導航:首頁 > 污水知識 > 含丙酸廢水

含丙酸廢水

發布時間:2023-09-04 02:46:11

㈠ 關於污水處理厭氧方面的問題!!高手專家請進!!!!

厭氧消化的生化階段
第Ⅰ階段——水解產酸階段
污水中不溶性大分子有機物,如多糖、澱粉、纖維素、烴類(烷、烯、炔等)水解,主要產物為甲、乙、丙、丁酸、乳酸;緊接著氨基酸、蛋白質、脂肪水解生成氨和胺,多肽等(所以有的書又把水解產酸分為二個階段)。
第Ⅱ階段——厭氧發酵產氣階段
第Ⅰ階段產物甲酸、乙酸、甲胺、甲醇和CO2+H2等小分子有機物在產甲烷菌的作用下,通過甲烷菌的發酵過程將這些小分子有機物轉化為甲烷。所以在水解酸化階段COD、BOD值變化不很大,僅在產氣階段由於構成COD或BOD的有機物多以CO2和H2的形式逸出,才使廢水中COD、BOD明顯下降。
在酸化階段,發酵細菌將有機物水解轉化為能被甲烷菌直接利用的第1類小分子有機物,如乙酸、甲酸、甲醇和甲胺等;第2類為不能被甲烷菌直接利用的有機物,如丙酸、丁酸、乳酸、乙醇等,不完全厭氧消化或發酵到此結束。如果繼續全厭氧過程,則產氫、產乙酸菌將第2類有機物進一步轉化為氫氣和乙酸。
第Ⅱ階段生化過程是產甲烷細菌把甲酸、乙酸、甲胺、甲醇等基質通過不同途徑轉化為甲烷,其中最主要的基質為乙酸。
http://www.chinacitywater.org/rdzt/gyf/download/1170761630656.pdf

㈡ 淺談廢水生物處理的方法有哪些

廢水生物處理法主要有:

生物化學法

生物化學法指通過微生物處理含重金屬廢水,將可溶性離子轉化為不溶性化合物而去除。硫酸鹽生物還原法是一種典型生物化學法。該法是在厭氧條件下硫酸鹽還原菌通過異化的硫酸鹽還原作用,將硫酸鹽還原成H2S,廢水中的重金屬離子可以和所產生的H2S反應生成溶解度很低的金屬硫化物沉澱而被去除,同時H2SO4的還原作用可將SO42-轉化為S2-而使廢水的pH值升高。因許多重金屬離子氫氧化物的離子積很小而沉澱。有關研究表明,生物化學法處理含Cr6+濃度為30—40mg/L的廢水去除率可達99.67%—99.97%。有人還利用家畜糞便厭氧消化污泥進行礦山酸性廢水重金屬離子的處理,結果表明該方法能有效去除廢水中的重金屬。趙曉紅等人用脫硫腸桿菌(SRV)去除電鍍廢水中的銅離子,在銅質量濃度為246.8 mg/L的溶液,當pH為4.0時,去除率達99.12%。[2]

生物絮凝法

生物絮凝法是利用微生物或微生物產生的代謝物進行絮凝沉澱的一種除污方法。微生物絮凝劑是一類由微生物產生並分泌到細胞外,具有絮凝活性的代謝物。一般由多糖、蛋白質、DNA、纖維素、糖蛋白、聚氨基酸等高分子物質構成,分子中含有多種官能團,能使水中膠體懸浮物相互凝聚沉澱。至目前為止,對重金屬有絮凝作用的約有十幾個品種,生物絮凝劑中的氨基和羥基可與Cu2+、 Hg2+、Ag+、Au2+等重金屬離子形成穩定的鰲合物而沉澱下來。應用微生物絮凝法處理廢水安全方便無毒、不產生二次污染、絮凝效果好,且生長快、易於實現工業化等特點。此外,微生物可以通過遺傳工程、馴化或構造出具有特殊功能的菌株。因而微生物絮凝法具有廣闊的應用前景。[2]

生物吸附法

生物吸附法是利用生物體本身的化學結構及成分特性來吸附溶於水中的金屬離子,再通過固液兩相分離去除水溶液中的金屬離子的方法。利用胞外聚合物分離金屬離子,有些細菌在生長過程中釋放的蛋白質,能使溶液中可溶性的重金屬離子轉化為沉澱物而去除。生物吸附劑具有來源廣、價格低、吸附能力強、易於分離回收重金屬等特點,已經被廣泛應用。[2]

