導航:首頁 > 污水知識 > 有機廢水處理的基本設計與計算

有機廢水處理的基本設計與計算

發布時間:2024-04-30 11:18:21

A. 關於水處理方面的書籍

1、《現代膜技術與水處理工藝》,作者:張萱;

2、《現代水處理技術》,作者:馮敏;

3、《工業水處理技術問答》,作者:金熙;

4、《污水處理廠工藝設計手冊》,作者:王社平;

5、《有機廢水處理的基本設計與計算》,作者:王光裕;

6、《水的深度處理與回用技術》,作者:張林生;

7、《光催化水處理技術明鏈》,作者:張峰;

8、《循環冷卻水技術問答》,作者:齊喚槐緩冬子;

9、《廢水處理生物膜》和模,作者:溫沁雪;

10、《工業水處理及實例精選》,作者:竇照英。

B. 廢水處理的技術

【技術概述】
微電解技術是處理高濃度有機廢水的一種理想工藝,該工藝用於高鹽、難降解、高色度廢水的處理不但能大幅度地降低cod和色度,還可大大提高廢水的可生化性。
該技術是在不通電的情況下,利用微電解設備中填充的微電解填料產生「原電池」效應對廢水進行處理。當通水後,在設備內會形成無數的電位差達1.2V 的「原電池」。「原電池」以廢水做電解質,通過放電形成電流對廢水進行電解氧化和還原處理,以達到降解有機污染物的目的。在處理過程中產生的新生態[?O H] 、[H] 、[O]、Fe2+ 、Fe3+等能與廢水中的許多組分發生氧化還原反應,比如能破壞有色廢水中的有色物質的發色基團或助色基團,甚至斷鏈,達到降解脫色的作用;生成的Fe2+ 進一步氧化成Fe3 +,它們的水合物具有較強的吸附- 絮凝活性,特別是在加鹼調pH 值後生成氫氧化亞鐵和氫氧化鐵膠體絮凝劑,它們的絮凝能力遠遠高於一般葯劑水解得到的氫氧化鐵膠體,能大量絮凝水體中分散的微小顆粒、金屬粒子及有機大分子.其工作原理基於電化學、氧化- 還原、物理以及絮凝沉澱的共同作用。該工藝具有適用范圍廣、處理效果好、成本低廉、處理時間短、操作維護方便、電力消耗低等優點,可廣泛應用於工業廢水的預處理和深度處理中。
【技術特點】
⑴反應速率快,一般工業廢水只需要半小時至數小時;
⑵作用有機污染物質范圍廣,如:含有偶氟、碳雙鍵、硝基、鹵代基結構的難除降解有機物質等都有很好的降解效果;
⑶工藝流程簡單、使用壽命長、投資費用少、操作維護方便、運行成本低、處理效果穩定。處理過程中只消耗少量的微電解填料。填料只需定期添加無需更換,添加時直接投入即可。
⑷廢水經微電解處理後會在水中形成原生態的亞鐵或鐵離子,具有比普通混凝劑更好的混凝作用,無需再加鐵鹽等混凝劑,COD去除率高,並且不會對水造成二次污染;
⑸具有良好的混凝效果,色度、COD去除率高,同量可在很大程度上提高廢水的可生化性。
⑹該方法可以達到化學沉澱除磷的效果,還可以通過還原除重金屬;
⑺對已建成未達標的高濃度有機廢水處理工程,用該技術作為已建工程廢水的預處理,即可確保廢水處理後穩定達標排放。也可將生產廢水中濃度較高的部分廢水單獨引出進行微電解處理。
⑻該技術各單元可作為單獨處理方法使用,又可作為生物處理的前處理工藝,利於污泥的沉降和生物掛膜
【適用廢水種類】
⑴.染料、化工、制葯廢水;焦化、石油廢水; ------上述廢水處理水後的BOD/COD值大幅度提高。
⑵. 印染廢水;皮革廢水;造紙廢水、木材加工廢水;
------對脫色有很好的應用,同時對COD與氨氮有效去除。
⑶. 電鍍廢水;印刷廢水;采礦廢水;其他含有重金屬的廢水;
------可以從上述廢水中去除重金屬。
⑷. 有機磷農業廢水;有機氯農業廢水;
------大大提高上述廢水的可生化性,且可除磷,除硫化物
新型填料
【技術概述】
它由多元金屬合金融合催化劑並採用高溫微孔活化技術生產而成,屬新型投加式無板結微電解填料。作用於廢水,可高效去除COD、降低色度、提高可生化性,處理效果穩定持久,同時可避免運行過程中的填料鈍化、板結等現象。本填料是微電解反應持續作用的重要保證,為當前化工廢水的處理帶來了新的生機。
【鐵炭原電池反應】
陽極:Fe - 2e →Fe2+ E(Fe / Fe2+)=0.44V
陰極:2H﹢ + 2e →H2 E(H﹢/ H2)=0.00V
當有氧存在時,陰極反應如下:
O2 + 4H﹢ + 4e → 2H2O E (O2)=1.23V
O2 + 2H2O + 4e → 4OH﹣ E(O2/OH﹣)=0.41V 電鍍和金屬加工業廢水中鋅的主要來源是電鍍或酸洗的拖帶液。污染物經金屬漂洗過程又轉移到漂洗水中。酸洗工序包括將金屬(鋅或銅)先浸在強酸中以去除表面的氧化物,隨後再浸入含強鉻酸的光亮劑中進行增光處理。
該廢水中含有大量的鹽酸和鋅、銅等重金屬離子及有機光亮劑等,毒性較大,有些還含致癌、致畸、致突變的劇毒物質,對人類危害極大。因此,對電鍍廢水必須認真進行回收處理,做到消除或減少其對環境的污染。
電鍍混合廢水處理設備由調節池、加葯箱、還原池、中和反應池、pH調節池、絮凝池、斜管沉澱池、廂式壓濾機、清水池、氣浮反應,活性炭過濾器等組成。
電鍍廢水處理採用鐵屑內電解處理工藝,該技術主要是利用經過活化的工業廢鐵屑凈化廢水,當廢水與填料接觸時,發生電化學反應、化學反應和物理作用,包括催化、氧化、還原、置換、共沉、絮凝、吸附等綜合作用,將廢水中的各種金屬離子去除,使廢水得到凈化。 重金屬廢水主要來自礦山、冶煉、電解、電鍍、農葯、醫葯、油漆、顏料等企業排出的廢水。如果不對重金屬廢水處理,就會嚴重污染環境。廢水處理中重金屬的種類、含量及存在形態隨不同生產企業而異。除重金屬在廢水處理中顯得很重要。
由於重金屬不能分解破壞,而只能轉移它們的存在位置和轉變它們的物理和化學形態,達到除重金屬的目的。例如,廢水處理過程中,經化學沉澱處理後,廢水中的重金屬從溶解的離子形態轉變成難溶性化合物而沉澱下來,從水中轉移到污泥中;經離子交換處理後,廢水中的重金屬離子轉移到離子交換樹脂上,經再生後又從離子交換樹脂上轉移到再生廢液中。
因此,廢水處理除重金屬原則是:
除重金屬原則一:最根本的是改革生產工藝.不用或少用毒性大的重金屬;
除重金屬原則二:是採用合理的工藝流程、科學的管理和操作,減少重金屬用量和隨廢水流失量,盡量減少外排廢水量。重金屬廢水處理應當在產生地點就地處理,不同其他廢水混合,以免使處理復雜化。更不應當不經除重金屬處理直接排入城市下水道,以免擴大重金屬污染。
廢水處理除重金屬的方法,通常可分為兩類:
除重金屬方法一:是使廢水中呈溶解狀態的重金屬轉變成不溶的金屬化合物或元素,經沉澱和上浮從廢水中去除.可應用方法如中和沉澱法、硫化物沉澱法、上浮分離法、電解沉澱(或上浮)法、隔膜電解法等廢水處理法;
除重金屬方法二:是將廢水中的重金屬在不改變其化學形態的條件下進行濃縮和分離,可應用方法有反滲透法、電滲析法、蒸發法和離子交換法等。這些廢水處理方法應根據廢水水質、水量等情況單獨或組合使用。 陶瓷膜也稱GT膜,是以無機陶瓷原料經特殊工藝制備而成的非對稱膜,呈管狀或多通道狀。陶瓷膜管壁密布微孔,在壓力作用下,原料液在膜管內或膜外側流動,小分子物質(或液體)透過膜,大分子物質(或固體顆粒、液體液滴)被膜截留從而達到固液分離、濃縮和純化之目的。
在膜科學技術領域開發應用較早的是有機膜,這種膜容易制備、容易成型、性能良好、價格便宜,已成為應用最廣泛的微濾膜類型。但隨著膜分離技術及其應用的發展,對膜的使用條件提出了越來越高的要求,需要研製開發出極端條件膜固液分離系統,和有機膜相比,無機陶瓷膜具有耐高溫、化學穩定性好,能耐酸、耐鹼、耐有機溶劑、機械強度高,可反向沖洗、抗微生物能力強、可清洗性強、孔徑分布窄,滲透量大,膜通量高、分離性能好和使用壽命長等特點。
無機陶瓷膜在廢水處理中應用最大的障礙主要有二個方面,其一是製造過程復雜,成本高,價格昂貴;其二是膜通量問題,只有克服膜污染並提高膜的過濾通量,才能真正推廣應用到水處理的各個領域。
特點
⑴獨有的雙層膜結構:滌餌DEAR無機陶瓷膜系統在在膜過濾層表面,通過溶膠一凝膠法制備TiO2溶膠,採用浸漬提拉法在陶瓷膜上塗敷納米TiO2光催化材料,使陶瓷膜表面具有「自潔」功能,減緩有機在膜表面積累和堵塞,一方面降低膜污染,另一方面提高陶瓷膜管強度和膜過濾通量,提高膜通量穩定性;Al2O3—ZrO2復合膜結構:使膜管機械性能更加優良,由於材料本身的性能缺陷或制備過程中存在的一些實際問題,單一無機膜材料一般不能滿足實際需要,因此無機負載復合分離膜的研製得到迅速發展,滌餌DEAR無機陶瓷膜採用整體復合技術,通過溶膠凝膠法,制備Al2O3—ZrO2復合膜,由於含ZrO2材料與Al2O3、SiO2和TiO2等材料相比具有更好的機械強度、化學耐久性和抗鹼侵蝕等特性,滌餌DEAR®無機陶瓷膜具有更強的機械強度和熱穩定性,而且復合膜的孔徑分布窄,呈單峰。
⑵可實現在線反沖,膜通量穩定:由於復合陶瓷膜獨特結構和機械性能,能有效承受0.4mp以下的反沖壓力,可實現在線反沖,從而獲得穩定的膜通量,克服了無機膜系統在水處理應用中價格高、易污染、膜通量小、設備龐大等問題,使無機陶瓷膜系統在水處理中應用成為可能。滌餌DEAR無機陶瓷膜是專為污水處理設計的,其最大特點是膜通量大,其運行膜通量是有機膜10-100倍,是普通多孔陶瓷膜的50-10倍、機械強度高、耐污染、可實現在線反沖。
技術參數
膜層厚度:50—60μm,膜孔徑0.01-0.5μm;
氣孔率:44—46%;
過濾壓力:1.0 Mpa,反沖壓力:0.4 Mpa以下;
膜材質:雙層膜,外膜TiO2;內膜Al2O3—ZrO2復合膜
應用領域
中水回用;
工業廢水回用:
工廠化養殖原水解毒處理;
發電廠、化工廠等大型冷卻循環水旁濾系統;
油田采出水回用處理;
軋鋼乳化液廢液處理;
金屬表面清洗液再生處理。

