導航:首頁 > 污水知識 > 電廠末端廢水固化

電廠末端廢水固化

發布時間:2023-08-24 05:30:18

❶ 電廠廢水回用處理設備工藝選擇准則是什麼

火電企業的廢水主要包括循環冷卻水濃縮液和鍋爐純水製取後的濃水。回收後的版廢水用於除灰、權渣或經處理後回用。

水處理包括弱酸處理、超濾(砂濾)、反滲透和外排,使電廠廢水再生、重復使用,通過廢水的回收和處理,實現了廢水的零排放。

另外,通過二級預處理+蒸發結晶末端廢水處理工藝,實現了廢水污泥與結晶鹽資源化綜合利用。

❷ 光伏行業廢水處理過程中產生的caf2污泥屬於什麼廢棄物

光伏行業廢水處理過程中產生的CaF2污泥通常被歸類為固體廢棄物。這是因為CaF2污泥主要由含氟化合物和其他固體雜質組成,例如硅酸鹽和氧化物等。在處理廢水的過程中,通過吸附、沉澱、過濾等方法將污染物固定在污泥中,形成固體廢棄物。這些廢棄物需要經過專業的處理和處置,以避免對環境和人類健康造成負面影響。

針對光伏行業廢水處理過程中產生的 CaF2 污泥,可以採用以下方法進行處理:

例如,對於含有鎘和鉛等重金屬的 CaF2 污泥,可以採用固化劑對污泥進行固化處理,隨後進行無害化處理或填埋處理。同時,可以對污泥中含有的差毀攜鎘和鉛進行回收利用,例如採用化學還原法或電解法進行提取和回收。

如果水天藍環保的回答對您有所余帆幫助,希望能夠獲得您的採納!感謝支持!

❸ 核電站排出的廢水怎麼處理

在核電站,由於處理廢水的量大、放射性物質濃度較高,都建有專門的版放射性污水處理系統,其常用的權工藝是蒸發和過濾。前面提到過,廢水中的大多數放射性元素都不具有揮發性,利用這一特性,科學家對廢水進行加熱令其蒸發,再將留下的無法蒸發的放射性物質作濃縮處理。這個方法有兩個優點,其一,核電站運行過程中本身就有很多無用的廢熱,加熱廢水不會多耗能源;其二,蒸發法基本不需要使用其他物質,不會像其他方法因為污染物的轉移而產生其他形式的污染物。另一種方法是過濾法,原理類似我們日常生活中使用的凈水器。在廢水流經的管道中安放了專門用來吸附放射性物質的樹脂,這樣水流走了,放射性物質留在樹脂中。過一段時間,樹脂吸附「飽」了,可以換上新的樹脂。而吸滿了放射性物質的樹脂可以通過壓縮等方法減小體積,收集後澆築水泥密封,若樹脂中放射性強度不高,放入鐵桶密封也行。