需氧生物處理法

利用需氧微生物在有氧條件下將廢水中復雜的有機物分解的方法。生活污水中的典型有機物是碳水化合物、合成洗滌劑、脂肪、蛋白質及其分解產物如尿素、甘氨酸、脂肪酸等。這些有機物可按生物體系中所含元素量的多寡順序表示為 COHNS。

生物體系中這些反應有賴於生物體系中的酶來加速。酶按其催化反應分為:氧化還原酶:在細胞內催化有機物的氧化還原反應,促進電子轉移,使其與氧化合或脫氫。可分為氧化酶和還原酶。氧化酶可活化分子氧,作為受氫體而形成水或過氧化氫。還原酶包括各種脫氫酶,可活化基質上的氫,並由輔酶將氫傳給被還原的物質,使基質氧化,受氫體還原。水解酶:對有機物的加水分解反應起催化作用。水解反應是在細胞外產生的最基本的反應,能將復雜的高分子有機物分解為小分子,使之易於透過細胞壁。如將蛋白質分解為氨基酸,將脂肪分解為脂肪酸和甘油,將復雜的多糖分解為單糖等。此外還有脫氨基、脫羧基、磷酸化和脫磷酸等酶。

許多酶只有在一些稱為輔酶和活化劑的特殊物質存在時才能進行催化反應,鉀、鈣、鎂、鋅、鈷、錳、氯化物、磷酸鹽離子在許多種酶的催化反應中是不可缺少的輔酶或活化劑。

在需氧生物處理過程中,污水中的有機物在微生物酶的催化作用下被氧化降解,分三個階段:第一階段,大的有機物分子降解為構成單元──單糖、氨基酸或甘油和脂肪酸。在第二階段中,第一階段的產物部分地被氧化為下列物質中的一種或幾種:二氧化碳、水、乙醯基輔酶A、α-酮戊二酸(或稱 α-氧化戊二酸)或草醋酸(又稱草醯乙酸)。第三階段(即三羧酸循環,是有機物氧化的最終階段)是乙醯基輔酶A、α-酮戊二酸和草醋酸被氧化為二氧化碳和水。有機物在氧化降解的各個階段,都釋放出一定的能量。

在有機物降解的同時,還發生微生物原生質的合成反應。在第一階段中由被作用物分解成的構成單元可以合成碳水化合物、蛋白質和脂肪,再進一步合成細胞原生質。合成能量是微生物在有機物的氧化過程中獲得的。[2]

厭氧生物處理法

主要用於處理污水中的沉澱污泥,因而又稱污泥消化,也用於處理高濃度的有機廢水。這種方法是在厭氧細菌或兼性細菌的作用下將污泥中的有機物分解,最後產生甲烷和二氧化碳等氣體,這些氣體是有經濟價值的能源。中國大量建設的沼氣池就是具體應用這種方法的典型實例。消化後的污泥比原生污泥容易脫水,所含致病菌大大減少,臭味顯著減弱,肥分變成速效的,體積縮小,易於處置。城市污水沉澱污泥和高濃度有機廢水的完全厭氧消化過程可分為三個階段(見圖)。在第一階段,污泥中的固態有機化合物藉助於從厭氧菌分泌出的細胞外水解酶得到溶解,並通過細胞壁進入細胞中進行代謝的生化反應。在水解酶的催化下,將復雜的多糖類水解為單糖類,將蛋白質水解為縮氨酸和氨基酸,並將脂肪水解為甘油和脂肪酸。第二階段是在產酸菌的作用下將第一階段的產物進一步降解為比較簡單的揮發性有機酸等,如乙酸、丙酸、丁酸等揮發性有機酸,以及醇類、醛類等;同時生成二氧化碳和新的微生物細胞。[2]

反應原理

第一、二階段又稱為液化過程。第三階段是在甲烷菌的作用下將第二階段產生的揮發酸轉化成甲烷和二氧化碳,因此又稱為氣化過程,其反應可用下式表示:

一些有機酸或醇的氣化過程舉例如下:

乙酸:

CH3COOH─→CO2+CH4

丙酸:

4CH3CH2COOH+2H2O─→5CO2+7CH4

甲醇:

4CH3OH─→CO2+3CH4+2H2O

乙醇:

2CH3CH2OH+CO2─→2CH3COOH+CH4

為了使厭氧消化過程正常進行,必須將溫度、pH值、氧化還原電勢等保持在一定的范圍內,以維持甲烷菌的正常活動,保證及時地和完全地將第二階段產生的揮發酸轉化成甲烷。

生物化學反應的速度直接受溫度的影響。進行厭氧消化的微生物有兩類:中溫消化菌和高溫消化菌。前者的適應溫度范圍為17~43℃,最佳溫度為32~35℃;後者則在50~55℃具有最佳反應速度。

近年來,厭氧消化處理法發展到應用於處理高濃度有機廢水,如屠宰場廢水、肉類加工廢水、製糖工業廢水、酒精工業廢水、罐頭工業廢水、亞硫酸鹽制漿廢水等,比採用需氧生物處理法節省費用。

利用生物法處理廢水的具體方法有活性污泥法、生物膜法、氧化塘法、土地處理系統和污泥消化等。[2]

㈢ 污水處理在什麼情況下會發生污泥解體有什麼指示菌種嗎

廢水生物處理是利用有關微生物的代謝過程,是對廢水中有機物進行降解或轉化的過程。微生物在降解有機物的同時其本身也得到了增殖。污泥膨脹有兩種類型,一是由於活性污泥中大量絲狀菌的繁殖而引起的污泥絲狀菌膨脹,二是由於菌膠團細菌體內大量累積高粘性物質(如葡萄糖、甘露糖、阿拉伯糖、鼠李糖和脫氧核糖等形成的多類糖)而引起的非絲狀菌性膨脹。

污泥絲狀菌膨脹可根據絲狀微生物對環境條件和基質種類要求的不同而劃分為五類類型:

(1)低基質濃度型;

(2)低溶解氧濃度型;

(3)營養缺乏型;

(4)高硫化物型;

(5)pH不平衡型。

在實際運行中,一般以污泥絲狀菌膨脹為主,佔90%以上。發生污泥膨脹時,主要有以下特徵

(1)二沉池中污泥的SVI值大於200ml/g;

(2)迴流污泥濃度下降;

(3)二沉池中污泥層增高。


污泥膨脹相關理論:

(1)A/V假說:當混合液中基質收到限制或控制時,由於比表面積大的絲狀菌獲取基質的能力要強於菌膠團,因而菌膠團受到抑制,絲狀菌大量繁殖;

(2)動力選擇性理論:以微生物生長動力學為基礎,根據不同種類微生物具有不同的最大比生長速率和飽和常數,分析絲狀菌與菌膠團的競爭情況;

(3)飢餓假說:將活性污泥中微生物分為三類,第一類是菌膠團細菌,第二類是具有高基質親和力但生長緩慢的耐飢餓絲狀菌,第三類是對溶解氧有高親和力、對飢餓高度敏感的快速生長絲狀菌;

(4)存儲選擇理論:在底物風度的狀態下,非絲狀菌具有貯存底物的能力,而被貯存物質在底物匱乏時能夠被代謝產生能量或合成蛋白質。但是一些絲狀菌也具有底物貯存能力,底物貯存能力不能完全用來解釋污泥膨脹機理;

(5)氮氧化氮假說:CASEY提出低負荷生物脫氮除磷工藝的污泥膨脹假說,如果缺氧區的反硝化不充分,導致好氧區存在亞硝酸氮,那中間產物NO、N2O就會抑制菌膠團的好氧細胞色素,進而抑制其好氧情況下的基質利用,相反一些絲狀菌只能將硝酸氮還原為亞硝酸氮,因此不會在反硝化條件下胞內積累NO和N2O,絲狀菌就不會在好氧段被抑制,因而更具競爭優勢。亞硝酸與SVI有一定的正相關性。沉澱性能良好的污泥粒徑分布較廣,且以球菌為主,膨脹污泥的粒徑大都在10μm以內,污泥較為細碎。


影響污泥膨脹的因子:

1、溫度

低溫有利於絲狀菌生長,Daigger等人發現10℃容易導致絲狀菌性污泥膨脹,而污水溫度提高到22℃則不容易產生污泥膨脹現象;

