導航:首頁 > 污水知識 > 污水處理廠成本模型

污水處理廠成本模型

發布時間:2023-08-03 05:50:30

㈠ 幾種污水處理設計計算方法的比較

全世界污水處理已經歷了幾十載的高速發展,而污水處理理論的提出則可追溯到一百多年前。現今全球主流的污水處理工藝從處理形式上分主要以微生物懸浮生長為主的活性污泥法和以微生物附著生長為主的生物膜法兩種。對於現存污水處理廠設計計算,主要是確定污泥齡和污泥生長數量,以及生物反應池的池容和停留時間。對於這幾個重要參數的確定,國內外專家學者提出了很多的方法,現在歸納起來,主要有三種:一是以經驗為主的污泥負荷法,二是以經驗和理論相結合為主的泥齡法,三則是以理論為重點的數學模型法。污泥負荷法污泥負荷法是出現較早的一種計算方法,其中較核心的參數是單位時間單位質量污泥的負荷。這種計算方法簡便易行,十分容易理解,並且在眾多實例工程中已經成功應用,充分說明了它的正確性。污泥負荷法的缺點在於其取值,規范中對於不同情況給出了建議值,然而這些值的取值范圍非常廣泛,上下限的差別達到兩倍,甚至再考慮脫氮除磷的情況時,相差達三倍之多。

㈡ 數學建模題求解——污水處理曝氣池過程優化問題

關於水污染的話題不斷被提起,2014 年 9 月有媒體曝光內蒙古和寧夏交界 處的騰格里沙漠存在企業非法排污現象,已對周圍環境造成污染,由此引起大家 對水污染嚴重程度的廣泛關注和民眾環保意識的覺醒。 污水處理被廣泛應用於建築、農業、交通、能源、石化、環保、城市景觀、 醫療、餐飲等各個領域。活性污泥法是污水處理的常用方法,據報告 95%以上的 城市污水和 35%以上的工業廢水採用活性污泥法處理。曝氣池是所有活性污泥法 的心臟,其作用是攪拌混合液使泥、水充分接觸和向微生物供氧。一種攪拌方式 是使同時進曝氣池的泥和水充分混合並一直保持到流出池子,而不和已在池中的 混合液相混以免發生短路現象。曝氣池採用長條形就是以保證同時入池的泥和水 都同時出池,使同時入池的廢水有相同的曝氣時間。 化學需氧量(COD,Chemical oxygen demand)是污水處理最重要的處理指 標,用來表明在出水或純凈水中還有多少殘留的有機污染。某污水處理廠採用活 性污泥法,記錄了曝氣池工段2014年上半年的主要參數值:進水流量、入口COD、 溶解氧、鼓風機風管壓力、活性污泥濃度、鼓風機出口閥開度、鼓風機入口閥開 度、氧化還原點位、出口 COD 等;典型的 COD 等參數每半小時為一個歷史記 錄周期;流量、開度等其他參數每 10 分鍾一個歷史記錄周期。具體數據參見附 件 1 和附件 2。 問題一:延遲估計問題。分析原有數據中各個參數對出口 COD 的時間延遲 關系,並進行結果輸出。 問題二:參照前一個問題的結果,建立各個參數對 COD 的非線性預測模型。 問題三:參照前兩個問題的結果,為了使 COD 的值降低到 35,應該怎麼調 節各個參數。其中如果 COD 值已經達到 35,則不需要調整其他參數。

㈢ 水務管理軟體哪個比較不錯的 介紹介紹

你找重慶文智之公司量身定做一個,我們公司就是他們做的,還不錯,挺實惠好用,能幫助你解決問題!