C. 廢水處理中設計 反應池間的過水孔的大小怎麼算 假如提升泵是80M3 過水孔大小怎麼定 是按照什麼計算的

反應池間的過水孔的大小由通過的流量和兩池間允許的液面髙差確定內。可以應用孔口的流量公式容來計算:
1、按設計規范選定兩池間允許的液面髙差h;
2、根據總流量的大小,選擇合理的孔數,從而確定單個孔口的流量Q。
3、用孔口的流量公式算出單個孔口的過流面積 A = Q/[μ√(2gh)]
式中孔口的流量系數可取μ=0.61,g為重力加速度。
算出過流面積 A後,若是方孔,開平方就可得到孔口的邊長;若是圓孔口,用圓面積公式就可算出孔徑。

D. 急!用UASB法處理5000噸每日酒精廢水處理工藝論文,要有具體的設計計算!非常感謝

先根據污泥容積負荷確定反應時間計算出流速,再根據這些數據計算出UASB的工藝尺寸。一般出水還要有20%迴流。比如污泥負荷10kgCOD/m³*d,一天有3000kgCOD處理,就要20m³污泥處理15小時,再根據每日5000噸廢水計算出每小時的流速確定塔的底部面積,底部面積和總容積算出來高度就出來了。
下面有些資料你參考下
(1) 污泥參數
設計溫度T=25℃
容積負荷NV=8.5kgCOD/(m3.d) 污泥為顆粒狀
污泥產率0.1kgMLSS/kgCOD,
產氣率0.5m3/kgCOD
(2) 設計水量Q=2800m3/d=116.67m3/h=0.032 m3/s。
(3) 水質指標
表5 UASB反應器進出水水質指標
水 質 指 標 COD(㎎∕L) BOD(㎎∕L) SS(㎎∕L)
進 水 水 質 3735 2340 568
設計去除率 85% 90% /
設計出水水質 560 234 568

