『壹』 請問水處理中厭氧池脫氮除磷的原理,比如污水中的氨氮是通過怎樣的反應去除的,反應的方程式是什麼
1、生物脫氮
反硝化細菌在缺氧條件下,還原硝酸鹽,釋放出分子態氮()或一氧化二氮(N2O)的過程。微生物和植物吸收利用硝酸鹽有兩種完全不同的用途,一是利用其中的氮作為氮源,稱為同化性硝酸還原作用:NO3-→NH4+→有機態氮。許多細菌、放線菌和黴菌能利用硝酸鹽做為氮素營養。另一用途是利用NO2-和NO3-為呼吸作用的最終電子受體,把硝酸還原成氮(N2),稱為反硝化作用或脫氮作用:NO3-→NO2-→N2↑。能進行反硝化作用的只有少數細菌,這個生理群稱為反硝化菌。大部分反硝化細菌是異養菌,例如脫氮小球菌、反硝化假單胞菌等,它們以有機物為氮源和能源,進行無氧呼吸,其生化過程可用下式表示:
C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量
CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量
少數反硝化細菌為自養菌,如脫氮硫桿菌,它們氧化硫或硝酸鹽獲得能量,同化二氧化碳,以硝酸鹽為呼吸作用的最終電子受體。可進行以下反應:
5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4
反硝化作用使硝酸鹽還原成氮氣,從而降低了土壤中氮素營養的含量,對農業生產不利。農業上常進行中耕鬆土,以防止反硝化作用。反硝化作用是氮素循環中不可缺少的環節,可使土壤中因淋溶而流入河流、海洋中的NO3-減少,消除因硝酸積累對生物的毒害作用。
2.生物除磷
1)生物除磷只要由一類統稱為聚磷菌的微生物完成,由於聚磷菌能在厭氧狀態下同化發酵產物,使得聚磷菌在生物除磷系統中具備了競爭的優勢。
2)在厭氧狀態下,兼性菌將溶解性有機物轉化成揮發性脂肪酸;聚磷菌把細胞內聚磷水解為正酸鹽,並從中獲得能量,吸收污水中的易講解的COD,同化成細胞內碳能源存貯物聚β-羥基丁酸或β-羥基戊酸等
3)在好氧或缺氧條件下,聚磷菌以分子氧或化合態氧作為電子受體,氧化代謝內貯物質PHB或PHV等,並產生能量,過量地從無水中攝取磷酸鹽,能量以高能物質ATP的形式存貯,其中一部分有轉化為聚磷,作為能量貯於胞內,通過剩餘污泥的排放實現高效生物除磷目的
『貳』 城市污水處理進水水質沒給總氮只給氨氮怎麼判斷是否採用生物脫氮
看出水水質的要求復吧,要求制比較高,由於城市污水主體為生活污水的多,那免不了要用生物脫氮的
只給氨氮還有個原因可能是:一般排除廢水的氮源主要集中在有機氮與氨氮,有機氮在管網中輸送到水廠的過程中一般就已經完成了氨化,所以至污水廠的氮源就集中在了氨氮的緣故
『叄』 如何處理高濃度氨氮污水
氨氮廢水處理技術有:高效ZU脫氮菌技術、氨氮循環吹脫回收工藝、厭氧氨氧化技術。
①高效ZU脫氮菌技術:
一般的生物脫氮技術採用A/O、SBR、生物活性炭等工藝對水質水量穩定的低濃度氨氮廢水具有良好的效果,但當廢水中COD、氨氮和TN含量高時,微生物代謝活性顯著降低。對於高COD、高TN的化工廢水,利用新型短程硝化技術結合傳統成熟的A/O工藝可迅速有效地降解目標污染物,獲得比傳統工藝更經濟、更有效的處理結果。高效生物脫氮技術的難點是高效脫氮菌的培養。其需經歷三個過程,首先是從自然生境中獲得高效脫氮菌菌源;其次是富集高效脫氮菌培養物,從中分離高效脫氮菌株;最後是復配高效脫氮菌劑,並以目標廢水為基質馴化高效脫氮菌群。近年來,我公司聯合浙江大學展開了大量研究,經過脫氮群落的結構分析、功能試驗和反復篩選,獲得了高效ZU脫氮菌,並在相關廢水處理工程(氨氮最高達1000mg/L)得到應用,取得了理想的效果,出水氨氮穩定達標(15mg/L以下)。
特點:1、環境友好,最終產物為N2,無二次污染。
2、成本低,不需要投加吸附劑或其他化學葯劑,尤為適合改造工程。
3、系統穩定,高效ZU脫氮菌具有很強的耐受性和適應性。
4、高效ZU脫氮菌生長增殖性好,一次投加,長期有效。
②厭氧氨氧化技術:
厭氧氨氧化是指在厭氧條件下,厭氧氨氧化菌直接以NH4+為電子供體,以NO2¯為電子受體,將NH4+、NO2¯轉變成N2的生物氧化過程。傳統生物法脫氮技術通過硝化/反硝化方式去除廢水中的氨氮,其對廢水氨氮濃度具有一定要求,同時氨氮的硝化消耗大量的氧氣,需求動力費用較高,生物脫氮過程需求一定的碳氮比,外加碳源增加了廢水處理設施的運行費用。厭氧氨氧化利用獨特的生物機體以亞硝酸鹽作為電子供體把氨氮轉化為N2,最大限度的實現了N的循環厭氧硝化,對於高氨氮低COD的污水由於硝酸鹽的部分氧化,大大節省了能源。
特點:1、依託浙江大學科研成果,國際領先的厭氧氨氧化技術。
2、無需外加碳源,節約運行成本。
3、只需將部分氨氧化成NO2¯,節約了供氧所需的動力消耗。
③氨氮循環吹脫回收工藝
高濃度氨氮廢水來源甚廣且排放量大。如化肥、焦化、石化、制葯、食品、垃圾填埋場等均產生大量高濃度氨氮廢水。大量氨氮廢水排入水體不僅引起水體富營養化、造成水體黑臭,而且將增加給水處理的難度和成本,甚至對人群及生物產生毒害作用。
我司結合多年的工程經驗,針對高濃度氨氮廢水處理難度大、處理能耗高、投資較大的情況,開發出一種新型氨吹脫資源化利用的新技術-兩級循環吹氨回收技術。新技術採用創新性工藝流程設計高效脫氨技術及設備、節能降耗技術和設備,適用於多種工況的氨氮廢水處理技術。不僅有很好的環境效益,而且具有一定的經濟效益。
本工藝採用雙塔循環吹脫,填料塔吸收吹脫出的氨氣,可根據工藝要求,回收氨水或者硫酸銨。處理後廢水可排放或進入後續生化系統。
技術特點:雙塔循環脫氨更徹底(相較單塔),去除率高;回收硫酸銨或者氨水,循環經濟利用,避免二次污染;工藝簡單,操作方便,運行穩定
僅供參考 歡迎採納 希望幫到你
『肆』 氨氮廢水處理中的脫氨技術
氨氮在水中存在以下平衡:NH4- +OH- à NH3+H2O運行中,含氨氮廢水流動在膜組內件的容殼程,酸吸收液流動在膜組件的管程。廢水中PH提高或者溫度上升時,上述平衡將會向右移動,銨根離子NH4-變成游離的氣態NH3。這時氣態NH3可以透過中空纖維表面的微孔從殼程中的廢水相進入管程的酸吸收液相,被酸液吸收立刻又變成離子態的NH4-。保持廢水的PH在10以上,並且溫度在35℃以上(50 ℃ 以下),這樣廢水相中的NH4就會源源不斷地變成NH3向吸收液相遷移。從而廢水側的氨氮濃度不斷下降;而酸吸收液相由於只有酸和NH4-,所以形成的是非常純凈的銨鹽,並且在不斷地循環後達到一定的濃度,可以被回收利用。想要了解更多有關脫氨膜技術請咨詢專業的環保公司