㈣ 武漢華信數據系統有限公司的發表專業論文

2013年4月,由我司和武漢市城市排水發展有限公司合力編輯的《打造水務行業數字化運營管理,贏得行業未來》一文在水行業具有較高權威的《水與中國》雜志刊登,獲得業內人士一致贊同,水務數字化運營也在業內成了熱議話題。
《打造水務數字化運營,贏得行業未來》
污水處理行業作為國家新興戰略產業之一,國家「十二五」規劃對城鎮污水處理提出了更高的要求,並明確要求縣級鎮、尤其是重點鎮必須建立污水處理廠。截止2012年9月,全國設市城市、縣累計建成城鎮污水處理廠3272座,處理能力達到1.40億立方米/日,比2010年底全國設市城市、縣累計建成城鎮污水處理廠2833座增加439座,比污水處理能力1.25億立方米/日增加150萬立方米/日,由此可見,城鎮污水處理廠不論是數量和處理能力都保持了持續高速增長的態勢。
污水處理廠在承擔環保減排的任務的同時,需要消耗大量的水、電、葯。據統計,水、電、葯成本占污水處理廠生產運行管理直接成本的90%以上。至2010年我國污水排放量達到800億噸左右,而我國2010年污水處理電耗為0.2至0.56度每噸之間,按此測算,光電量消耗就至少需要150億度以上,再加上設備損耗、葯耗、水耗等,其費用更為龐大。假設能通過有效的節能管理將城市污水處理廠的運行費用即使節省1%,那也是天文數字。
目前國內的城鎮污水處理項目通常存在配套污水收集系統不完善,污水來量不足,污水中污染物濃度低達不到設計進水濃度,污水處理運行管理人才短缺,污水系統不穩定,運行費用偏高等棘手問題。這些問題一方面需要各級政府加強管理和監督,另一方面也需要污水處理企業通過加強或改進自身的工藝運行管理方式、方法和轉變運營管理模式,提升污水廠運行和企業運營管理水平,盡可能的將上述問題產生的影響降至最低。
水務企業現狀
隨著我國水務環保行業市場化程度的逐步加大,市場上涌現出許多全國性和區域性的大型水務集團公司,有些集團公司擁有全國各地上百家的污水處理項目。下屬污水處理廠地域分布廣泛、各廠運營管理水平不一,運營管理人才短缺等問題日益突出,這使得集團公司迫切需要進行集約化管理,實現企業資源的合理配置,通過有效監管提升下屬污水處理企業運營管理能力。信息化運營管理模式逐步成為大型水務集團公司提升企業整體運營管理水平、應對逐漸激烈的市場化競爭、獲取最大化經濟效益的發展方向。
水務綜合運營管理系統嶄露頭角
加強城市污水處理系統綜合運營管理、節能優化調度研究和實用技術開發,對實現工藝運行由經驗判斷走向定量分析,由依賴個體式英雄發展為依靠專家團隊能力,打造規范化、程序化、專業化、集約化、智能化、精細化運營管理模式具有重要的意義。
縱觀國內專注於污水處理行業綜合運營管理系統開發的一些公司,如華信數據、上自所、亞控科技等,城市污水處理系統綜合運營管理系統一般涵蓋廠級運行管理和公司級運營管理兩部分:
廠級的運營管理
污水處理廠級的運營管理以污水處理工藝運行為中心,以污水處理工藝的穩定運行和保持生產設備良好狀態,出水水質達標排放為基礎,通過建立全廠生產過程式控制制體系,將污水廠及下屬泵站的各類在線儀表、設備所反映的生產運行數據進行採集、傳輸、信息共享,利用計算機技術對這些數據進行篩選、分析,將運行管理人員關注的重點數據直觀的展現,然後藉助污水處理工藝數學模型和專家系統對這些數據進行深入的數據挖掘和分析,實現污水處理廠工藝運行情況的分析預警、工藝異常處理的優選方案、各工藝運行單元以及全廠運行的優化調度分析方案、與工藝運行密切相關的設備性能分析、全廠運行成本分析等功能,從而輔助廠級管理人員提高工藝運行管理水平和綜合運營管理水平。最大程度的降低生產運行各個環節的電耗、葯耗,降低系統運行直接費用;最大程度的提高設備的使用效率和壽命,降低設備故障率,從而降低設備維修成本;提高運營管理工作效率,降低運行維護人員數量,節省人工成本;最終實現達標、穩定、高效、低耗的污水處理廠運行目標。
