Ⅰ 強酸性的污水要做氨氮是要先將酸性污水處理成中性在做氨氮嗎
高氨氮廢水處理處理的9種工藝
氨氮廢水主要來源於化肥、焦化、石化、制葯、食品、垃圾填埋場等,大量氨氮廢水排入水體不僅引起水體富營養化、造成水體黑臭,給水處理的難度和成本加大,甚至對人群及生物產生毒害作用,針對氨氮廢水的處理工藝(2014年前)有生物法、物化法的各種處理工藝等。
氨氮廢水的一般的形成是由於氨水和無機氨共同存在所造成的,一般上pH在中性以上的廢水氨氮的主要來源是無機氨和氨水共同的作用,pH在酸性的條件下廢水中的氨氮主要由於無機氨所導致。廢水中氨氮的構成主要有兩種,一種是氨水形成的氨氮,一種是無機氨形成的氨氮,主要是硫酸銨,氯化銨等等。
高氨氮廢水如何處理,我們著重介紹一下其處理方法:
一、物化法
1. 吹脫法
在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法,一般認為吹脫與溫度、PH、氣液比有關。
2. 沸石脫氨法
利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。應用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。採用焚燒法時,產生的氨氣必須進行處理,此法適合於低濃度的氨氮廢水處理,氨氮的含量應在10--20mg/L。
3.膜分離技術
利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。例如:氣水分離膜脫除氨氮。氨氮在水中存在著離解平衡,隨著PH升高,氨在水中NH3形態比例升高,在一定溫度和壓力下,NH3的氣態和液態兩項達到平衡。根據化學平衡移動的原理即呂.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相對的和暫時的。化學平衡只是在一定條件下才能保持「假若改變平衡系統的條件之一,如濃度、壓力或溫度,平衡就向能減弱這個改變的方向移動。」遵從這一原理進行了如下設計理念在膜的一側是高濃度氨氮廢水,另一側是酸性水溶液或水。當左側溫度T1>20,PH1>9,P1>P2保持一定的壓力差,那麼廢水中的游離氨NH4+,就變為氨分子NH3,並經原料液側介面擴散至膜表面,在膜表面分壓差的作用下,穿越膜孔,進入吸收液,迅速與酸性溶液中的H+反應生成銨鹽。
4.MAP沉澱法
主要是利用以下化學反應:Mg2++NH4++PO43-=MgNH4PO4
理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2 + ][NH4+][PO43 -]>2.5×10–13時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。
5.化學氧化法
利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。
二、生物脫氮法
傳統和新開發的脫氮工藝有A/O,兩段活性污泥法、強氧化好氧生物處理、短程硝化反硝化、超聲吹脫處理氨氮法方法等。
1.A/O工藝將前段缺氧段和後段好氧段串聯在一起,A段DO不大於0.2mg/L,O段DO=2~4mg/L。在缺氧段異養菌將污水中的澱粉、纖維、碳水化合物等懸浮污染物和可溶性有機物水解為有機酸,使大分子有機物分解為小分子有機物,不溶性的有機物轉化成可溶性有機物,當這些經缺氧水解的產物進入好氧池進行好氧處理時,提高污水的可生化性,提高氧的效率;在缺氧段異養菌將蛋白質、脂肪等污染物進行氨化(有機鏈上的N或氨基酸中的氨基)游離出氨(NH3、NH4+),在充足供氧條件下,自養菌的硝化作用將NH3-N(NH4+)氧化為NO3-,通過迴流控制返回至A池,在缺氧條件下,異氧菌的反硝化作用將NO3-還原為分子態氮(N2)完成C、N、O在生態中的循環,實現污水無害化處理。