2、pH 值

活性污泥微生物適宜pH范圍為6.5~8.5,pH小於6時,菌膠團活性減弱,生長受到抑制,但絲狀菌能大量繁殖,取代菌膠團成為優勢種群,污泥的沉降性能明顯變差並發生污泥膨脹。pH值低於4.5時,真菌完全占優勢。

3、DO

低DO是引起絲狀菌污泥膨脹的主要原因之一,若DO成為限制因子,菌膠團生長受抑制,而絲狀菌因具有巨大的比表面積,更易獲得溶解氧進行生長繁殖,在競爭中處於優勢地位。具有低Ks的絲狀菌在低基質濃度下,具有比菌膠團高的比生長速率,這可以解釋基質限制、溶解氧限制和營養物質限制引起的污泥膨脹現象。只要溶解氧成為限制,任何負荷下都會發生污泥膨脹。污水處理中DO控制在2左右,太高太低都容易引起污泥膨脹。

4、F/M

低負荷情況下,由於絲狀菌具有巨大的比表面積,低Ks,其對碳源有較強的親和力,優先利用碳源,造成競爭優勢。低F/M經常出現在完全混合式曝氣池、大迴流比的氧化溝(如卡魯薩爾氧化溝)、沿程分散進水曝氣池中;低負荷容易引發絲狀菌污泥膨脹,高負荷容易引發污泥粘性膨脹。負荷分布不均,好氧區一直處於低負荷運行狀態易造成絲狀菌大量增殖。

Li等人對膜生物反應器內污泥負荷參數的影響研究表明,當F/M<0.2kg/kg.d時,容易引發污泥膨脹;Pan和Su等人將污水通過好氧選擇器進入膜生物反應器,將F/M調整到0.4kg/kgd,有效的控制了污泥膨脹;而Laitinen和Luonis等人則是利用缺氧選擇器,加強反硝化除磷作用,有效解決了污泥膨脹。

高有機負荷下,反應器內底物充裕,在這種情況中菌膠團比絲狀菌具有更強的吸附與存貯營養物質的能力,能夠充分利用高濃度的底物迅速增殖,具有較高的比生長速率,抑制了絲狀菌的生長,但是如果DO濃度不夠,在0.5mg/L以下,菌膠團在低溶氧的條件下增殖受到抑制,而絲狀菌由於其具有更大的比表面積,即使在低溶氧的條件下也能獲得氧,其增殖速率明顯高於菌膠團,發生高負荷低DO下的污泥膨脹;低負荷下由於長時間缺少足夠的營養物質,菌膠團生長受到抑制,而絲狀菌具有較大的比表面積,其菌絲會從菌膠團中伸展出來以增加其攝取營養的表面積。

由於研究者的研究背景和研究條件不盡相同,研究結果也很不一致尤其是關於有機負荷與污泥膨脹關系的說法也比較混亂。高低有機負荷都可能引起污泥膨脹,Ford和Eckenfeilder等人發現高低負荷下都可能發生污泥膨脹,Palm等人認為根據負荷不同,在任何DO濃度條件下都可能發生膨脹,Chudoba等人認為即使對於推流式曝氣池,雖然沿吃長方向存在著高的濃度梯度,但在高負荷下也會發生污泥膨脹。

5、N、P營養物質

通常認為污水中BOD5:N:P=100:5:1為微生物的適宜比例。N、P含量不均衡的廢水,會引發絲狀菌與非絲狀菌膨脹,絲狀菌膨脹:有研究發現在缺N的情況下,由於絲狀菌具有巨大的比表面積,低Ks,其對N、P等營養物質有較強的親和力,優先利用營養物質,造成競爭優勢;非絲狀菌污泥膨脹:BOD5/N為100:3時,菌膠團未能有充分的N完成代謝,於是把有機物以高親水性的多糖胞外聚合物(EPS)的形式貯存在胞外。因此要降低進水C/N比。

6、微量元素

完全混合活性污泥法會助長絲狀菌的過量生長,這可用痕量金屬缺乏症理論分析。由於絲狀菌具有比菌膠團更大的比表面積,其在痕量金屬含量不足時比後者具有更大的對痕量金屬的吸附能力,從而抑制了菌膠團的生長。