3.5.2 UASB反應器容積及主要工藝尺寸的確定[5]
(1) UASB反應器容積的確定
本設計採用容積負荷法確立其容積V V=QS0/NV
V—反應器的有效容積(m3)
S0—進水有機物濃度(kgCOD/L)
V=3400 3.735/8.5=1494m3
取有效容積系數為0.8,則實際體積為1868m3
(2) 主要構造尺寸的確定
UASB反應器採用圓形池子,布水均勻,處理效果好。
取水力負荷q1=0.6m3/(m2•d)
反應器表面積 A=Q/q1=141.67/0.6=236.12m2
反應器高度 H=V/A=1868/236.12=7.9m 取H=8m
採用4座相同的UASB反應器,則每個單池面積A1為:
A1=A/4=236.12/4=59.03m2
取D=9m
則實際橫截面積 A2=3.14D2/4=63.6 m2
實際表面水力負荷 q1=Q/4A2=141.67/5 63.6=0.56
q1在0.5—1.5m/h之間,符合設計要求。
3.5.3 UASB進水配水系統設計
(1) 設計原則
① 進水必須要反應器底部均勻分布,確保各單位面積進水量基本相等,防止短路和表面負荷不均;
② 應滿足污泥床水力攪拌需要,要同時考慮水力攪拌和產生的沼氣攪拌;
③ 易於觀察進水管的堵塞現象,如果發生堵塞易於清除。
本設計採用圓形布水器,每個UASB反應器設30個布水點。
(2) 設計參數
每個池子的流量
Q1=141.67/4=35.42m3/h
(3) 設計計算
查有關數據[6],對顆粒污泥來說,容積負荷大於4m3/(m2.h)時,每個進水口的負荷須大於2m2
則 布水孔個數n必須滿足 пD2/4/n>2 即n<пD2/8=3.14 9 9/8=32 取n=30個
則 每個進水口負荷 a=пD2/4/n=3.14 9 9/4/30=2.12m2
可設3個圓環,最裡面的圓環設5個孔口,中間設10個,最外圍設15個,其草圖見圖4
① 內圈5個孔口設計
服務面積: S1=5 2.12=10.6m2
摺合為服務圓的直徑為:

用此直徑用一個虛圓,在該圓內等分虛圓面積處設一實圓環,其上布5個孔口
則圓環的直徑計算如下:
3.14 d12/4=S1/2

② 中圈10個孔口設計
服務面積: S1=10 2.12=21.2m2
摺合為服務圓的直徑為:

則中間圓環的直徑計算如下:
3.14 (6.362-d22)/4=S2/2
則 d2=5.2m
③ 外圈15個孔口設計
服務面積: S3=15 2.12=31.8m2
摺合為服務圓的直徑為

則中間圓環的直徑計算如下:3.14 (92-d32)=S3/2
則 d3=7.8m
布水點距反應器池底120mm;孔口徑15cm

圖4 UASB布水系統示意圖
3.5.4 三相分離器的設計
(1) 設計說明 UASB的重要構造是指反應器內三相分離器的構造,三相分離器的設計直接影響氣、液、固三相在反應器內的分離效果和反應器的處理效果。對污泥床的正常運行和獲得良好的出水水質起十分重要的作用,根據已有的研究和工程經驗, 三相分離器應滿足以下幾點要求:
沉澱區的表面水力負荷<1.0m/h;
三相分離器集氣罩頂以上的覆蓋水深可採用0.5~1.0m;
沉澱區四壁傾斜角度應在45º~60º之間,使污泥不積聚,盡快落入反應區內;
沉澱區斜面高度約為0.5~1.0m;
進入沉澱區前,沉澱槽底縫隙的流速≤2m/h;
總沉澱水深應≥1.5m;
水力停留時間介於1.5~2h;
分離氣體的擋板與分離器壁重疊在20mm以上;
以上條件如能滿足,則可達到良好的分離效果。
(2) 設計計算
本設計採用無導流板的三相分
① 沉澱區的設計
沉澱器(集氣罩)斜壁傾角 θ=50°
沉澱區面積: A=3.14 D2/4=63.6m2
表面水力負荷q=Q/A=141.67/(4 63.6)=0.56m3/(m2.h)<1.0 m3/(m2.h) 符合要求
② 迴流縫設計
h2的取值范圍為0.5—1.0m, h1一般取0.5
取h1=0.5m h2=0.7m h3=2.4m
依據圖8中幾何關系,則 b1=h3/tanθ
b1—下三角集氣罩底水平寬度,
θ—下三角集氣罩斜面的水平夾角
h3—下三角集氣罩的垂直高度,m
b1=2.4/tan50=2.0m b2=b-2b1=9-2 2.0=5.0m
下三角集氣罩之間的污泥迴流縫中混合液的上升流速v1,可用下式計算:
V1=Q1/S1=4Q1/3.14b2
Q1—反應器中廢水流量(m3/s)
S1—下三角形集氣罩迴流縫面積(m2)
符合要求
上下三角形集氣罩之間迴流縫流速v2的計算: V2=Q1/S2
S2—上三角形集氣罩迴流縫面積(m2)
CE—上三角形集氣罩迴流縫的寬度,CE>0.2m 取CE=1.0m
CF—上三角形集氣罩底寬,取CF=6.0m
EH=CE sin50=1.0 sin50=0.766m
EQ=CF+2EH=6.0+2 1.0 sin50=7.53m
S2=3.14(CF+EQ).CE/2=3.14 (6.0+7.53) 1.0/2=21.24m2
v2=141.67/4/21.24=1.67m/h
v2<v1<2.0m/h , 符合要求
確定上下集氣罩相對位置及尺寸
BC=CE/cos50=1.0/cos50=1.556m
HG=(CF-b2)/2=0.5m
EG=EH+HG=1.266m
AE=EG/sin40=1.266/sin40=1.97m
BE=CE tan50=1.19m
AB=AE-BE=0.78m
DI=CD sin50=AB sin50=0.778 sin50=0.596m
h4=AD+DI=BC+DI=2.15m
h5=1.0m
氣液分離設計
由圖5可知,欲達到氣液分離的目的,上、下兩組三角形集氣罩的斜邊必須重疊,重疊的水平距離(AB的水平投影)越大,氣體分離效果越好,去除氣泡的直徑越小,對沉澱區固液分離效果的影響越小,所以,重疊量的大小是決定氣液分離效果好壞的關鍵。
由反應區上升的水流從下三角形集氣罩迴流縫過渡到上三角形集氣罩迴流縫再進入沉澱區,其水流狀態比較復雜。當混合液上升到A點後將沿著AB方向斜面流動,並設流速為va,同時假定A點的氣泡以速度Vb垂直上升,所以氣泡的運動軌跡將沿著va和vb合成速度的方向運動,根據速度合成的平行四邊形法則,則有:

要使氣泡分離後進入沉澱區的必要條件是:

在消化溫度為25℃,沼氣密度 =1.12g/L;水的密度 =997.0449kg/m3;
水的運動粘滯系數v=0.0089×10-4m2/s;取氣泡直徑d=0.01cm
根據斯托克斯(Stokes)公式可得氣體上升速度vb為

vb—氣泡上升速度(cm/s)
g—重力加速度(cm/s2)
β—碰撞系數,取0.95
μ—廢水的動力粘度系數,g/(cm.s) μ=vβ

水流速度 ,
校核:

, 故設計滿足要求。

圖5 三相分離器設計計算草圖
3.5.5 排泥系統設計
每日產泥量為
=3735×0.85×0.1×3400×10-3=1079㎏MLSS/d
則 每個UASB每日產泥量為
W=1097/4=269.75㎏MLSS/d
可用200mm的排泥管,每天排泥一次。
3.5.6 產氣量計算
每日產氣量 G=3726×0.85×0.5×3400×10-3 =5397 m3/d=224.9 m3/h
儲氣櫃容積一般按照日產氣量的25%~40%設計,大型的消化系統取高值,小型的取低值,本設計取38%。儲氣櫃的壓力一般為2~3KPa,不宜太大。
3.5.7 加熱系統
設進水溫度為15°C,反應器的設計溫度為25°C。那麼所需要的熱量:
QH= dF. γF.( tr-t) . qv /η
QH-加熱廢水需要的熱量,KJ/h;
dF-廢水的相對密度,按1計算;
γF-廢水的比熱容,kJ/(kg.K);
qv-廢水的流量,m3/h
tr-反應器內的溫度,°C
t-廢水加熱前的溫度,°C
η-熱效率,可取為0.85
所以 QH=4.2 1 (25-15) 141.67/0.85=7000KJ/h
每天沼氣的產量為5397 m3,其主要成分是甲烷,沼氣的平均熱值為22.7 KJ/L
每小時的甲烷總熱量為:(5397/24) 22.7 103=5.1 106 KJ/h,因此足夠加熱廢水所需要的熱量。
3.5.8 加鹼系統
在厭氧生物處理中,產甲烷菌最佳節pH值是6.8~7.2,由於厭氧過程的復雜性,很難准確測定和控制反應器內真實的pH值,這就要和靠鹼度來維持和緩沖,一般鹼度要2000~5000mgCaCO3/L時,就會導致其pH值下降,所以,反應器內鹼度須保持在1000mgCaCO3/L以上,因為為保證厭氧反應器內pH值在適當的范圍內,必須向反應器中直接加入致鹼或致酸物質。間接調節pH值。主要致鹼葯品有:NaCO3、NaHCO 3、NaOH以及Ga(OH)2[6]。
在UASB反應器中安裝pH指示儀,並在加鹼管路上設有計量裝置,將計量裝置和pH指示儀用信號線連接起來,根據UASB反應器中pH值的大小來調整加鹼量,當UASB反應器中pH值過低時,打開加鹼管路上的開關,往UASB反應器中加鹼,使pH值下降;反之,當UASB反應器中pH值過高時,關閉加鹼管路上的開關,停止加鹼,使pH值上升。
3.5.9 活性污泥的培養與馴化 對於一個新建的UASB反應器來說,啟動過程主要是用未馴化的絮狀污泥(如污水處理廠的消化污泥)對其進行接種,並經過一定時間的啟動調試運行,使反應器達到設計負荷並實現有機物的去除效果,通常這一過程會伴隨著污泥顆粒化的實現,因此也稱為污泥的顆粒化。由於厭氧生物,特別是甲烷菌增殖很慢,厭氧反應器的啟動需要很長的時間。但是,一旦啟動完成,在停止運行後的再次啟動可以迅速完成。當沒有現成的厭氧污泥或顆粒污泥時,採用最多的是城市污水處理廠的消化污泥。除了消化污泥之外,可用作接種的物料很多,例如牛糞和各類糞肥、下水道污泥等。一些污水溝的污泥和沉澱物或微生物的河泥也可以被用於接種,甚至好氧活性污泥也可以作為接種污泥,並同樣能培養出顆粒污泥。污泥的接種濃度以6~8kgVSS/m3(按反應器總有效容積計算)為宜,至少不低於5 kgVSS/m3,接種污泥的填充量應不超過反應器容積的60%。從負荷角度考慮UASB的初次啟動和顆粒化過程,可分為三個階段:
階段1:即啟動的初始階段,這一階段是低負荷的階段(<2Kg COD/(m3•d))。
階段2:即當反應器負荷上升至2~5Kg COD/(m3•d)的啟動階段。在這階段污泥的洗出量增大,其中大多為細小的絮狀污泥。實際上,這一階段在反應器里對較重的污泥顆粒和分散的、絮狀的污泥進行選擇。使這一階段的末期留下的污泥中開始產生顆粒狀污泥或保留沉澱性能良好的污泥。所以在5.0 Kg COD/(m3•d)左右是反應器中以顆粒污泥或絮狀污泥為主的一個重要的分界。
階段3:這一階段是反應器負荷超過5.0 Kg COD/(m3•d)。在此時,絮狀污泥變得迅速減少,而顆粒污泥加速形成直到反應器內不再有絮狀污泥存在。
當反應器負荷大於5.0 Kg COD/(m3•d),由於顆粒污泥的不斷形成,反應器的大部分被顆粒污泥充滿時其最大負荷可以超過20 Kg COD/(m3•d)。當反應器運行在小於5.0 Kg COD/(m3•d),系統中雖然可能形成顆粒污泥,但是,反應器的污泥性質是由佔主導地位的絮狀污泥所確定。

E. 求助:污水處理中污泥消化部分設計計算

我這里有個好氧消化的實例你參考一下:
條件:進水BOD5(mg/L)200 出水BOD5(mg/L)20 生物膜專法的產泥濃度屬(g/L) 10~20 MLVSS去除率(%) 45~50

2.2 池體設計
2.2.1 池形的選擇
消化池採用穿孔管曝氣,為便於管道的安裝將池子設計成矩形,長、寬比為1∶1。由於採用地埋式,故設計超高取0.4m。
2.2.2 池容積的確定
池容積根據污泥產生量W(kg/d)和達到設計氧化率所需的停留時間T(d)來確定。
①污泥產生量W
如不考慮BOD5在水解池中的變化則設計時可採用曝氣池污泥產量公式W=YQSr-KVXa來估算污泥量。為估算方便將其簡化為:

F. 如何設計污水處理方案

一、設計的認識
1、關於設計的價值
在很多人看來,水處理工程比較容易,大部分項目看看就大概知道怎麼回事了,稍微多花點心思還可以弄出來一些「創新」。這么多年下來,各種專有技術的名詞層出不窮,而其實際的內容往往大同小異,各種各樣的環保公司也前仆後繼。在這種模仿和復制的過程中,佼佼者在慢慢積累經驗和教訓,也有很多人在其中跌倒而茫然不知方向。行業有句話是「好的項目經理都是拿錢砸出來的」,同時要明白的是,在不尊重客觀規律的情況下,拿錢也砸不出好的項目經理。對於一個項目,工程的設計是項目控制的主線,往往起著至關重要的作用,而在復雜項目中,設計的好壞基本決定著項目的成敗。
設計向來不是簡單的參考和細化的過程,而是一個很活潑的東西。每個項目都有著不同的外部條件,從水質水量的分析到區域的差異性,還有用戶的使用習慣與投入產出預期。這些都需要進行充分的分析與溝通,並通過系統的專業化手段來進行協調,讓工程經濟高效地建設完成並達到預定的工藝目的。
在某種程度上設計是一個創作行為,具有其核心的價值。有價值的設計應該具備以下特點:
1)很好地理解了工程的工藝目的,充分保證了工程本身的功能。
2)考慮了不同的用戶習慣及外部環境的建築美學等,工程各方面達到一個平衡的狀態。
3)工程設計與工程建設配合密切,節約了項目組織成本。
2、設計與畫圖的區別
設計和畫圖有著本質的區別。
一般而言,設計指的是對一個完整的系統負責,包括了項目的基礎設計條件的確認、設計過程中各種要素的權衡和選擇,還包括了圖紙設計和配合項目實施等。在實際設計的工作中,為了保證設計的正確性和合理性,前期需要花費大量的精力用於項目基本資料的收集和確認,比如現場考察及與業主溝通確認等,在設計過程中要進行各種方案的討論與比選,還有各種因為外部條件發生變化產生的反復,有些項目還需要開展現場試驗等工作。以上工作都需基於扎實的專業基礎,結合項目實際情況進行綜合性的判斷,在條件不充分時還需要進行適當的預判,綜合素質要求高。
畫圖是設計的一部分,是設計人員應該具備的基本功。在具體的畫圖的工作中,工藝路線及總體方案已經確定,主要是總圖及各單體的細化設計工作,細致性和重復性的勞動較多。畫圖首先應充分理解設計意圖,才能在細化設計中少走彎路,高質量、快速地完成畫圖任務。
3、設計需要熟悉和掌握的基本知識
設計需要有良好的各方面的專業知識和專業技能的基礎,主要包括以下方面:
1)廢水處理基本理論
工藝設計首先需要掌握相關基本理論,包括了廢水的組分與特性、污染物的去除機理,還需要具備基本的水力計算基礎知識。
工程設計最終是為工藝目的服務的,只有基於基本理論出發,設計才是有根的設計。
2)國家標准、規范與手冊
國家標准和規范為了規范工程建設而頒布的,具有強制性,在設計中需遵守。
設計手冊是為了方便開展設計工作而編制的,手冊較為全面地涵蓋了設計中的各個方法,是重要的參考資料。設計人員要熟悉並合理地加以利用。
3)常規單元的設計
設計都是針對具體的項目及組成項目的各個工藝單元而言,需要對工藝單元的設計要素有著充分的了解,才能開展工藝設計工作。
4)工程制圖基礎
工程設計是通過圖紙語言來闡述的,了解基本的投影理論、國家基本的制圖規定、圖紙的構成和深度要求等,可以讓圖紙設計有一個規范的開始。
AutoCAD軟體是通用的繪圖軟體,需要掌握基本的繪圖技巧。
5)設備、儀表與管道等知識
設備、儀表與管道等都是工程必不可少的組成部分,需要掌握相關知識,熟悉其規格參數及使用條件才能進行合理的選型和設計,使工程建設符合設計需求。
6)輔助專業常規知識
工藝設計人員還需要了解建築結構、電氣自控等輔助專業的常規知識,在專業配合方面才能順利對接。
4、不同階段能力的需求
對於設計人員而言,開始設計工作的切入點各有不同,但無論做那種工作,要想快速成長,需要時刻注意熟悉和掌握各種基本技能。
5、關於設計的周期
好的設計需要消耗大量的精力,在每個環節都進行仔細地考慮和權衡,並落實到文字和圖紙上。同時還涉及到各方的配合與協調,需要合理的反饋和決策時間,綜合下來形成了設計周期。
成熟的有豐富積累的設計團隊效率會高很多,設計周期也會短。要有更短的設計周期,除了執行能力外,考驗的是設計團隊的綜合判斷能力,特別是在條件不成熟時的預判能力,能快速在紛繁的需求中抓住項目的主線,協調解決關鍵問題,並指導項目的實施。

二、開始參與設計
對於新手而言,開始參與設計工作時,往往從一些簡單的事情做起:
1、項目現場實施配合
項目現場的實施配合是設計人員應該有的經歷,在協助解決現場施工和圖紙的相關問題的同時,可以幫助深入理解施工圖的構成,鍛煉將圖紙和實際工程聯系起來的能力。對於一個成熟的設計工程師而言,豐富現場經驗的積累是必不可少的。
2、簡單工藝單體的圖紙設計
從簡單的比較容易理解的圖紙繪制,開始接觸設計工作,比如集水池、泵房等。在總體工作量不大的情況下,能了解和熟悉設計的過程和要點,圖紙的繪制技巧,各專業之間的配合等等。在完成任務的同時,更多資料在易凈水網(www.ep360.cn。)對圖紙設計工作形成整體的認識。制圖要養成良好的習慣,需要做到以下幾點:
1)不抄圖:提高設計效率的有效途徑是參考外部圖紙,但同時設計中最容易犯的錯誤的是簡單的抄圖。其中最大的區別在於,參考圖紙是以基本理論和設計規范作為依據,在設計中借鑒其他的設計成果。抄圖僅僅是在其他人的成果上改圖,不考慮設計的適用性,容易導致設計與項目實際需求不符,出現設計錯誤。
2)充分理解單元工藝功能:單元的工藝功能是根本,在設計經常由於外部條件變化需要適當做一些調整。只有充分理解了工藝功能,調整時才有靈活性,而且不影響工藝目的。
3)謹慎面對設備安裝檢修需求:設備廠家一般會提供安裝圖紙,而設備廠家往往提供的是通用圖,或其他類似項目的圖紙,不一定完全匹配本項目的需求。設計中需要充分理解設備的安裝檢修條件,結合項目的實際外部條件和需求再進行針對性的設計考慮,才能保證設計的合理性。
3、方案製作的參與
在工藝路線及設計參數都比較明確的情況下,以規范和手冊為基本依據,進行設計計算的校核、設備選型等工作,配合完善方案。簡單的文字工作比較容易參與,同時可以熟悉基本的設計計算、設備選型等技能。
設計經驗的成長是一個循序漸進的過程,要想在設計能力的台階上走得更高,尤其需要注意基本能力的積累。

三、設計經驗的成長
1、良好的心態
做好長期的打算。廢水處理工程涉及范圍廣,知識面要求全,項目建設周期一般較長,成熟的設計師都需要有大量的項目經驗,並經過完整項目的歷練,一般至少需要3~5年以上時間。而且在工作中,大量的時間實際上是處理非常瑣碎的事情,包括各種反復,但這些工作很多時候都是必要的,任何忽略可能帶來一些不好的後果。設計工作需要有良好的心態,一方面瑣碎的工作可以熟能生巧,另一方面,過程當中的各種錯誤和反復實際上也是設計能力提升的過程。
2、尋根問底的習慣
設計工作中盡量弄清楚各種設計考慮的原始出發點,工藝參數一般都能還原到理論依據,附屬的設計一般和經濟性、安裝檢修條件及運行方便性有關。有了尋根問底的習慣,設計才能建立在一個堅實的基礎上。
3、工作的技巧
任務開始前,要充分理解任務的核心需求,首先滿足完成基本任務,再根據自己的特點進行適當發揮。工作首先應服從總體的安排,才能提高整體效率,設計當中的理解、溝通和協調技巧非常重要,是設計能力的重要組成。
4、設計能力的沉澱
平時多積累問題,通過設計項目的參與、現場的考察等積累相關經驗,多主動參與討論,將各種經驗轉化成自己的設計能力的沉澱。有了設計能力的沉澱,才能與項目結合,形成自己對於設計的獨立見解,才能真正具備獨立承擔項目的能力。
你也可以到易凈水網資料庫上看看,上面有很多污水處理設計方案案例可以借鑒。