其特點是缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷,反硝化反應產生的鹼度可以補償好氧池中進行硝化反應對鹼度的需求。好氧在缺氧池之後,可以使反硝化殘留的有機污染物得到進一步去除,提高出水水質。BOD5的去除率較高可達90~95%以上,但脫氮除磷效果稍差,脫氮效率70~80%,除磷只有20~30%。盡管如此,由於A/O工藝比較簡單,也有其突出的特點,目前仍是比較普遍採用的工藝。
Ⅱ 高濃度廢水中氨氮的測定方法
氨氮 的 測定 方法 ,通常有納氏比色法、苯酚—次氯酸鹽(或水楊酸—次氯酸鹽)比色法和電極法等。納氏比色法具有操作簡便、靈敏等特點,但鈣、鎂、鐵等金屬離子、硫化物、醛、酮類,以及水中色度和混濁等干擾 測定 ,需要相應 的 預處理。以下是納氏試劑比色法 的 測定 方法 。
一、納氏試劑比色法 的 原理
碘化鉀和碘化汞 的 鹼性溶液與氨反應生成淡紅棕色膠態化和物,其色度與 氨氮 含量成正比,通常可在410-425nm范圍內測其吸光度,計算其含量。
本法最低檢出濃度為0.025mg/L(光度法), 測定 上限為2mg/L。採用目視比色法,最低檢出濃度為0.02mg/L。水樣作適當 的 預處理後,本法可適用於地面水、地下水、工業 廢水 和生活污水。
二、儀器
1、帶氮球 的 定氮蒸餾裝置:500mL凱氏燒瓶、氮球、直形冷凝管。
2、分光光度計
3、PH計
三、試劑
做次實驗配製試劑均應用無氨水配製。
1、無氨水。配製可選用以下任意一種 方法 制備:
(1)蒸餾法:每升蒸餾水 中 加0.1mL硫酸,在全玻璃蒸餾器 中 重蒸餾,棄去50mL初餾液,接取其餘餾出液於具塞磨口 的 玻璃瓶 中 ,密塞保存。
(2)離子交換法:使蒸餾水通過強酸性陽離子交換樹脂柱。
2、1mol/L 的 鹽酸溶液
3、1mol/L 的 氫氧化鈉溶液
4、輕質氧化鎂:將氧化鎂在500℃下加熱,以除去碳酸鹽。
5、0.05%溴百里酚藍指示計(PH6.0-7.6)。
6、防沫劑:如石蠟碎片
7、吸收劑:①硼酸溶液:稱取20g硼酸溶於水,稀釋至1L。②0.01mol/L硫酸溶液。
8、納氏試劑。可選用下列 方法 之一制備:
(1)稱取20g碘化鉀溶於約25mL水中,邊攪拌邊分次加入少量 的 二氯化汞(HgCl2)結晶粉末(約10g),至出現朱紅色不易降解時,改為滴加飽和二氯化汞溶液,並充分攪拌,當出現微量朱紅色沉澱不再溶解時,停止滴加氯化汞溶液。另稱取60g氫氧化鉀溶於水,並稀釋至250mL,冷卻至室溫後,將上述溶液徐徐注入氫氧化鉀溶液 中 ,用水稀釋至400mL,混勻。靜置過夜,將上清液移入聚乙烯瓶 中 ,密塞保存。
(2)稱取16g氫氧化鈉,溶於50mL水中,充分冷卻至室溫。
另稱取7g碘化鉀和碘化汞溶於水,然後將次溶液在攪拌下徐徐注入氫氧化鈉溶液 中 ,用水稀釋至100mL,貯於聚乙烯瓶 中 ,密塞保存。
9、酒石酸鉀鈉溶液:稱50g酒石酸鉀鈉(KNaC4H4O6 - 4H2O)溶於100mL水中,加熱煮沸以除去氨,放冷,定容至100mL。
10、銨標准貯備溶液:稱取3.819g經100℃乾燥過 的 氯化氨(NH4Cl)溶於水中,移入1000mL容量瓶 中 ,稀釋至標線。從溶液每毫升含1.00mg 氨氮 。
11、銨標准使用溶液:移取5.00mL銨標准貯備溶液於500mL容量瓶 中 ,用水稀釋至標線。此溶液每毫升含0.01mg 氨氮 。
四、 測定 步驟