7、有毒物質

當有毒工業廢水進入污水廠時,活性污泥中的微生物要出現中毒現象,Novak在對非絲狀菌膨脹的研究中發現,菌膠團吸收污水中的有毒物質後,粘性物質分泌減少,生理活動出現異常,可能引起污泥膨脹。


污泥膨脹解決辦法:

1、應急措施:

(1)增加絮凝劑,如投加硅藻土、粘土、厭氧污泥、金屬鹽類、混凝劑,如投加鐵鹽(氯化亞鐵5~50mg/L)、鋁鹽(礬土10~100mg/L)。

(2)採用消毒氧化劑,如採用迴流污泥加氯措施,投加量一般為2~10kgCl2/1000kg干污泥,既可控制曝氣池污泥膨脹也可對二級處理出水消毒,同時使控制污泥膨脹所需要的加氯量最少。銅離子濃度在0.75mg/L時或食鹽濃度為4g/L時對抑制絲狀菌污泥膨脹效果良好。但是此法治標不治本。

2、改變工藝

(1)設置選擇器,選擇器是曝氣池之前或前段設定的高有機負荷區(接觸區),為菌膠團細菌提供高濃度的可吸收的溶解底物,以提高其攝取和貯存能力,使其在與絲狀菌的競爭中處於優勢。

(2)此外改變反應器形式,如將完全混合曝氣池改為推流式曝氣池,連續進水改為間歇進水。絲狀菌幾乎都不能在完全無分子氧的環境中吸收底物,這使得通過脫氮和除磷過程而利用底物的功能菌迅速增殖,所以A/O和A/A/O系統能有效控制絲狀菌污泥膨脹。在A2/O工藝中,厭氧、缺氧區不利於絲狀菌增殖,如果在好氧段能旁流一部分進水提供碳源,則絲狀菌在整個系統中都處於不利狀況。

(3)工藝運行調控:由於污水腐化產生的膨脹,可以對消化污水預曝氣,沉澱池中污泥應及時刮除;N、P缺乏的污水,可及時投加尿素、銨鹽、化肥或與生活污水混合,使BOD5:N:P=100:5:1左右;缺氮時可從污泥消化池往曝氣池投加高含氮污泥上清液;低溶解氧可以增加供氧,採用表面轉刷曝氣的氧化溝,欲提高DO,可通過提高出水堰的高度,以提高轉刷的吃水深度的方法,強化轉刷的曝氣能力;低負荷導致的污泥膨脹,可以適當提高F/M;高負荷污泥膨脹,可射流曝氣剪切絲狀菌,射流高的傳質效率提供充足的溶解氧。增加水力剪切力:通過曝氣時產生的強水力剪切作用使蓬鬆污泥自聚、密實,同時使絮團表面不穩定的絲狀菌脫落。

(4)在完全混合曝氣池中負荷0.1~0.5kgBOD5/(kgMLSSd)都發生膨脹,而推流式中污泥負荷大於0.5kgBOD5/(kgMLSSd)才發生膨脹,而間歇式反應器內沒有發現膨脹現象;變化的水力負荷造成SVI上升,具體分析為高負荷、低溶解氧刺激了絲狀菌的生長,且絲狀菌生長的不可逆性,造成污泥膨脹,特別是當有機物濃度劇增時極易引起污泥膨脹;污泥有機負荷為0.5kg/kgd,並且DO在2mg/L時,可以有效的控制絲狀菌的生長。

(5)低負荷引起污泥膨脹的恢復:加大污泥負荷,利用在高底物濃度的環境條件下,菌膠團的貯存能力與最大比生長速率均比絲狀菌的高這一特點,在反應器中創造出有利於菌膠團生長繁殖的生態環境,使其取代絲狀菌逐漸成為污泥中的優勢菌種,從而使發生膨脹的污泥逐漸恢復正常。

(6)增大污泥迴流量有利於提高菌膠團細菌攝取有機物的能力並且增大與絲狀菌的競爭力度,抑制絲狀菌的膨脹。絲狀菌的生長速率小於非絲狀菌,長SRT有利於絲狀菌的生長,因而增加排泥量,可以有效排除池內過多絲狀菌。並且長泥齡情況下,發生污泥老化,老化的污泥活性不夠,競爭不過絲狀菌,會使絲狀菌在競爭中處於優勢地位。