❹ 燃煤電廠高鹽脫硫廢水固化基礎實驗

實驗將模擬高鹽水與水泥、粉煤灰和河砂拌合,製得固化體,養護至特定齡期後,對其抗壓強度和結合氯離子能力進行檢測。
通過控制單變數的方法,實驗探究了不同組分材料的配比對固化體的抗壓強度和結合氯離子能力的影響,並利用XRD對固化體粉末進行了產物表徵。
結果表明:在水泥配比為1.08時固化體的抗壓強度最高,粉煤灰配比大於0.25後固化體的抗壓強度提升明顯,模擬高鹽水配比越大,固化體的抗壓強度越低,河砂量對固化體的抗壓強度影響小。
實驗中製得的固化體在養護28天後,其抗壓強度值在30MPa以上,能達到《混凝土路緣石》標准中路緣石的最低抗壓強度要求。隨著水泥配比的增大,固化體的結合氯離子能力增大21.7%,且受水泥水化所需水量的限制,其增大趨勢漸緩;由於粉煤灰在水化過程中的產物與氯離子生成的s鹽量較少,隨著粉煤灰配比的增大,固化體的結合氯離子能力僅增大4.9%。XRD的結果驗證了水泥固化過程中s鹽的存在。
石灰石/石膏濕法脫硫工藝作為當前燃煤電廠主流脫硫技術,具有脫硫效率高,技術成熟,運行穩定等優點,但為了防止循環漿液系統氯離子等元素的過度富集,脫硫系統需要定期外排一定量的脫硫廢水。脫硫廢水具備以下特點:
1)水質受多種因素影響,且易隨工況及煤種變化而變化;
2)pH在4.5-6.5之間,呈弱酸性,氯離子含量高;
3)以石膏顆粒、二氧化硅、鐵鋁化合物為主要成分的懸浮物含量較高;
4)總溶解性固體含量較高,且變化范圍大,一般在30000-60000mg/L,Ca2+和Mg2+等硬度離子含量高;
5)汞、鉛、砷等重金屬第Ⅰ類污染物超標。因此,脫硫廢水處理倍受業內關注。
隨著《水污染防治行動計劃》(又稱為「水十條」)和《火電廠污染防治可行技術指南》的先後發布,脫硫廢水零排放成為燃煤電廠環保的重中之重。目前常用的處理工藝是神咐碧傳統化學沉澱方法,脫硫廢水經過中和沉澱、沉降、絮凝以及濃縮澄清過程,大部分懸浮物和重金屬離子會被去除,這一工藝能滿足廢水行業排放標准(DL/T997-2006),但無法去除遷移性較強的氯離子等可溶性鹽分,對硒離子去除效果也不佳,無法實現真正的脫硫廢水零排放。
以蒸發結晶和蒸發技術為主的零排放技術是當前脫硫廢水處理領域的研究熱點。蒸發結晶技術工藝復雜,運行成本高,通過簡單預處理後得到的混鹽無利用價值,採用分鹽工藝能得到純度較高的結晶鹽,但會進一步加大運行成本;低溫煙道蒸發以及旁路煙道蒸發技術增加飛灰中含塵量,將處理壓力轉移至電除塵器,粉煤灰中鹽分過高會影響水泥品質。
本研究涉及一種脫硫廢水煙氣濃縮減量及水泥化固定工藝。如圖1所示,在電除塵器後設置帶有液柱噴管系統的煙氣濃縮塔,利用電除塵器後10%-15%的熱煙氣與脫硫廢水液柱循環換熱,實現脫硫廢水5-10倍的減量濃縮。濃縮後的高鹽廢水與水泥、粉煤灰等膠凝材料經混合攪拌機攪拌後進入成型設備,隨後轉入恆定溫度及濕度的養護室中進行養護,根據性能可將養護後的固化體用作混凝土或路緣石等材料。
圖1脫硫廢水煙氣濃縮及水泥化固定工藝圖
上述工藝的有益效果為:
1)充分利用電除塵器後煙氣,與脫硫廢水接觸進行傳質傳熱,達到脫硫廢水濃縮減量的效果,是對電廠余熱資源的充分利用;
2)液柱噴管系統能減少噴淋層設置造成的噴嘴堵塞問題;
3)脫硫塔前煙氣含濕量增加,大幅度減少脫硫系統的工藝補充水;
4)水泥固定脫硫廢水中的鹽分和重金屬離子,將流動性的脫硫廢水轉化為物化性能穩定,不易彌散的固化體,有效避免二次污染;
5)充分利用電廠副產品粉煤灰。
水泥固化技術具有工藝簡單,原材料簡單易獲取,固化體性能穩定的優簡神點,被廣泛應用於放射性廢物、重金屬污染廢水及污泥等廢棄物處理領域。但固化技術用於脫硫廢水處理的研究較少,且主要利用粉煤灰的火山灰反應來實現固化穩定化,考慮到脫硫廢水水量巨大,固化體中水泥摻入少甚至不摻入,因此,製得的固化體抗壓強度性能差,一般只能作填埋處置。Renew等研究了同時固化脫硫廢水濃縮液和粉煤灰後的重金屬浸出性能,水泥占總混合物的10%,用量較少,所得固化體重金屬離子浸出率較低。
然而,對於固化穩定化脫硫廢水後固化體的氯離子遷移問題,還鮮有研究。在混凝土行業中,氯離子引起的鋼筋銹蝕是鋼筋混凝土耐久性能下降的主要原因,氯離子在水泥基材料中主游舉要存在三種形式:
1)與水泥中C3A相化學結合形成Friedel』s鹽;
2)被物理吸附在水化產物C-S-H凝膠上;
3)游離在孔溶液中。