公司級、集團級的運營管理
公司級、集團級運營管理以集約化管理為目標,藉助物聯網技術實現對下屬污水處理廠生產運行的遠程集中監管,統一運行調度和工藝運行指導,利用計算機系統對各污水廠分析和篩選過的運營數據進行統計匯總和深入的數據分析挖掘,形成指導公司整體運營決策的工藝分析、設備分析、成本分析、風險分析等輔助決策工具,輔助企業決策層應對水務行業的激烈競爭,實現企業發展的戰略目標和投資回報率的最大化。
在遠程集中監管方面,通過物聯網技術建立下屬各污水處理廠和泵站的生產運行情況的智能化、實時預警機制,在公司管理人員關注的關鍵數據或指標發生異常時,通過聲、光、電、手機短息等形式,及時通知到相關人員。管理人員無論身處何處,只要能連接網路,即可遠程、實時、直觀查看關鍵工藝數據、設備運行狀況。
在運行調度和工藝運行指導方面,具有豐富工藝管理經驗的專家團隊無需親赴現場,藉助視頻會議系統,在公司監控大屏上即可遠程、實時查看到現場工作畫面,輔以各構築物運行數據、關鍵工藝數據和設備的運行情況,即可輔助各廠解決各類工藝運行難題。這將有效解決管理人才不足,提高工藝運行問題處理效率。
輔助經營決策方面,經營決策的關鍵數據都由計算機系統自動採集、分析篩選、匯總統計,即保證了數據的及時性和准確性,又可將公司管理人員從「數據海洋」中解脫出來,所有經營決策數據以圖表、報告等方式快捷、直觀的展現,分析結果一目瞭然。極大的方便決策者進行戰略目標和經營方針制定。
小結
水務綜合運營管理系統從根本上解決水務行業發展的難題,它建立企業門戶,解決企業信息傳遞脫節、信息孤島問題;建立企業工作流平台,規范化、標准化工作流程,提高管理水平,實現有效監管;健全企業預案庫、知識庫,提高人員知識水平和素質,保障安全高效生產;建立企業動態決策支持系統,實現專業化、科學化管理決策;建立智能化污水處理工藝模型和完善的工藝調度方案,實現生產優化調度,節約能耗,降低成本;建立統一的考核體系和標准,滿足上級各種考核要求,提高運營管理水平。
在國家政策的大力支持下,會有越來越多的污水運營管理企業誕生,如何在激烈競爭中立於不敗之地?——利用綜合運營管理系統,打造數字化運營管理模式,才能贏得行業未來!
2013年10月,武漢華信數據系統有限公司的《基於物聯網的污水處理綜合運營管理平台整體解決方案》是唯一入選《2013年中國物聯網產業發展藍皮書》作為「智慧環保」領域的案例,且中國科學院物聯網研究發展中心授予武漢華信數據系統有限公司為專家顧問組成員。此項案例在2013年中國物聯網行業發展峰會獲得業內人士一致好評,尤其對國內大型環保集團公司在綜合運營管理方面拓展了新思路。
2013年11月,由武漢華信數據系統有限公司主編的專業論文《基於物聯網的水務綜合運營管理平台》在《物聯網與雲計算》雜志刊登,受到業內人士焦點關注。《物聯網與雲計算》雜志的主辦單位是工業和信息部、科學技術部,在行業有較高權威性和專業性,它致力於打造中國物聯網產業媒體「第一品牌」
2014年2月,2014年2月,為了倡導智慧水務的管理理念,推廣在水務企業的應用,武漢華信數據系統有限公司主編的評論文章《智慧水務管理平台在水務企業的應用》在國內權威水務行業雜志《水工業市場》刊登,受到業內人士焦點關注。