3、污泥膨脹自然消除的原因:污泥膨脹導致污泥的大量流失,使MLSS濃度降低,其結果是在其它條件不變時,有機負荷提高,DO上升,OUR減小,這都有利於抑制絲狀菌的增殖。


其他污泥膨脹原因

1、一般認為懸浮固體少而溶解性和易降解的有機物較多,特別是含低分子量的烴類、糖類和有機酸等容易發生絲狀菌膨脹,例如啤酒、食品、乳品、造紙廢水;絲狀菌對高分子物質的水解能力弱,較難吸收不溶性物質,對低分子有機物可直接作為能源加以利用,最有代表性的絲狀菌是球衣菌屬,它能將葡萄糖、蔗糖、乳糖等糖類物質直接利用,當廢水中含有可溶性有機物多時,易誘發絲狀菌膨脹,而不溶性有機物作為去除對象的廢水則不易產生污泥膨脹。Van等發現葡萄糖、乙酸鹽這些低分子可溶性有機物容易引起污泥膨脹,而大分子澱粉不易引起污泥膨脹;

2、腐化的污水,還有大量硫化氫的污水,污水在下水管和初沉池等貯存設施中,停留時間過長,發生早起消化,使pH下降,產生利於絲狀菌攝取的低分子溶解性有機物和硫化氫,引起硫代謝絲狀菌。但是硫化氫大部分是厭氧發酵中的副產物,而厭氧發酵會產生大量小分子有機酸,這些是污泥膨脹的主要原因;

3、一些厭氧裝置雖然出水含有大量硫化氫,但是揮發性有機酸濃度很低時也不會發生污泥膨脹,當揮發性有機酸達到一定濃度時,其中主要的低分子有機酸(乙酸、丙酸)易於降解,因此造成耗氧速率的增加,引起DO限制膨脹。

詳情請參考:《污泥膨脹原因和解決辦法》

http://tyh.1.blog.163.com/blog/static/7414591020145173347324/

㈣ 廢水處理問題,在線等,急.....

1、出現浮泥可能是污泥解絮造成的,解絮是因為負荷過低,污泥發生自身的氧化,白色的泡沫是表面活性物質過多或者是洗滌劑過多,也可能是負荷過高
2、UASB里有很多的厭氧微生物,厭氧消化過程中的主要微生物
主要介紹其中的發酵細菌(產酸細菌)、產氫產乙酸菌、產甲烷菌等。
①、發酵細菌(產酸細菌):
發酵產酸細菌的主要功能有兩種: 水解——在胞外酶的作用下,將不溶性有機物水解成可溶性有機物; 酸化——將可溶性大分子有機物轉化為脂肪酸、醇類等;
主要的發酵產酸細菌:梭菌屬、擬桿菌屬、丁酸弧菌屬、雙岐桿菌屬等;水解過程較緩慢,並受多種因素影響(pH、SRT、有機物種類等),有時回成為厭氧反應的限速步驟;產酸反應的速率較快;大多數是厭氧菌,也有大量是兼性厭氧菌;可以按功能來分:纖維素分解菌、半纖維素分解菌、澱粉分解菌、蛋白質分解菌、脂肪分解菌等。
②產氫產乙酸菌:
產氫產乙酸細菌的主要功能是將各種高級脂肪酸和醇類氧化分解為乙酸和H2;為產甲烷細菌提供合適的基質,在厭氧系統中常常與產甲烷細菌處於共生互營關系。
主要的產氫產乙酸反應有:
乙醇:
丙酸:
丁酸:
注意:上述反應只有在乙酸濃度很低、系統中氫分壓也很低時才能順利進行,因此產氫產乙酸反應的順利進行,常常需要後續產甲烷反應能及時將其主要的兩種產物乙酸和H2消耗掉。
主要的產氫產乙酸細菌多為:互營單胞菌屬、互營桿菌屬、梭菌屬、暗桿菌屬等;多數是嚴格厭氧菌或兼性厭氧菌。
○3、產甲烷菌