其中,化學結合和物理吸附形式的氯離子統稱為結合氯離子,孔溶液中的游離氯稱為自由氯離子。自由氯離子會造成鋼筋銹蝕,可用結合氯離子能力來評價混凝土中氯離子存在形式。因此,考慮到固化體的用途,實驗利用模擬高鹽水與水泥、粉煤灰等材料拌合製得固化體,同時探究了水泥,粉煤灰等不同組分材料對固化體抗壓強度及結合氯離子能力的影響。
1實驗部分
1.1固化膠凝材料
礦渣硅酸鹽水泥(425#);普通建築用河砂;粉煤灰,取自華北地區某熱電廠;模擬高鹽水,實驗室配製的Cl-濃度為30000mg/L的NaCl溶液;脫硫廢水,某電廠經三聯箱處理後的脫硫廢水,熱濃縮後測得其Cl-濃度為30692mg/L。
1.2實驗方法
(1)固化體制備將水泥、河砂和粉煤灰按一定配比拌合,加入適量模擬高鹽水或脫硫廢水攪拌均勻後轉移至40mm×40mm×40mm的六聯立方體試模,靜置24h成型後置於飽和Ca(OH)2溶液中養護;
(2)抗壓強度檢測固化體養護至規定齡期後,對其進行抗壓強度試驗。恆應力壓力試驗機(河北昌吉儀器有限公司,DYE-300B)以恆定速度移動,當固化體達到最大承受力時,機器停止,通過最大承受力計算抗壓強度;
(3)結合氯離子能力檢測取養護至28d齡期的固化體粉末,分別用去離子水和硝酸浸泡,利用佛爾哈德法測得硝酸溶液中的氯離子濃度,可求得到單位質量漿體中總氯離子量Pt(mg/g);利用莫爾法測得水溶液中氯離子濃度,可求得單位質量漿體中自由氯離子量Pf(mg/g)。結合氯離子量Pb=總氯離子量Pt-自由氯離子量Pf。結合氯離子能力:
2實驗結果與分析
2.1組分材料對固化體抗壓強度的影響
抗壓強度是固化體的重要性能,也是固化體再利用的一個重要指標,為了研究各組分材料對固化體抗壓強度的影響,實驗選用水泥,粉煤灰,高鹽水以及河砂作為固化材料,分別設計了水泥量組,粉煤灰量組,高鹽水量組以及河砂量組。通過改變單一材料的摻入量,來探究各材料對固化體抗壓強度的影響,各組固化體配合比見表1。
表1各組固化體配合比
固化體養護至7d,14d,28d齡期後,對其進行抗壓強度檢測,3個平行樣品作為一組,選擇每組檢測的平均值作為該齡期下固化體抗壓強度值。
(1)水泥量對固化體抗壓強度的影響
圖2為水泥配比在0.92,1.00,1.08以及1.17時,四組固化體在不同齡期的抗壓強度變化趨勢圖。
圖2水泥量對固化體抗壓強度的影響趨勢圖
由圖2可以看出,7d和28d的固化體抗壓強度值隨水泥量增加呈現先增大後減小的趨勢,且都在配比為1.08時達到最大值,但7d抗壓強度總體變化幅度小,28d抗壓強度變化幅度大;14d固化體抗壓強度一直隨水泥量增大而增大,但上升趨勢越來越小,這說明水泥量的增加對固化體前期抗壓強度影響小,對後期抗壓強度影響大。
結合總體趨勢,水泥配比低時固化體在3個齡期的抗壓強度都很小,而配比過高會影響抗壓強度,這是由於在高鹽水量一定的條件下,水泥量的增加意味著水灰比的下降,在高鹽水量能滿足水化要求時,增加的水泥能充分水化,水泥漿內水化產物增多,漿體內毛細孔隙少,膠凝體積增加,因而抗壓強度高。隨著水泥量逐漸增加,高鹽水量不足以提供水泥漿充分水化所需水量時,多餘的水泥使得固化體內未結合的顆粒增多,漿體內毛細孔隙增加,抗壓強度下降。當水泥配比為1.08時,固化體抗壓強度性能最佳。
(2)粉煤灰量對固化體抗壓強度的影響
圖3為粉煤灰配比在0.15,0.20,0.25以及0.30時,四組固化體在不同齡期的抗壓強度變化趨勢圖。
由圖3可以看出,7d固化體抗壓強度隨粉煤灰量增加先增大後減小,說明粉煤灰量過高會影響固化體早期抗壓強度;14d和28d固化體抗壓強度僅在粉煤灰比例大於0.25後有明顯提升,配比低時抗壓強度變化小。
圖3粉煤灰量對固化體抗壓強度的影響趨勢圖
粉煤灰摻量過高會削弱固化體前期抗壓強度,提升後期抗壓強度。這是由於摻入粉煤灰的水泥拌水後,水泥在數量上和能量上占優勢,因而先發生水泥熟料的水化,釋放出Ca(OH)2等水化產物,與粉煤灰中的活性成分SiO2和Al2O3反應。
而粉煤灰中玻璃體結構穩定,表面緻密性較強,前期與Ca(OH)2的火山灰反應緩慢,未反應的粉煤灰使漿體內孔隙增多,固化體強度下降;隨著養護齡期的增加,粉煤灰的水化逐漸佔主導作用,粉煤灰本身存在的形態效應,活性效應以及微集料效應相互影響,粉煤灰表面會生成大量的水化硅酸鈣凝膠體,可以作為膠凝材料的一部分起到提高抗壓強度的作用。
(3)高鹽水量對固化體抗壓強度的影響
