需高溫固化,甚至在200℃下進行,若在酸或鹼催化劑存在下,反應很快。其塗膜具有較好的機械強度和耐熱性,但固化後漆膜含有酯鍵,易受鹼的侵蝕。該體系常用作環氧粉末塗料、卷材塗料的固化劑,並配以咪唑類固化劑。
6、 多異氰酸酯固化劑:多異氰酸酯可同環氧樹脂鏈上的羥基起反應。優於環氧鏈上的羥基數目隨環氧樹脂相對分子質量的增大而增多,因此異氰酸酯適合於同相對分子質量高的環氧樹脂溶液(約30%的環氧樹脂含量)起固化反應,固化物有良好的耐酸性。異氰酸酯同環氧樹脂中羥基的反應活性高,可在低溫下進行,特別適用於零度以下的固化。