㈤ 我們通常在污水處理中稱硝化液,實際是不是就是好氧池的迴流到缺氧池的迴流液,二者有什麼區別為什麼稱其

反消化細菌是在厭氧及缺氧條件下進行繁殖 消化 ,硝化細菌則是在好養條件下進行繁回殖消答化

也就是說原水中的氨氮 主要通過好氧池進行轉化 轉化成硝態氮 僅僅進行消化作用並不能去除氨氮,只有在缺氧及厭氧條件下進行反硝化才能將水中的氮去除 所以氧化池的污水要迴流 迴流液主要是為反硝化細菌補充硝態氮 也就成為硝化液

迴流的原因 1.好氧池出水硝態氮含量比較高 不會留氮含量很難達標2.原水進水中硝態氮含量較少 要想進行反硝化作用必須提供硝態氮

氧化池後置的原因:1.氧化池後置 使得厭氧池及缺氧池的溶解氧等容易控制2.厭氧池在前 好氧池在後 厭氧池可以通過厭氧細菌的酸化水解反應 為好氧池減輕處理負荷 3.聚磷菌主要在好氧條件下進行聚磷作用 在缺氧條件下進行放磷 要想是出水磷達標也必須將好氧池後置

㈥ 污水中的vfa指標是什麼

VFA(volatile fatty acid),即揮發性脂肪酸,是脂肪酸的一種,一般是具有1~6個碳原子碳鏈的有機酸,包括乙酸、丙酸、異丁酸、戊酸、異戊酸、正丁酸等,它們的共同特點是具有較強的揮發性,故稱揮發性脂肪酸。

揮發性脂肪酸是厭氧消化過程的重要中間產物,甲烷菌主要利用VFA形成甲烷,只有少部分甲烷由CO2和H2生成。但CO2和H2生成也經過高分子有機物形成VFA的中間過程。

由此看來,形成甲烷的過程離不開VFA的形成,但是VFA在厭氧反應器中的積累能反映出甲烷菌的不活躍狀態或反應器操作條件的惡化,較高的VFA(例如乙酸)濃度對甲烷菌有抑製作用。

因此在反應器運行中,出水VFA用作重要的控制指標。在VFA測定中,常進行VFA總量測定,其單位用mmol/L或換算為按乙酸計,以單位mg/L表示。

(6)含丙酸廢水擴展閱讀

污水處理的意義:將污水進行處理之後,可以對其進行循環使用,為我國的生產減少水資源的消耗。水處理技術利用相關的技術手段對污水進行凈化,使其可以繼續使用,所以污水處理極為重要。

按污水來源分類,污水處理一般分為生產污水處理和生活污水處理。生產污水包括工業污水、農業污水以及醫療污水等,而生活污水就是日常生活產生的污水,是指各種形式的無機物和有機物的復雜混合物,包括:

①漂浮和懸浮的大小固體顆粒;

②膠狀和凝膠狀擴散物;

③純溶液。



㈦ 工業污水處理一般需要哪些化工葯劑、需要詳細的

包括:氨基三甲叉膦酸(ATMP),羥基乙叉二膦酸(HEDP),聚合氯化呂,聚丙版烯酸鈉(PAAS),液氯,權次氯酸鈣,二氯三氯,三聚六偏等等,還有一些無機葯劑。
如果是現場操作, 還需要制定一系列的加葯方案:
1、水質情況、污水系統參數、循環水補充水質、葯劑的選擇、需要做靜態阻垢實驗等、
2、殺菌劑及清洗葯劑的篩選由於循環冷卻水系統是一個特殊的生態環境,很多種類的微生物都適宜在這一水系統中快速生長繁衍,其結果必然阻礙系統正常運行,造成污泥大量沉積、水力輸送阻力增加、傳熱效率急劇下降、水質組成嚴重惡化、過水金屬表面腐蝕加劇等一系列問題,為了保證系統正常運行並延長系統運行壽命,應投加殺菌滅藻劑以達到預期效果
根據上面的水質分析補充水和循環水的水質阻垢實驗進行葯品的選擇。
3、循環冷卻水系統葯劑消耗的計算包括:阻垢緩蝕劑的投加量、循環水系統日常運行管理
4、清洗過後的預膜處理,
以及過程中緊急情況的處理。
使用的葯劑很多,但要綜合考慮,不同區域的水質及不同濃縮保有水量加葯劑量是不同的。