『伍』 aspen模擬廢水脫氨是加氫氧化鈉怎麼處理
反硝化跟降低氨抄氮有啥關系?你究竟是要降低氨氮呢還是要降低TN?反硝化是脫氮的,用於降低TN 氨氮600到120,效果還是可以的,可能你們以前效果更好吧 SV30 230?還是拿1000ml量筒做的SV30?如果這樣,那就是23% 鹼度是出水的還是進水的?這個只要。
『陸』 氨氮吸收塔 氨氮脫氮塔 是什麼原理 我們廠是制葯廠 就是車間的廢液要進行脫氮處理後再去廢水站處理
廢水中的氮常以合氮有機物、氨、硝酸鹽及亞硝酸鹽等形式存在。生物處理把大多數有機氮轉化為氨,然後可進一步轉化為硝酸鹽。目前採用的除氮工藝有生物硝化與反硝化、沸石選擇性交換吸附、空氣吹脫及折點氯化等四種。
廢水中的氮常以合氮有機物、氨、硝酸鹽及亞硝酸鹽等形式存在。生物處理把大多數有機氮轉化為氨,然後可進一步轉化為硝酸鹽。目前採用的除氮工藝有生物硝化與反硝化、沸石選擇性交換吸附、空氣吹脫及折點氯化等四種。
一、生物硝化與反硝化(生物陳氮法)
(一) 生物硝化
在好氧條件下,通過亞硝酸鹽菌和硝酸鹽菌的作用,將氨氮氧化成亞硝酸鹽氮和硝酸鹽氮的過程,稱為生物硝化作用。生物硝化的反應過程為:
由上式可知:(1)在硝化過程中,1g氨氮轉化為硝酸鹽氮時需氧4.57g;(2)硝化過程中釋放出H+,將消耗廢水中的鹼度,每氧化lg氨氮,將消耗鹼度(以CaCO3計) 7.lg。
影響硝化過程的主要因素有:(1)pH值 當pH值為8.0~8.4時(20℃),硝化作用速度最快。由於硝化過程中pH將下降,當廢水鹼度不足時,即需投加石灰,維持pH值在7.5以上;(2)溫度 溫度高時,硝化速度快。亞硝酸鹽菌的最適宜水溫為35℃,在15℃以下其活性急劇降低,故水溫以不低於15℃為宜;(3)污泥停留時間 硝化菌的增殖速度很小,其最大比生長速率為 =0.3~0.5d-1(溫度20℃,pH8.0~8.4)。為了維持池內一定量的硝化菌群,污泥停留時間 必須大於硝化菌的最小世代時間 。在實際運行中,一般應取 >2 ,或 >2 ;(4)溶解氧 氧是生物硝化作用中的電子受體,其濃度太低將不利於硝化反應的進行。一般,在活性污泥法曝氣池中進行硝化,溶解氧應保持在2~3mg/L以上;(5)BOD負荷 硝化菌是一類自養型菌,而BOD氧化菌是異養型菌。若BOD5負荷過高,會使生長速率較高的異養型菌迅速繁殖,從而佼白養型的硝化菌得不到優勢,結果降低了硝化速率。所以為要充分進行硝化,BOD5負荷應維持在0.3kg(BOD5)/kg(SS).d以下。
(二) 生物反硝化
在缺氧條件下,由於兼性脫氮菌(反硝化菌)的作用,將NO2--N和NO3--N還原成N2的過程,稱為反硝化。反硝化過程中的電子供體(氫供體)是各種各樣的有機底物(碳源)。以甲醇作碳源為例,其反應式為:
6NO3-十2CH3OH→6NO2-十2CO2十4H2O
6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-