圖4為高鹽水量配比在0.62,0.67,0.72以及0.77時,四組固化體在不同齡期的抗壓強度變化趨勢圖。
圖4高鹽水量對固化體抗壓強度的影響趨勢圖
由圖4可以看出,在7d、14d以及28d三個齡期,固化體抗壓強度都隨著高鹽水量的增加而減小,且在14d以及28d齡期時抗壓強度的減小趨勢越來越明顯。在水泥量一定的條件下,高鹽水量增加會導致漿體內水量過大,超過水泥充分水化所需的水量,多餘的水分會在水泥凝結硬化過程中蒸發,在漿體內部留下氣孔,影響固化體的抗壓強度,且提供的水量越大,可蒸發的水量越大,固化體抗壓強度減少的越明顯。
(4)河砂量對固化體抗壓強度的影響
圖5為河砂量配比在0.62,0.67,0.72以及0.77時,四組固化體在不同齡期的抗壓強度變化趨勢圖。
由圖5可以看出,在7d、14d和28d三個齡期固化體抗壓強度隨河砂量的增大總體變化不大,分別在21MPa、30MPa和36MPa左右波動。因此,河砂量的增加對固化體抗壓強度影響較小,這是由於河砂在漿體內中主要起骨架或填充作用,不發生明顯的化學反應。
圖5河砂量對固化體抗壓強度的影響趨勢圖
由圖2-圖5中各組固化體抗壓強度數據可知,固化體28d齡期抗壓強度絕大部分在30MPa以上,而這符合《混凝土路緣石》(JC/T899-2016)標准中路緣石最低抗壓強度要求。因此,水泥固化工藝製得的固化體能滿足標准中抗壓強度要求。
2.2組分材料對固化體結合氯離子能力的影響
結合氯離子能力能直觀反映固化體中化學反應和物理吸附的氯離子能力,是評價鋼筋混凝土鋼筋銹蝕的重要指標。為了研究組分材料對固化體結合氯離子能力的影響,在實驗3.1中選擇水泥量組以及粉煤灰量組固化體,測定其28d齡期下的結合氯離子能力。
(1)水泥量對固化體結合氯離子能力的影響
圖6為水泥配比在0.92,1.00,1.08以及1.17時,四組固化體在28d齡期時結合氯離子能力的變化趨勢圖。
圖6水泥量對固化體結合氯離子能力影響趨勢圖(28d)
由圖6可知,28d齡期時固化體結合氯離子能力隨水泥配比的增大而增強,但增強幅度越來越小,說明水泥量對固化體結合氯離子能力的提升效果是有限的。水泥配比從0.92增大至1.08,結合氯離子能力由0.668增大為0.813,增大了21.7%。這與固化體水化過程有關,水泥用量增大,水化產物隨之增多,對氯離子的化學結合和物理吸附能力增強,因此結合氯離子能力增強,但受水化水量限制,水泥量過高時提升效果有限。
(2)粉煤灰量對固化體結合氯離子能力的影響
圖7為粉煤灰配比在0.15,0.20,0.25以及0.30時,四組固化體在28d齡期時結合氯離子能力的變化趨勢圖。
從圖7的總體趨勢可以看出,28d齡期時固化體結合氯離子能力隨粉煤灰配比的增大而增強,但增強幅度小,粉煤灰配比從0.15提高至0.30時,結合氯離子能力從0.733增大至0.769,僅增大了4.9%。這是因為粉煤灰在水泥水化過程形成的鹼性環境中會生成少量水化鋁酸鈣,可以與氯離子反應生成Fredel』s鹽,但生成量較少。
圖7粉煤灰量對固化體結合氯離子能力影響趨勢圖(28d)
2.3不同水樣製得的固化體XRD分析
利用模擬高鹽水與濃縮脫硫廢水分別製得固化體,養護至28d後對其粉末進行XRD衍射分析,結果如圖8所示。
由XRD衍射圖可知,除了常見的水泥水化產物SiO2和Ca(OH)2,兩種水樣製得的固化體中還存在Friedel』s鹽,這證明模擬高鹽水以及濃縮脫硫廢水中的氯離子與水泥中的C3A相確實發生反應生成了Friedel』s鹽,說明水泥固化過程中生成的Friedel』s鹽起到了重要作用。
圖8不同水樣製得的固化體XRD圖
3結論
(1)本文提出了一種脫硫廢水煙氣濃縮減量及水泥化固定工藝,將煙氣濃縮後的脫硫廢水與水泥、粉煤灰等材料拌合後製得固化體,從而實現污染物的水泥化固定;
(2)固化體抗壓強度隨養護齡期增加而提高,水泥配比為1.08時抗壓強度達到最高值,粉煤灰配比大於0.25後對抗壓強度提升明顯,高鹽水配比越大,抗壓強度越低,河砂量對固化體抗壓強度影響小;
(3)水泥配比從0.92增大至1.08,結合氯離子能力增大21.7%,粉煤灰配比從0.15提高至0.30時,結合氯離子能力僅增大了4.9%;
(4)XRD的結果驗證了水泥固化過程中Friedel』s鹽的存在。
相信經過以上的介紹,大家對燃煤電廠高鹽脫硫廢水固化基礎實驗也是有了一定的認識。歡迎登陸中達咨詢,查詢更多相關信息。