㈧ 我國農村主要污染來源

(一)農葯以及化肥等使用不當
在我國農村中,化肥和農葯是農民用以種得良好的農產品的最為主要的方法。但是,在農葯和化肥中存在著很多危害環境、破壞土壤質量,甚至是污染水質與大氣的成分,所以,如果過多使用,雖然保證了農產品的產量,但同時也不可逆的破壞了環境,降低了土壤的肥力,使得土地使用壽命縮短,最終造成極大的負面影響。除此之外,農葯和化肥還會對人體產生危害,使患病、中毒甚至死亡。
(二)工廠污水排放
相對於工業廢水來說,生活污水不是一個較難解決的問題,但是由於農村經濟落後,因此會引入工廠,來提高當地的經濟。隨著工業的迅速發展,工業廢水的水量及水質污染量很大,已經成為了農村廢水的來源之一,工業廢水是量大、成分復雜、難處理、不易降解和凈化,危害性非常大。各類污水組成互不一致,千差萬別。這樣的舉措,使農村的環境更加惡劣了。
(三)畜禽糞便污染嚴重
畜禽養殖場產生的污染物主要有污水、固體糞便和惡臭氣體。規模化養殖業的糞尿排泄物及廢水中含有大量的氮、磷、懸浮物及致病菌,污染物數量大而且集中,尤其以水質污染和惡臭對環境造成的污染最為嚴重。
(1)水質污染。
與水質污染有關的主要是BOD、COD、SS、大腸桿菌、蛔蟲卵、氮和磷等。畜禽養殖場的污水中含有大量的污染物質,其污水的生化指標極高,如豬糞尿混合排出物的COD值達81000mg/L,牛糞尿混合排出物的COD值達36000mg/L,籠養蛋雞場沖洗廢水的COD為43000-77000mg/L,BOD為17000-32000mg/L,NH3-N濃度為2500-4000mg/L。據環保部門對大型養殖場排出糞水的檢測結果,COD超標50~70倍,BOD超標70~80倍,SS超標12~20倍。
(2)空氣污濁
養殖場產生大量惡臭氣體,其中含有大量的氨、硫化物、甲烷等有毒有害成分,污染周圍空氣,嚴重影響了空氣質量。國際上許多發達國家都對惡臭氣體的排放有嚴格的規定,如日本在《惡臭法》中,確定了8種惡臭物質,其中有6種與畜牧業密切相關,它們是氨、甲基硫醇、硫化氫、二甲硫、二硫化甲基、三甲胺等6種,後來又追加了丙酸、正丁酸、正戊酸、異戊酸四種低級脂肪酸,這些物質在畜禽糞便中特別是豬糞中含量極大。
(3)、農作物危害
高濃度的污水用於灌溉,會使作物陡長、倒伏、晚熟或不熟,造成減產,甚至毒害作物,出現大面積腐爛,據調查,一些規模化畜禽養殖場的「肥水」造成周圍農作物危害,農民要求賠償的現象經常發生。此外,高濃度污水可導致土壤孔隙堵塞,造成土壤透氣、透水性下降及板結,嚴重影響土壤質量。

閱讀全文

與含丙酸廢水相關的資料

熱點內容
貴州省污水處理屬於什麼區 瀏覽:759
普通瓶裝水飲水機熱水溫度多少 瀏覽:292
用過的濾芯還能做什麼 瀏覽:525
養龜用上過濾器那種好 瀏覽:351
神定河污水處理廠 瀏覽:412
什麼凈化器沒酸味 瀏覽:731
被農葯污染的水過濾 瀏覽:615
廢水cod會低於檢測限嗎 瀏覽:372
凈水器壓力桶有多少g 瀏覽:127
外網雨水污水做什麼檢驗批 瀏覽:942
漳州市污水多少萬噸每天 瀏覽:96
哪裡能買到正品凈水器 瀏覽:992
華北現工業污水坑視頻 瀏覽:347
雨污水管可以共溝嗎 瀏覽:862
超濾正洗水量確定 瀏覽:430
樹脂怎樣稠 瀏覽:804
丙烯酸環氧樹脂ab膠 瀏覽:890
浙江農村生活污水處理適用技術 瀏覽:201
反滲透膜清洗水量計算 瀏覽:914
廢水性漆鐵桶多少錢 瀏覽:120