1、水樣預處理:取250mL水樣(如 氨氮 含量較高,可取適量並加水至250mL,使 氨氮 含量不超過2.5mg),移入凱氏燒瓶 中 ,加數滴溴百里酚藍指示液,用氫氧化鈉溶液或鹽酸溶液調節至PH為7左右。加入0.25g輕質氧化鎂和數粒玻璃珠,立即連接氮球和冷凝管,導管下端插入吸收液液面下。加熱蒸餾,至餾出液達200mL時,停止蒸餾。定容至250mL。
採用酸滴定法或納氏比色法時,以50mL硼酸溶液為吸收劑;採用水揚酸—次氯酸鹽比色法時,改用50mL0.01mol/L硫酸溶液為吸收劑。
2、標准曲線 的 繪制:吸取0、0.50、1.00、3.00、5.00、7.00和10.00mL銨標准使用溶液於50mL比色管 中 ,加水至標線,加1.00mL酒石酸鉀鈉溶液,混勻。加1.50mL納氏試劑,混勻。放置10min 後,在波長420nm處,用光程20mm比色皿,已水作參比 測定 吸光度。
由測得 的 吸光度,減去零濃度空白管 的 吸光度後,得到校正吸光度,繪制以 氨氮 含量(mg)對校正吸光度 的 標准曲線。
3、水樣 的 測定
(1)分取適量經絮凝預處理後的水樣(使 氨氮 含量不超過0.1mg),加入50mL比色管 中 ,稀釋至標線,加0.1mL酒石酸鉀鈉溶液。
(2)分取適量經蒸餾預處理後 的 餾出液,加入50mL比色管 中 ,加一定量 的 1mol/L氫氧化鈉溶液以 中 和硼酸,稀釋至標線,加1.5mL納氏試劑,混勻。放置10min後,同標准曲線步驟測量吸光度。
4、空白實驗:以無氨水代替水樣,做全程序空白 測定 。
五、計算
由水樣測得 的 吸光度減去空白實驗 的 吸光度後,從標准曲線上查得 的 氨氮 含量(mg)。
氨氮 (N,mg/L)=1000m/V
式 中 :m——由校準曲線查得 的 氨氮 量(mg);V——水樣體積(mL)
Ⅲ 廢水中氨氮的測定方法
廢水中氨氮的測定方法有氨電極法、氮蒸發法、原子吸收法等。
測廢水中的氨氮量作用:
1、評估廢水處理效山穗果:廢水中的氨氮是一種有害物質,會對水體生態環境造成影響。測量廢水中的氨氮量可以評估廢水處理工藝的效果,判斷是否達到了排放標准。
2、監測水體污染程度:氨氮是一種常見的水體扒此污染物,測量廢水中的氨氮量可以反映水體的污染程度,為環境保護部門提供監測數據。
3、優化廢水處理工藝:測量廢水中的氨氮量可以為廢水處理工藝的優化提供依據,通過調整處理工藝,降低氨氮的含量,提高廢水的處理效果。
4、預防水體富營養化:氨氮是水體中一種重要的營養物質,如果廢水中的氨氮排放過多,會導致水體富營養化,引發水體生態環境的變化。測量廢水中的氨氮量可以預防水體富營養化的發生。
Ⅳ 怎樣測試污水中的氨氮的含量
水中氨氮的測定—納氏試劑分光光度法
一、實驗試劑
10%硫酸鋅溶液,25%氫氧化鈉溶液,納氏試劑,酒石酸鉀鈉溶液,銨標准使用溶液
0.010mg/ml
二、實驗儀器
UNICO分光光度計,50ml比色管8支,漏斗,實驗室常用儀器
三、實驗步驟
1.
試劑配製
10%硫酸鋅溶液:稱取10g硫酸鋅溶於水,稀釋100ml,貯於玻璃試劑瓶中
25%氫氧化鈉溶液:稱取25g氫氧化鈉溶於水,稀釋至100ml,貯於聚乙烯瓶中
納氏試劑:稱取16g氫氧化鈉,溶於50mL水中,充分冷卻至室溫。另稱取7g碘化鉀和10g碘化汞(HgI2)溶於水,然後將親氧化鈉溶液在攪拌下徐徐注入此溶液中。用水稀釋至100mL,貯於聚乙烯瓶中。
酒石酸鉀鈉溶液:稱取50g酒石酸鉀鈉(KNaC4H4O6·4H2O)溶於100mL水中,加熱煮沸以除去氨,放冷,定容至100mL
銨標准貯備溶液:稱取0.3819g經100℃乾燥過的氯化銨(NH4Cl)溶於水中,移入100mL容量瓶中,稀釋至標線。此溶液每毫升含1.00mg氨氮。
銨標准使用溶液:移取2.50mL銨標准貯備液於250mL容量瓶中,用水稀釋至標線。此溶液每毫升含0.010mg氨氮。
2.