更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

❺ 火力發電廠廢水處理

火力發電廠廢水處理

電的發明徹底改變了人的生產、生活方式,但同時為了滿足不斷增加的電量需求人必須不斷的建發電廠。隨著新能源的崛起替代了傳統的煤炭發電,但新能源設備造價較高且受地域限制,燃煤火力發電廠依舊占據了發電廠大半江山。能源需求量的日益增加,促使環境破壞加重,如何把煤電廠危害降低已成為當務之急。

我在這里整理了片火力發電廠廢水處理方法,一起來看看吧

一、火力發電廠廢水特點:

與普通工業廢水相比,燃煤電廠的廢水總的特點如下:

1、水質水量差異大,劃分的廢水種類較多。

2、廢水中的污染成分以無機物為主,多含油。

3、間斷性排水較多。

二、燃煤電廠廢水來源

火力電廠來源廣泛,但廢水主要有一下幾類:

1、沖灰廢水。來源於沖洗爐渣和除塵器排灰的廢水,在整個燃煤電廠中佔了一半比例。沖灰廢水中的污染物有懸浮物、PH值和含鹽量等,這些物質含量與燃燒的煤炭種類、燃燒方式和輸灰方式有關。

2、脫硫廢水。煤炭中有大量雜質的其中就含硫,煤炭在鍋爐燃燒後煙氣中含硫,這些含硫煙氣不能直接排放,需要煙氣濕法脫硫。脫硫廢水就是這個過程中產生的。這類廢水高渾濁度、高硬度、高含鹽量、污染物種類多。且不同燃煤電廠所用的煤炭是不同的,使得脫硫廢水水質變化波動較大。

3、化學廢水及含油廢水。此類廢水是燃煤電廠中各種工業排水的總稱,包含冷卻排放水、輸煤系統沖洗廢水、含油廢水、冷卻塔排污廢水等。

三、火力發電廠廢水處理方法

1、沖灰廢水。燃煤電廠廢水中佔比例較多的沖灰廢水,一般處理工藝為調節池→加熱混凝劑進入混凝器→助凝劑→污水凈化器,到此步驟沖渣廢水被分為污泥和清水,污泥進入污泥池灰渣進行脫水即可;清水進入清水池排出即可。