由上可見,在生物反硝化過程中,不僅可使NO3--N、NO2--N被還原,而且還可位有機物氧化分解。
影響反硝化的主要因素:(1)溫度 溫度對反硝化的影響比對其它廢水生物處理過程要大些。一般,以維持20~40℃為宜。苦在氣溫過低的冬季,可採取增加污泥停留時間、降低負荷等措施,以保持良好的反硝化效果;(2)pH值 反硝化過程的pH值控制在7.0~8.0;(3)溶解氧 氧對反硝化脫氮有抑製作用。一般在反硝化反應器內溶解氧應控制在0.5mg/L以下(活性污泥法)或1mg/L以下(生物膜法);(4)有機碳源 當廢水中含足夠的有機碳源,BOD5/TN>(3~5)時,可無需外加碳源。當廢水所含的碳、氮比低於這個比值時,就需另外投加有機碳。外加有機碳多採用甲醇。考慮到甲醇對溶解氧的額外消耗,甲醇投量一般為NO3--N的3倍。此外,還可利用微生物死亡;自溶後釋放出來的那部分有機碳,即"內碳源",但這要求污泥停留時間長或負荷率低,使微生物處於生長曲線的靜止期或衰亡期,因此池容相應增大。
二、沸石選擇性交換吸附
沸石是一種硅鋁酸鹽,其化學組成可表示為(M2+,2M+)O.Al2O3.mSiO2·nH2O (m=2~10,n=0~9),式中M2+代表Ca2+、Sr2+等二價陽離子,M+代表Na+、K+等一價陽離子,為一種弱酸型陽離子交換劑。在沸石的三維空間結構中,具有規則的孔道結構和空穴,使其具有篩分效應,交換吸附選擇性、熱穩定性及形穩定性等優良性能。天然沸石的種類很多,用於去除氨氮的主要為斜發沸石。
斜發沸石對某些陽離子的交換選擇性次序為:K+,NH4+>Na+>Ba2+>Ca2+>Mg2+。利用斜發沸石對NH4+的強選擇性,可採用交換吸附工藝去除水中氨氮。交換吸附飽和的拂石經再生可重復利用。
溶液pH值對沸石除氨影響很大。當pH過高,NH4+向NH3轉化,交換吸附作用減弱;當pH過低,H+的競爭吸附作用增強,不利於NH4+的去除。通常,進水pH值以6~8為災。當處理合氨氮10~20mg/L的城市嚴水時,出水濃度可達lmg/L以下。穿透時通水容積約100~150床容。沸石的工作交換容量約0.4×10-3n-1mol/g左右。
吸附銨達到飽和的沸石可用5g/L的石灰乳或飽和石灰水再生。再生液用量約為處理水量的3~5%。研究表明,石灰再生液中加入0.1mol的NaCl,可提高再生效率。針對石灰再生的結垢問題,亦有採用2%的氯化鈉溶液作再生液的,此時再生液用量較大。再生時排出的高濃度合氨廢液必須進行處理,其處理方法有:(1)空氣吹脫 吹脫的NH3或者排空,或者由量H2S04吸收作肥料;(2)蒸氣吹脫 冷凝液為1%的氨溶液,可用作肥料;(3)電解氧化(電氯化) 將氨氧化分解為N2。
三、空氣吹脫
在鹼性條件下(pH>10.5),廢水中的氨氮主要以NH3的形式存在(圖20-2)。讓廢水與空氣充分接觸,則水中揮發性的NH3將由液相向氣相轉移,從而脫除水中的氨氮。吹脫塔內裝填木質或塑料板條填料,空氣流由塔的下部進入,而廢水則由塔頂落至塔底集水池。
影響氨吹脫效果的主要因素有:
(1)pH值 一般將pH值提高至10.8~11.5;
(2)溫度 水溫降低時氨的溶解度增加,吹脫效率降低。例如,20℃時氨去除率為90~95%,而10℃時降至約75%,這為吹脫塔在冬季運行帶來困難;