G. 如何進行污水處理廠的高程計算及平面、高程布置

污水處理廠
平面布置及高程布置
一、污水處理廠的平面布置
污水處理廠的平面布置應包括:
處理構築物的布置污水處理廠的主體是各種處理構築物。作平面布置時,要根據各構築物(及其附屬輔助建築物,如泵房、鼓風機房等)的功能要求和流程的水力要求,結合廠址地形、地質條件,確定它們在平面圖上的位置。在這一工作中,應使:聯系各構築物的管、渠簡單而便捷,避免遷回曲折,運行時工人的巡迴路線簡短和方便;在作高程布置時土方量能基本平衡;並使構築物避開劣質土壤。布置應盡量緊湊,縮短管線,以節約用地,但也必須有一定間距,這一間距主要考慮管、渠敷設的要求,施工時地基的相互影響,以及遠期發展的可能性。構築物之間如需布置管道時,其間距一般可取5-8m,某些有特殊要求的構築物(如消化池、消化氣罐等)的間距則按有關規定確定。
廠內管線的布置污水處理廠中有各種管線,最主要的是聯系各處理構築物的污水、污泥管、渠。管、渠的布置應使各處理構築物或各處理單元能獨立運行,當某一處理構築物或某處理單元因故停止運行時,也不致影響其他構築物的正常運行,若構築物分期施工,則管、渠在布置上也應滿足分期施工的要求;必須敷設接連人廠污水管和出流尾渠的超越管,在不得已情況下可通過此超越管將污水直接排人水體,但有毒廢水不得任意排放。廠內尚有給水管、輸電線、空氣管、消化氣管和蒸氣管等。所有管線的安排,既要有一定的施工位置,又要緊湊,並應盡可能平行布置和不穿越空地,以節約用地。這些管線都要易於檢查和維修。
污水處理廠內應有完善的雨水管道系統,以免積水而影響處理廠的運行。
輔助建築物的布置輔助建築物包括泵房、鼓風機房、辦公室、集中控制室、化驗室、變電所、機修、倉庫、食堂等。它們是污水處理廠設計不可缺少的組成部分。其建築面積大小應按具體情況與條件而定。有可能時,可設立試驗車間,以不斷研究與改進污水處理方法。輔助建築物的位置應根據方便、安全等原則確定。如鼓風機房應設於曝氣池附近以節省管道與動力;變電所宜設於耗電量大的構築物附近等。化驗室應遠離機器間和污泥干化場,以保證良好的工作條件。辦公室、化驗室等均應與處理構築物保持適當距離,並應位於處理構築物的夏季主風向的上風向處。操作工人的值班室應盡量布置在使工人能夠便於觀察各處理構築物運行情況的位置。
此外,處理廠內的道路應合理布置以方便運輸;並應大力植樹綠化以改善衛生條件。
應當指出:在工藝設計計算時,就應考慮它和平面布置的關系,而在進行平面布置時,也可根據情況調整構築物的數目,修改工藝設計。
總平面布置圖可根據污水廠的規模採用1∶200~1∶1000比例尺的地形圖繪制,常用的比例尺為l:500。
圖1為某甲市污水處理廠總平面布置圖、主要處理構築物有:機械除污物格柵井、曝氣沉砂池、初次沉澱池與二次沉澱池(均設斜板)、鼓風式深水中層曝氣池、消化池等及若干輔助建築物。
該廠平面布置特點為:流線清楚,布置緊湊。鼓風機房和迴流污泥泵房位於暖氣池和二次沉澱池一側,節約了管道與動力費用,便於操作管理。污泥消化系統構築物靠近四氯化碳製造廠(即在處理廠西側),使消化氣、蒸氣輸送管較短。節約了基建投資。辦公室。生活住房與處理構築物、鼓風機房、泵房、消化池等保持一定距離,衛生條件與工作條件均較好。在管線布置上,盡量一管多用,如超越管、處理水出廠管都借道雨水管泄入附近水體,而剩餘污泥、污泥水、各構築物放空管等,又都與廠內污水管合並流人泵房集水井。但因受用地限制(廠東西兩惻均為河浜),遠期發展餘地尚感不足。
圖2為乙市污水廠的平面布置圖,泵站設於廠外。主要構築物有:格柵、曝氣沉砂池、初次沉澱池、曝氣池、二次沉澱池及迴流污泥泵房等一些輔助建築物。濕污泥池設於廠外便於農民運輸之處。
該廠平面布置的特點是:布置整齊、緊湊。兩期工程各自成系統,對設計與運行相互干擾較少。辦公室等建築物均位於常年主風向的上風向,且與處理構築物有一定距離,衛生、工作條件較好。在污水流人初次沉澱池、曝氣池與二次沉澱池時,先後經三次計量,為分析構築物的運行情況創造了條件。利用構築物本身的管渠設立超越管線,既節省了管道,運行又較靈活。
第二期工程預留地設在一期工程與廠前區之間,若二期工程改用別的工藝流程或另選池型時,在平面布置上將受一定限制。泵站與濕污泥池均設於廠外,管理不甚方便。此外,三次計量增加了水頭損失。
二、污水處理廠的高程布置
污水處理廠高程布置的任務是:確定各處理構築物和泵房等的標高,選定各連接管渠的尺寸並決定其標高。計算決定各部分的水面標高,以使污水能按處理流程在處理構築物之間通暢地流動,保證污水處理廠的正常運行。
污水處理廠的水流常依靠重力流動,以減少運行費用。為此,必須精確計算其水頭損失(初步設計或擴初設計時,精度要求可較低)。水頭損失包括:
(1)水流流過各處理構築物的水頭損失,包括從進池到出池的所有水頭損失在內;在作初步設計時可按表1估算。
表1 處理構築物的水頭水損失
構築物名稱 水頭損失(cm) 構築物名稱 水頭損失(cm)
格柵 10~25 生物濾池(工作高度為2m時):
沉砂池 10~25
沉澱池: 平流
豎流
輻流 20~40 1)裝有旋轉式布水器 270~280
40~50 2)裝有固定噴灑布水器 450~475
50~60 混合池或接觸池 10~30
雙層沉澱池 10~20 污泥干化場 200~350
曝氣池:污水潛流入池 25~50
污水跌水入池 50~150