2、化學廢水處理。化學廢水分為無機廢水和有機廢水兩種,需要分開處理:無機廢水先進入中和池,調節PH值在進行進一步處理。因為含有大量酸和鹼,處理時考慮回收利用,採用沉澱、混凝、吸附、離子交換、電滲析等方法都能有效處理;有機廢水處理,有機廢水來自鍋爐的有機酸洗廢水,採用蒸發池處理即可。

3、脫硫廢水。脫硫廢水因為其成分復雜,含油亞硝酸鹽、硫酸鹽和較多懸浮物,且脫硫廢水中酸性物質較多,腐蝕性強,要經過合理的處理才能排放。單一的設備是無法對其進行有效處理的,所以脫硫廢水要進行進一步深入處理。脫硫廢水先進入預處理系統進行絮凝、沉降、中和,減少廢水中的懸浮物,提高廢水PH值,為深度處理做准備。深入處理。

我推薦採用蒸發法,用MVR蒸發器來進行處理,MVR蒸發器技術雖然較新但是工藝較成熟,但短短十幾年已在各各行各業廣泛應用,選擇一家合適的蒸發器廠直接關繫到能否對脫硫廢水達到「零排放標准」。

❻ 電廠化學水處理的流程。

電站的水處理流程分為兩大組成部分,第一部分是物理軟化水流程,第二部分是化學除鹽水流程。


物理軟化水流程:來自廠區供水管網的原水(又稱生水),經過石英砂過濾器、活性炭過濾器,除去了原水中的固體顆粒和懸浮雜質,稱為澄清水;澄清水再經過反滲透裝置清除了其中大部分鈣、鎂離子,成為軟化水。


化學除鹽水流程:軟化水經過除碳器,除去水中的二氧化碳(嚴格地說是HCO3—),再經過混床,除去水中殘存的鈣、鎂、鈉、硅酸根等有害離子,成為除鹽水,也就是鍋爐補給水,存儲在除鹽水箱,再用除鹽水泵打入除氧器,最終經給水泵打入鍋爐汽包。

拓展資料:

關於「軟化水」

在日常生活中,我們經常見到水壺用久後內壁會有水垢生成。這是什麼原因呢?原來在我們取用的水中含有不少無機鹽類物質,如鈣、鎂鹽等。這些鹽在常溫下的水中肉眼無法發現,一旦它們加溫煮沸,便有不少鈣、鎂鹽以碳酸鹽形成沉澱出來,它們緊貼壺壁就形成水垢。我們通常把水中鈣、鎂離子的含量用「硬度」這個指標來表示。硬度1度相當於每升水中含有10毫克氧化鈣。低於8度的水稱為軟水,高於17度的稱為硬水,介於8~17度之間的稱為中度硬水。雨、雪水、江、河、湖水都是軟水,泉水、深井水、海水都是硬水。

水的硬度主要由其中的陽離子:鈣(Ca2+)、鎂(Mg2+)離子構成。 當含有硬度的原水通過交換器的樹脂層時,水中的鈣、鎂離子被樹脂吸附,同時釋放出鈉離子,這樣交換器內流出的水就是去掉了硬度離子的軟化水,當樹脂吸附鈣、鎂離子達到一定的飽和度後,出水的硬度增大,此時軟水器會按照預定的程序自動進行失效樹脂的再生工作,利用較高濃度的氯化鈉溶液(鹽水)通過樹脂,使失效的樹脂重新恢復至鈉型樹脂。

(資料來源:網路:軟化水)