氨氮的測定
2.1標准曲線的繪制
用氯化銨配製的標准使用液,每毫升溶液含有氨氮0.01mg,分別吸取0,0.5、1.0、3.0、5.0、7.0、10.0ml溶液於50ml比色管中,加水至標線,加1.0ml酒石酸鉀鈉溶液,混勻。加1.5ml納氏試劑,混勻。防止10min,在波長420nm,用光程偉20nm的比色皿,以水為參比,測量吸光度。減去空白吸光度,得到校正吸光度,繪制以氨氮含量(mg)對校正吸光度的校準曲線。
2.2預處理水樣
取水樣100ml於燒杯中,加入10%的硫酸鋅溶液1ml,滴加25%的氫氧化鈉溶液0.1-0.2ml(大約2-3滴),調節pH值至10.5左右。然後用中速定量濾紙過濾,棄去初濾液20ml左右。
2.3水樣的測定
取濾液5ml(保證其中氨氮含量不超過0.1mg)於50ml比色管中,用蒸餾水稀釋至刻度線,加1.0ml酒石酸鉀鈉溶液,1.5ml納氏試劑,搖勻,靜置顯色10min,在721分光光度計上,於420nm波長處,以水為參比,用2cm比色皿測定吸光度。
2.4空白實驗
用100ml蒸餾水代替水樣,同步進行實驗,即從預處理開始,直到測定吸光度。
Ⅳ 為什麼有的酸性廢水用氫氧化鈉處理後,檢測水質里為什麼會含有氨氮
氨氮主要是指污水中游離狀態的氨中所含有的氮!是污水常規五項的一項!由於他在有養條件下極易發生硝化反應!因此它是污水中的主要耗氧污染物。氫氧化鈉促進水解產生氨氮
Ⅵ 怎麼測水中的氨氮
氨氣敏電極法
1 原理
在pH值大於11的環境下,銨根離子向氨轉變,氨通過氨敏電極的疏水膜轉移,造成氨敏電極的電動勢的變化,儀器根據電動勢的變化測量出氨氮的濃度。
2 檢測步驟
用新的水樣沖洗測量水樣、試劑體積的容器和電極安裝管。
使用蠕動泵進樣。水樣並不直接與蠕動泵管接觸--有一個空氣緩沖區。進樣的體積由一可視測量系統控制。
與進樣相同,輔助試劑也通過蠕動泵投加,並由可視測量系統控制加葯體積。
通過鼓泡混合水樣和試劑。
由測量系統自動控制反映時間。
殘液由蠕動泵排出。
在用戶自定義的測量周期中,分析儀會利用內置的校準標液和清洗溶液自動進行校準和清洗。
3 氨氣敏電極法主流儀器品牌
進口品牌:德國WTW,英國RAIKING
國內品牌:銳泉
4 如何分辨氨氣敏電極法儀器的性能
1.量程:電極法氨氮量程規格分為:0-1200;0-2000;0-3000;0-10000不等。並且量程自由切換,量程越大,說明儀器採用的電極的適應性越強。
2.最低檢出限:儀器的最低檢出限越低,代表電極的品質越好,一般為0.05mg/l。
納氏試劑比色法
1 原理
碘化汞和碘化鉀的鹼性溶液與氨反映生成淡紅棕色膠態化合物,其色度與氨氮含量成正比,通常可在波長410~425nm范圍內測其吸光度,計算其含量.
本法最低檢出濃度為0.025mg/L(光度法),測定上限為2mg/L.採用目視比色法,最低檢出濃度為0.02mg/L.水樣做適當的預處理後,本法可用於地面水,地下水,工業廢水和生活污水中氨氮的測定.
2 儀器
2.1 帶氮球的定氮蒸餾裝置:500mL凱氏燒瓶,氮球,直形冷凝管和導管.
2.2 分光光度計
2.3 pH計
3 試劑
配製試劑用水均應為無氨水
3.1 無氨水可選用下列方法之一進行制備:
3.1.1 蒸餾法:每升蒸餾水中加0.1mL硫酸,在全玻璃蒸餾器中重蒸餾,棄去50mL初餾液,按取其餘餾出液於具塞磨口的玻璃瓶中,密塞保存.
3.1.2 離子交換法:使蒸餾水通過強酸型陽離子交換樹脂柱.
3.2 1mol/L鹽酸溶液.
3.3 1mol/L氫氧化納溶液.
3.4 輕質氧化鎂(MgO):將氧化鎂在500℃下加熱,以出去碳酸鹽.
3.5 0.05%溴百里酚藍指示液:pH6.0~7.6.