(2)水流流過連接前後兩構築物的管道(包括配水設備)的水頭損失,包括沿程與局部水頭損失。
(3)水流流過量水設備的水頭損失。
水力計算時,應選擇一條距離最長、水頭損失最大的流程進行計算,並應適當留有餘地;以使實際運行時能有一定的靈活性。
計算水頭損失時,一般應以近期最大流量(或泵的最大出水量)作為構築物和管渠的設計流量,計算涉及遠期流量的管渠和設備時,應以遠期最大流量為設計流量,並酌加擴建時的備用水頭。
設置終點泵站的污水處理廠,水力計算常以接受處理後污水水體的最高水位作為起點,逆污水處理流程向上倒推計算,以使處理後污水在洪水季節也能自流排出,而水泵需要的揚程則較小,運行費用也較低。但同時應考慮到構築物的挖土深度不宜過大,以免土建投資過大和增加施工上的困難。還應考慮到因維修等原因需將池水放空而在高程上提出的要求。
在作高程布置時還應注意污水流程與污泥流程的配合,盡量減少需抽升的污泥量。污泥干化場、污泥濃縮池(濕污泥池),消化池等構築物高程的決定,應注意它們的污泥水能自動排人污水人流干管或其他構築物的可能性。
在繪制總平面圖的同時,應繪制污水與污泥的縱斷面圖或工藝流程圖。繪制縱斷面圖時採用的比例尺:橫向與總平面圖同,縱向為1∶50-1∶100。
現以圖2所示的乙市污水處理廠為例說明高程計算過程。該廠初次沉澱池和二次沉澱池均為方形,周邊均勻出水,曝氣池為四座方形池,表面機械曝氣器充氧,完全混合型,也可按推流式吸附再生法運行。污水在入初沉池、曝氣池和二沉池之前;分別設立了薄壁計量堰(、為矩形堰,堰寬0.7m,為梯形堰,底寬0.5m)。該廠設計流量如下:
近期 =174L/s 遠期 =348L/s
=300L/s =600L/s
迴流污泥量以污水量的100%計算。
各構築物間連接管渠的水力計算見表2。
處理後的污水排人農田灌溉渠道以供農田灌溉,農田不需水時排人某江。由於某江水位遠低於渠道水位,故構築物高程受灌溉渠水位控制,計算時,以灌溉渠水位作為起點,逆流程向上推算各水面標高。考慮到二次沉澱池挖土太深時不利於施工,故排水總管的管底標高與灌溉渠中的設計水位平接(跌水0.8m)。
污水處理廠的設計地面高程為50.00m。
高程計算中,溝管的沿程水頭損失按表2所定的坡度計算,局部水頭損失按流速水頭的倍數計算。堰上水頭按有關堰流公式計算,沉澱池、曝氣池集水槽系底,且為均勻集水,自由跌水出流,故按下列公式計算:
B= (1)
=1.25B (2)
式中Q--集水槽設計流量,為確保安全,常對設計流量再乘以1.2~1.5的安全系數();
B--集水槽寬(m);
h0--集水槽起端水深(m)。
高程計算:
高程(m)
灌溉渠道(點8)水位 49.25
排水總管(點7)水位
跌水0.8m 50.05
窨井6後水位
沿程損失=0.001×390 50.44
窨井6前水位
管頂平接,兩端水位差0.05m 50.49
二次沉澱池出水井水位
沿程損失=0.0035×100=0.35m 50.84
二次沉澱池出水總渠起端水位
沿程損失=0.35-0.25=0.10m 50.94
二次沉澱池中水位
集水槽起端水深 =0.38m
自由跌落=0.10m
堰上水頭(計算或查表)=0.02m
合計 0.50m 51.44
堰F3後水位
沿程損失=0.002810=0.03m
局部損失==0.28m
合計 0.31m 51.75
堰F3前水位
堰上水頭=0.26m
自由跌落=0.15m
合計 0.41m 52.16
曝氣池出水總渠起端水位
沿程損失=0.64-0.42=0.22m 52.38
曝氣池中水位
集水槽中水位=0.26m 52.64
堰F2前水位
堰上水頭=0.38m
自由跌落=0.20m
合計 0.58m 53.22
點3水位
沿程損失=0.62-0.54=0.08m
局部損失=5.85×=0.14m
合計 0.22m 53.44
初次沉澱池出水井(點2)水位
沿程損失=0.0024×27=0.07m
局部損失=2.46×=0.15m
合計 0.22m 53.66
初次沉澱池中水位
出水總渠沿程損失=0.35-0.25=0.10m
集水槽起端水深 =0.44m
自由跌落 =0.10m
堰上水頭=0.03m
合計 0.67m 54.33
堰F1後水位
沿程損失=0.0028×11=0.04m
局部損失==0.28m
合計 0.32m 54.65
堰F1前水位
堰上水頭=0.30m
自由跌落=0.15m
合計 0.45m 55.10
沉砂池起端水位
沿程損失=0.48-0.46=0.02m
沉砂池出口局部損失=0.05m
沉砂池中水頭損失=0.20m
合計 0.27m 55.37
格柵前(A點)水位
過柵水頭損失0.15m 55.52m
總水頭損失 6.27m
上述計算中,沉澱池集水槽中的水頭損失由堰上水頭、自由跌落和槽起端水深三部分組成,見圖3。計算結果表明:終點泵站應將污水提升至標高55.52m處才能滿足流程的水力要求。根據計算結果繪制了流程圖,見圖4。

圖3 集水槽水頭損失計算示意
-堰上水頭;-自由跌落;-集水槽起端水深;-總渠起端水深

圖4 污水處理流程
污泥流程的高程計算以圖1所示的甲市污水處理廠為例。該廠污泥處理流程為:
二次沉澱池--污水泵站--初次沉澱池--污泥投配(預熱)池--污泥泵站--消化池--貯泥池--運泥船外運
高程計算順序與污水流程同,即從控制性標高點開始計算。
甲市處理廠設計地面標高為4.2m,初次沉澱池水面標高為6.7m。二次沉澱池剩餘活性污泥系利用廠內下水道排至污水泵站,計算從略。從初次沉澱池排出污泥的含水率為97%,污泥消化後經靜澄、撤去上清液,其含水率為96%。初次沉澱池至污泥投配池的管道用鑄鐵管,長150m,管徑300mm。設管內流速為15m/s,按式(3)

式中—輸泥管道沿程壓力損失(m)
L—輸泥管道長度(m)
D—輸泥管管徑(m)
v—污泥流速(m/s)
—海森-威廉(Haren-Williams)系數,其值決定於污泥濃度,見下表:
污泥濃度(%) 值
0.0 100
2.0 81
4.0 61
6.0 45
8.5 32
10.1 25
可求得其水頭損失為:
m
自由水頭1.5m,則管道中心標高為:
6.7-(1.20+1.50)=4.0m
流入污泥投配池的管底標高為:
4.0-0.15=3.85m

圖5 投配池及標高
污泥投配池的標高可據此確定,投配池及標高見圖5。
消化池至貯泥池的各點標高受河水位的影響(即受河中運泥船高程的影響),故以此向上推算。設要求貯泥池排泥管管中心標高至少應為3.0m才能向運泥船排盡池中污泥,貯泥池有效深2.0m。已知消化池至貯泥池的鑄鐵管管徑為200mm,管長70m,並設管內流速為1.5m/s,則根據式(1)可求得水頭損失為1.20m,自由水頭設為1.5m。又,消化池採用間歇式排泥運行方式,根據排泥量計算,一次排泥後池內泥面下降0.5m。則排泥結束時消化池內泥面標高至少應為:
3.0+2.0+0.1+1.2+1.5=7.8m
開始排泥時的泥面標高:
7.8+0.5=8.3m
式中0.1為管道半徑,即貯泥池中泥面與入流管管底平。
應當注意的是:當採用在消化池內撇去上清液的運行方式時,此標高是撇去上清液後的泥面標高,而不是消化池正常運行時的池內泥面標高。
當需排除消化池中下面的污泥時,需用排泥泵排除。
據此繪制的污泥高程圖見圖8-5。