❼ 火電廠廢水及廢水處理

火電廠廢水及廢水處理具體內容是什麼,下面中達咨詢為大家解答。
1、火電廠廢水的特點和分類
1.1廢水的特點
與化工、造紙等工業廢水相比,火電廠的廢水有以下特點:水質水量差異很大,劃分的廢水的種類較多;廢水中的污染成分以無機物為主,有機污染物主要是油;間斷性排水較多。
1.2廢水的分類
同一類廢水可以採用同一類處理工藝實現回用。所以合理的分類是廢水綜合利用的基礎,根據火電廠各類廢水的水質水量特點,以處理回用為目標,可以將火電廠的廢水分為以下幾類:
1.2.1含鹽濃度較低的廢水。這類廢水包括機組雜排水、工業冷卻水系統排水、生活污水等。在使用過程中鹽的含量不會明顯的升高,廢水處理不考慮脫鹽,廢水處理成本低。處理後的水質可以達到或接近工業水的水質標准,可以替代新鮮水源。該類廢水是電廠中回用比例較高的廢水。
1.2.2含鹽濃度較高的廢水。水在使用過程中因為濃縮或者加入了酸、鹼和鹽而使含鹽的濃度提高很多,回用需要脫鹽。如反滲透濃排水、離子交換設備再生廢水、循環水排污水等。這種廢水可以直接用於沖灰、除渣和煤場噴淋。回用必須進行脫鹽處理,因脫鹽成本較高,目前該類廢水回收利用率較低。
1.2.3簡單處理可回用的廢水。包括含煤廢水、沖灰除渣廢水。這類廢水懸浮物很高,處理工藝以沉澱為主,目的是除去水中的懸浮物。含煤廢水的懸浮成分主要是煤粉,沖灰除渣廢水則主要是灰粒。由於組分比較特殊,通常不與其他廢水混合處理,而是單獨處理後循環使用。
1.2.4不能回用的極差的廢水。這些廢水所含的成分比較復雜,處理成本很高,但水量較小,一般單獨處理後達標排放。例如脫硫廢水。還有一些間斷廢水,如化學清洗廢水、空預器煙氣側沖洗廢水等都經過處理後達標排放。
2、火電廠廢水處理
2.1火電廠沖灰水處理
沖灰水是火電廠主要污水之一,沖灰水中超出標準的主要指標是pH值、懸浮物、含鹽量和氟等,個別電廠還有重金屬和砷等。沖灰水處理的思路一是減少水的用量,二是廢水處理再利用或達標排放。如何處理,發電廠根據環保和經濟的雙重效果來抉擇。具體的一些處理的方法是:
2.1.1濃縮水力除灰。濃縮水力除灰是將原灰水比1:(15—20)降至1:5左右,灰水比例應根據全廠水量平衡及灰場水量平衡綜合考慮來確定。實際生產中就是在不影響產量和其他指標的前提下降低灰廠的用水量。濃縮水力除灰既減少廠區水補給量,又減少了水的排放量。可謂是經濟環保雙贏的好方法。
2.1.2沖灰水中懸浮物去除。沖灰水的懸浮物含量主要與灰場(沉澱池)大小等因素有關。解決沖灰水中懸浮物超標,應重點考慮沖灰廢水在沉澱池中有足夠的沉澱時間。
2.1.3沖灰水pH值超標治理。沖灰廢水的pH值與煤質、沖灰水的水質、除塵方式及沖灰系統有關。國外一般採用加酸、爐煙CO2處理(降低pH)和直流冷卻排水中和等方法。爐煙CO2的處理既減少了CO2向大氣的排放又降低了沖灰廢水的pH值。爐煙CO2處理的化學反應原理:
CO2+H2O=H2CO3 H2CO3=H++HCO3- H++OH-=H2O
2.1.4沖灰水中氟處理;一般用鈣鹽沉澱法和粉煤灰法等,鈣鹽沉澱法處理時要加入氫氧化鈣和氯化鈣,處理後的pH值達到9~12,且氟濃度仍>30mg/L,達不到廢水綜合排放標准,還需要加酸降低pH值。粉煤灰處理含氟廢水,具有工藝簡單、以廢治廢,氟的去除率達90%上。鈣鹽沉澱法的離子反應原理:
Ca(OH)2=Ca2++2OH- CaCl2=Ca2++2Cl- 2F-+Ca2+=CaF2↓
H++OH-=H2O
3、火電廠脫硫廢水處理
3.1中和
中和處理的主要包括兩個方面:一是發生酸鹼中和反應,調整pH在6—9之間。二是沉澱部分重金屬,使鋅、銅、鎳等重金屬鹽生成氫氧化物沉澱。常用的鹼性中和劑有石灰、石灰石、苛性鈉,酸性中和劑是碳酸鈣等。反應原理:
H++OH-=H2O CaCO3+2H+=Ca2++CO2↑+H2O
CaO+H2O=Ca(OH)2 Ca(OH)2=Ca2++2OH-
NaOH=Na++OH- Cu2++2OH-=Cu(OH)2↓
Zn2++2OH-=Zn(OH)2↓ Ni2++2OH-=Ni(OH)2↓
3.2化學沉澱
廢水中的重金屬離子、鹼土金屬常用氫氧化物和硫化物沉澱法去除,常用的葯劑分別為石灰和硫化鈉。離子反應原理:
CaO+H2O=Ca(OH)2 Ca(OH)2=Ca2++2OH-
Cu2++2OH-=Cu(OH)2↓ Zn2++2OH-=Zn(OH)2↓
Na2S=2Na++S2- Cu2++S2-=CuS↓
Zn2++S2-=ZnS↓ Mg2++2OH-=Mg(OH)2↓
3.3混凝澄清處理
經過化學沉澱處理後的廢水中,含有許多微小的懸浮物和膠體物質,必須加入混凝劑使之凝聚成大顆粒而沉降下來。常用的混凝劑有硫酸鋁、聚合氯化鋁、三氯化鐵、硫酸亞鐵等;常用的助凝劑有石灰、高分子絮凝劑等。形成混凝劑的有關化學反應原理:
Al2(SO4)3=2Al3++3SO42- AlCl3=Al3++3Cl-
FeCl3=Fe3++3Cl- FeSO4=Fe2++SO42-
Fe2++3H2O=Fe(OH)3↓+3H+ Al3++3H2O=Al(OH)3↓+3H+
Fe3++3H2O=Fe(OH)3↓+3H+ Fe2++3H2O=Fe(OH)2↓+3H+
4Fe(OH)2+O2+2H2O=4Fe(OH)3↓
4、火電廠化學廢水、含油廢水處理
4.1化學廢水處理
4.1.1酸鹼廢水處理:先將酸性廢水(或鹼性廢水)排人中和池,然後再將鹼性廢水(或酸性廢水)排人,攪拌中和,使pH值達到6—9後排放。離子反應原理:
H++OH-=H2O
4.1.2無機廢水處理:主要污染物為酸或鹼、懸浮物、溶解鹽等。酸或鹼可採用中和法處理,濃度較高時,可回收利用。懸浮物或膠體可採用沉澱、混凝等方法去除。溶解鹽主要靠吸附、離子交換、電滲析等方法除去。
4.1.3有機廢水處理:是鍋爐有機酸洗的廢水,利用蒸發池進行蒸發處理。
4.2含油廢水處理
含油廢水處理有多種處理方法,下面介紹期中的一種——沉澱法。
該法採用薄層沉澱組件的聚結裝置,這種裝置克服了聚結過濾器每單位體積的分離表面大的缺點,主要優點是當薄板間隙或管徑和傾斜角度選擇合理時,漂浮的和沉降的微粒能自行排走而不需任何強制清理。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