3.6 防沫劑,如石蠟碎片.
3.7 吸收液:
3.7.1 硼酸溶液:稱取20g硼酸溶於水,稀釋至1L.
3.7.2 0.01mol/L硫酸溶液.
3.8 納氏試劑:可選擇下列方法之一制備:
3.8.1 稱取20g碘化鉀溶於約100mL水中,邊攪拌邊分次少量加入二氯化汞(HgCl2)結晶粉末(約10g),至出現朱紅色沉澱不易溶解時,改寫滴加飽和二氯化汞溶液,並充分攪拌,當出現微量朱紅色沉澱不再溶解時,停止滴加二氯化汞溶液.
另稱取60g氫氧化鉀溶於水,並稀釋至250mL,冷卻至室溫後,將上述溶液徐徐注入氫氧化鉀溶液中,用水稀釋至400mL,混勻.靜置過夜將上清液移入聚乙烯瓶中,密塞保存.
3.8.2 稱取16g氫氧化納,溶於50mL水中,充分冷卻至室溫.
另稱取7g碘化鉀和碘化汞(HgI2)溶於水,然後將此溶液在攪拌下徐徐注入氫氧化納溶液中,用水稀釋至100mL,貯於聚乙烯瓶中,密塞保存.
3.9 酒石酸鉀納溶液:稱取50g酒石酸鉀納KNaC4H4O6·4H2O)溶於100mL水中,加熱煮沸以除去氨,放冷,定容至100Ml.
3.10 銨標准貯備溶液:稱取3.819g經100℃乾燥過的優級純氯化銨(NH4Cl)溶於水中,移入1000mL容量瓶中,稀釋至標線.此溶液每毫升含1.00mg氨氮.
3.11 銨標准使用溶液:移取5.00mL銨標准貯備液於500mL容量瓶中,用水稀釋至標線.此溶液每毫升含0.010mg氨氮.
4 測定步驟
4.1 水樣預處理:取250mL水樣(如氨氮含量較高,可取適量並加水至250mL,使氨氮含量不超過2.5mg),移入凱氏燒瓶中,加數滴溴百里酚藍指示液,用氫氧化納溶液或演算溶液調節至pH7左右.加入0.25g輕質氧化鎂和數粒玻璃珠,立即連接氮球和冷凝管,導
管下端插入吸收液液面下.加熱蒸餾,至餾出液達200mL時,停止蒸餾,定容至250mL.
採用酸滴定法或納氏比色法時,以50mL硼酸溶液為吸收液;採用水楊酸-次氯酸鹽比色法時,改用50mL0.01mol/L硫酸溶液為吸收液.
4.2 標准曲線的繪制:吸取0,0.50,1.00,3.00,7.00和10.0mL銨標准使用液分別於50mL比色管中,加水至標線,家1.0mL酒石酸鉀溶液,混勻.加1.5mL納氏試劑,混勻.放置10min後,在波長420nm處,用光程20mm比色皿,以水為參比,測定吸光度. 由測得的吸光度,減去零濃度空白管的吸光度後,得到校正吸光度,繪制以氨氮含量(mg)對校正吸光度的標准曲線.
4.3 水樣的測定:
4.3.1分取適量經絮凝沉澱預處理後的水樣(使氨氮含量不超過0.1mg),加入50mL比色管中,稀釋至標線,加入0.1mL酒石酸鉀鈉溶液.以下同標准曲線的繪制.
4.3.2 分取適量經蒸餾預處理後的餾出液,加入50mL比色管中,加一定量1mol/L氫氧化納溶液,以中和硼酸,稀釋至標線.加1.5mL納氏試劑,混勻.放置10min後,同標准曲線步驟測量吸光度.
4.4 空白實驗:以無氨水代替水樣,做全程序空白測定.
5 計算
由水樣測得的吸光度減去空白實驗的吸光度後,從標准曲線上查得氨氮量(mg)後,
按下式計算:
氨氮(N,mg/L)=m/V×1000
式中:m——由標准曲線查得的氨氮量,mg;
V——水樣體積,mL.
6 注意事項
:
6.1 納氏試劑中碘化汞與碘化鉀的比例,對顯色反應的靈敏度有較大影響.靜置後生成的沉澱應除去.
6.2 濾紙中常含痕量銨鹽,使用時注意用無氨水洗滌.所用玻璃皿應避免實驗室空氣中氨的玷污.