H. 污水處理設計中ABR池怎麼設計計算,要詳細的步驟和參數的選取,能找實例的加分,最好是近幾年的設計,謝謝

ABR反應器設計計算
設計條件:廢水量1 200 m3/d,PH=4.5,水溫15℃,CODcr=8000 mg/L,水力停留時間48h。
1、反應器體積計算
按有機負荷計算
按停留時間計算
式中: ——反應器有效容積,m3;
——廢水流量,m3/d;
——進水有機物濃度,g COD/L 或g BOD5/L;
——容積負荷,kg COD/m3.d;
——水力停留時間,d。
已知進水濃度COD8000mg/L,COD去除率取80%,參考國內澱粉設計容積負荷[1]P206: kgCOD/m3.d,取 kg COD/m3.d。則
按有機負荷計算反應器有效容積

按水力停留時間計算反應器有效容積
取反應器有效容積2400m3校核容積負荷
kgCOD/m3.d 符合要求[1]P206
取反應器實際容積2400 m3。

2、反應器高度
採用矩形池體。一般經濟的反應器高度(深度)為4~6m,本設計選擇7.0m。超高0.5m。

3、反應器上下流室設計
進水系統兼有配水和水力攪拌功能,應滿足設計原則:
①確保各單位面積的進水量基本相同,防止短路現象發生;
②盡可能滿足水力攪拌需要,保證進水有機物與污泥迅速混合;
③很容易觀察到進水管的堵塞;
④當堵塞被發現後,很容易被清除。
反應器上向反應隔室設計
慮施工維修方便,取下向流室水平寬度為940mm,選擇上流和下流室的水平寬度比為4:1。
校核上向流速
基本滿足設計要求
[5] 要求上向流速度0.55mm/s。(1.98m/h)
[6]P94要求進水COD大於3000mg/L時,上向流速度宜控制在0.1~0.5m/h;進水COD小於3000mg/L時,上向流速度宜控制在0.6~3.0m/h。
[1]P202UASB要求上向流速度宜控制在0.1~0.9m/h。
下向流速

4、配水系統設計
[5]選擇折流口沖擊流速1.10mm/s,以上求知反應器縱向寬度為 ,則折流口寬度

選擇 ,校核折流口沖擊流速
> 1.10mm/s [5]
折流口設一450斜板,使得平穩下流的水流速在斜板斷面驟然流速加大,對低部的污泥床形成沖擊,使其浮動達到使水流均勻通過污泥層的目的[5]。

5、反應器各隔室落差設計
[1]P208重力流布水,如果進水水位差僅比反應器的水位稍高(水位差小於100mm)將經常發生堵塞,因為進水的水頭不足以消除阻塞,若水位差大於300mm則很少發生這種堵塞。設計選擇反應器各隔室水力落差250mm。

6、反應器有效容積核算

選擇 則設計的反應器結構容積大於按容積負荷計算反應器實際所需容積2400 m3,滿足處理負荷要求。
7、氣體收集裝置
[2]P203沼氣的產氣量一般按0.4~0.5 Nm3/kg(COD)估算。
沼氣產量
[7]P157選用氣流速度5m/s,則沼氣單池總管管徑

選擇管子規格DN80。
兩池總管匯集
選擇DN125,即進入阻火器管徑。

8、水封高度
沼氣輸送管應注意冷凝水積累及其排除,水封中設置一個排除冷凝水的出口,以保持水封罐中水位一定。

9、排泥設備
一般污泥床的底層將形成濃污泥,而在上層是稀的絮狀污泥。剩餘污泥應該從污泥床的上部排出。在反應器底部的「濃」污泥可能由於積累顆粒和小沙礫活性變低的情況下,建議偶爾從反應器底部排泥,避免或減少在反應內積累的沙礫。設計原則:
①建議清水區高度0.5~1.5m;
②可根據污泥面高度確定排泥時間,一般周排泥1~2次;
③剩餘污泥排泥點以設在污泥區中上部為宜;
④矩形池應沿池縱向多點排泥;
⑤應考慮下部排泥的可能性,避免或減少在反應內積累的沙礫;
⑥對一管多孔排泥管可兼作放空管或出水迴流水力攪拌污泥床的布水管。
⑦排泥管一般不小於150mm。
排泥量計算:
產泥系數:r=0.15kg干泥/(kgCOD.d),見[1]P156
設計流量:Q=1200m3/d ,進水濃度S0=8000mg/L=8kg/m3,厭氧處理效率E=80%
Δx= r×Q×S0×E=1200×8×0.8×0.15=1152kg
設污泥含水率為98%,因含水率P>95%,取污泥密度ρ=1000kg/m3,則污泥產量為:
每天排泥:
每周排泥:57.6×7=403.2 m3
每組反應器每天排泥:
一組每周排泥:28.8×7=201.6 m3
每個隔室每天排泥:
一隔每周排泥:4.8×7=33.6 m3
13、進水裝置設計
水泵選擇:水量 Q=1200 m3/d=50 m3/h
揚程 H=15h (凈揚程10m,管阻2m,自由水頭1m)
查進水泵規格:
型號 流量(m3/h) 揚程(m) 軸功率(kw) 效率(%) 轉速(rpm)
2 1/2PW 70 16.5 5.5 63 1850
迴流泵選擇:迴流100%(目的是提高進水的pH),水量為1200 m3/d
查迴流泵規格:
型號 流量(m3/h) 揚程(m) 軸功率(kw) 效率(%) 轉速(rpm)
2 1/2PW 72 8.5 2.72 61.5 1440

查泵管規格:公稱直徑2 1/2管,外徑75.5mm,普通壁厚3.75mm。
高位槽容積設計按5min泵的最大流量計算:
設計為

閱讀全文

與有機廢水處理的基本設計與計算相關的資料

熱點內容
飲水機排氣反水什麼原因 瀏覽:384
貝昂空氣凈化器怎麼拆 瀏覽:667
污水定額q 瀏覽:177
酒蒸餾出來苦 瀏覽:314
昭通鍋爐除垢劑 瀏覽:561
浙江小吃店油煙凈化器一般多少錢 瀏覽:361
敦化市哪裡有賣凈水器濾芯 瀏覽:64
污水處理濁度是多少達標 瀏覽:838
污水管道驗收條件是什麼 瀏覽:121
濾芯一年攔截多少病毒和垃圾 瀏覽:998
雨燕空氣濾芯在什麼地方 瀏覽:10
ro膜上邊卡的什麼 瀏覽:459
黑龍江轉動式污水池加蓋多少錢 瀏覽:860
反滲透膜水流動畫 瀏覽:23
反滲透35屬於什麼標准 瀏覽:133
倍世的EDI 瀏覽:374
饒平工業污水處理設備多少錢 瀏覽:609
供應室純水泵壓力表不上什麼原因 瀏覽:57
污水出水合格報告 瀏覽:554
如右圖P1p2為半透膜製成的結構 瀏覽:554