❽ 電廠是如何處理廢水的

  1. 火電企業的復廢水主要包括循環製冷卻水濃縮液和鍋爐純水製取後的濃水。回收後的廢水用於除灰、渣或經處理後回用。

  2. 廢水處理包括弱酸處理、超濾(砂濾)、反滲透和外排,使電廠廢水再生、重復使用,通過廢水的回收和處理,實現了廢水的零排放。

  3. 另外,通過二級預處理+蒸發結晶末端廢水處理工藝,實現了廢水污泥與結晶鹽資源化綜合利用。

閱讀全文

與電廠末端廢水固化相關的資料

熱點內容
太陽能光伏污水處理站竣工驗收報告 瀏覽:315
法百利負離子空氣凈化器怎麼裝 瀏覽:487
順平腸衣城污水處理 瀏覽:231
為什麼水廠要幫你裝凈水器 瀏覽:172
污水廠甲烷的排放量 瀏覽:510
摩托車分別有什麼濾芯 瀏覽:210
污水處理硫酸用量 瀏覽:885
水蒸氣蒸餾橙油實驗報告 瀏覽:640
沁園凈水器電源接哪裡 瀏覽:53
正規中空纖維超濾膜廠家電話 瀏覽:999
呂梁提升器加工 瀏覽:290
昂克賽拉換機油濾芯什麼價格 瀏覽:992
生活污水病毒標准 瀏覽:541
下面放飲水機桶的飲水機怎麼用 瀏覽:521
血透超濾怎麼計算 瀏覽:871
污水調試的書籍 瀏覽:335
凈水機ro膜使用時間 瀏覽:128
飲水機出現e2是什麼原因 瀏覽:909
1噸再生紙排多少污水 瀏覽:36
陽離子交換量單位 瀏覽:445