(3)水力負荷 水力負荷(m3/m2.h)過大,將破壞高效吹脫所需的水流狀態,而形成水幕;水力負荷過小,填料可能沒有適當濕潤,致使運行不良,形成干塔。一般水力負荷為2.5~5m3/m2.h;
(4)氣水比 對於一定塔高,增加空氣流量,可提高氨去除率;但隨著空氣流量增加,壓降也增加,所以空氣流量有一限值。一般,氣/水比可取2500~5000(m3/m2);
(5)填料構型與高度 由於反復濺水和形成水滴是氨吹脫的關鍵,因此填料的形狀、尺寸、間距、排列方式夠都對吹脫效果有影響。一般,填料間距40~50mm,填料高度為6~7.5m。若增加填料間距,則需更大的填料高度;
(6)結垢控制 填料結垢(CaCO3)特降低吹脫塔的處理效率。控制結垢的措施有:用高壓水沖洗垢層;在進水中投加阻垢劑:採用不合或少含CO2的空氣吹脫(如尾氣吸收除氨循環使用);採用不易結垢的塑料填料代替木材等。
空氣吹脫法除氨,去除率可達60~95%,流程簡單,處理效果穩定,基建費和運行費較低,可處理高濃度合氨廢水。但氣溫低時吹脫效率低,填科結垢往往嚴重干擾運行,且吹脫出的氨對環境產生二次污染。
四、折點氯化
投加過量氯或次氯酸鈉(超過"折點",參見第十四章),使廢水中氨完全氧化為N2的方法,稱為折點氯化法,其反應可表示為:
NH4+十1.5HOCl→0.5N2十1.5H2O十2.5H+十1.5Cl-
由反應式可知,到達折點的理論需氯(C12)量為7.6kg/kg(NH3-N),而實際需氯量在8~10kg/kg(NH3-N)。在pH=6~7進行反應,則投葯量可最小。接觸時間一般為0.5~2h。嚴格控制pH值和投氯量,可減少反應中生成有害的氯胺(如NCl3)和氯代有機物。
折點氯化法對氨氮的去除率達90~100%,處理效果穩定,不受水溫影響,基建費用也不高。但其運行費用高;殘余氯及氯代有機物須進行後處理。
在目前採用的四種脫氮工藝中,物理化學法由於存在運行成本高、對環境造成二次污染等問題,實際應用受到-定限制。而生物脫氮法能餃為有效和徹底地除氮,且比較經濟,因而得到較多應用。
『柒』 切削液廢水如何處理是好
廢水中主要含有油脂、高有機物和難降解物質,廢水為混合廢水,由於難版降解物質微生物不權易消化,所以需要通過物化將該廢水進行預處理。
大泉水處理該設備是這樣一個處理流程:廢水從車間排放先經過隔油池去除油脂性物質後進入調節池,調節水質水量,然後由提升泵打入混凝氣浮池進行分離,清水進入生化系統進行深度處理,廢渣進入污泥脫水系統再委外處理,上清液進入排放水池,然後經計量排放槽計量排放。
『捌』 生物脫氮能處理高氨氮廢水嗎對進水氨氮的濃度要求最高能去到多少另外,C/N比在什麼范圍最好
首先不知道你說抄的高氨氮到底有多襲高,C/N控制在(15-20):1這個范圍之內可以試試生化,要是太高的話,還是配合化學法再進行生化處理吧,至於第二問不太明白意思,大體給你一、三問的結果,要是有問題可以HI我
『玖』 污水處理中氨氮的過分處理對脫氮有影響嗎
對脫氮(反硝化)的影響因素中,
硝酸鹽濃度算不上,因此氨氮再低,如果只是被硝化細菌轉化高價態的氮,
也不會對TN有多少影響,自然跟脫氮沒啥關系,也談不上多大影響.