㈤ 好氧活性污泥處理生活廢水

活性污泥法是以活性污泥為主體的廢水生物處理的主要方法。活性污泥法是向廢水中連續通入空氣,經一定時間後因好氧性微生物繁殖而形成的污泥狀絮凝物。其上棲息著以菌膠團為主的微生物群,具有很強的吸附與氧化有機物的能力。
你是想問好氧活性污泥處理生活廢水的工藝流程呢?還是想問出水的具體數據呢?
活性污泥工藝是城市污水處理的主要工藝,它的設計計算有三種方法:污泥負荷法、泥齡法和數學模型法。三種方法在操作上難易程度不同,計算結果的精確度不同,直接關繫到設計水平、基建投資和處理可靠性。正因為如此,國內外專家都在進行大量細致的研究,力求找出一種精確度更高而又便於操作的計算方法。
1 污泥負荷法
這是目前國內外最流行的設計方法,幾十年來,運用該法設計了成千上萬座污水處理廠,充分說明它的正確性和適用性。但另一方面,這種方法也存在一些問題,甚至是比較嚴重的缺陷,影響了設計的精確性和可操作性。
污泥負荷法的計算式為〔1〕:
V=24LjQ/1000FwNw=24LjQ/1000Fr (1)
污泥負荷法是一種經驗計演算法,它的最基本參數Fw(曝氣池污泥負荷)和Fr(曝氣池容積負荷)是根據曝氣的類別按照以往的經驗設定,由於水質千差萬別和處理要求不同,這兩個基本參數的設定只能給出一個較大的范圍,例如我國的規范對普通曝氣推薦的數值為:
Fw=0.2~0.4 kgBOD/(kgMLSS·d)
Fr=0.4~0.9 kgBOD/(m3池容·d)
可以看出,最大值比最小值大一倍以上,幅度很寬,如果其他條件不變,選用最小值算出的曝氣池容積比選用最大值時的容積大一倍或一倍以上,基建投資也就相差很多,在這個范圍內取值完全憑經驗,對於經驗較少的設計人來說很難操作,這是污泥負荷法的一個主要缺陷。
污泥負荷法的另一個問題是單位容易混淆,譬如我國設計規范中Fw的單位是kgBOD/(kgMLSS·d),但設計手冊中則是kgBOD/(kgMLVSS·d),這兩種單位相差很大。MLSS是包括無機懸浮物在內的污泥濃度,MLVSS則只是有機懸浮固體的濃度,對於生活污水,一般MLVSS=0.7MLSS,如果單位用錯,算出的曝氣池容積將差30%。這種混淆並非不可能,例如我國設計手冊中推薦的普通曝氣的Fw為0.2~0.4kgBOD/(kgMLVSS·d)〔2〕,其數值和設計規范完全一樣,但單位卻不同了。設計中經常遇到不知究竟用哪個單位好的問題,特別是設計經驗不足時更是無所適從,加上近年來污水脫氮提上了日程,當污水要求硝化、反硝化時,Fw、Fr取多少合適呢?
污泥負荷法最根本的問題是沒有考慮到污水水質的差異。對於生活污水來說,SS和BOD濃度大致有數,MLSS與MLVSS的比值也大致差不多,但結合各地的實際情況來看,城市污水一般包含50%甚至更多的工業廢水,因而污水水質差別很大,有的SS、BOD值高達300~400 mg/L,有的則低到不足100 mg/L,有的污水SS/BOD值高達2以上,有的SS值比BOD值還低。污泥負荷是以MLSS為基礎的,其中有多大比例的有機物反映不出來,對於相同規模、相同工藝、相同進水BOD濃度的兩個廠,按污泥負荷法計算曝氣池容積是相同的,但當SS/BOD值差異很大時,MLVSS也相差很大,實際的生物環境就大不相同,處理效果也就明顯不同了。
綜上所述,污泥負荷法有待改進。因此,國際水質污染與控制協會(IAWQ)組織各國專家,於1986年首次推出活性污泥一號模型(簡稱ASM1)〔3〕,1995年又推出了活性污泥二號模型(簡稱ASM2)〔4、5〕。
2 數學模型法
數學模型法在理論上是比較完美的,但在具體應用上則存在不少問題,這主要是由於污水和污水處理的復雜性和多樣性,即使是簡化了的數學模式,應用起來也相當困難,從而阻礙了它的推廣和應用。到目前為止,數學模型法在國外尚未成為普遍採用的設計方法,而在我國還沒有實際應用於工程,仍停留在研究階段。
數學模型法的主要問題是模型中有很多系數和常數,ASM1中有13個,ASM2中有19個,它們都需要設計人員根據實際污水水質和處理工藝的要求確定具體數值,其中多數要經過大量監測分析後才能得出,而且不同的污水有不同的數值。由於污水水質多變,確定這些參數很困難,如果這些參數有誤,就直接影響到計算結果的精確性和可靠性。國外已經提出了這些參數的數值,但我國的污水成分與國外有很大差別,特別是污水中的有機物成分差別很大,盲目套用國外的參數值肯定是不行的。因此,要將數學模型法應用於我國的污水處理設計,必須組織力量監測分析各種污水水質,確定有關參數,才有可能把數學模型實用化。然而,從我國目前情況看,數據分析和積累恰恰是最大的薄弱環節之一,我國已運轉的城市污水處理廠有上百座,至今連一些最基本的數據都難以確定,更不用說數學模型法所需的各種數據了,顯然,要在我國應用數學模型法還需做大量的工作,還需要相當長的時間。
3 泥齡法
3.1泥齡法的計算式
設計規范中提出了按泥齡計算曝氣池容積的計算公式〔1〕:
V=〔24QθcY(Lj-Lch)/1 000Nwv(1+Kdθc) (2)
設計規范對式中幾個關鍵參數提出了推薦值:
Y=0.4~0.8(20℃,有初沉池)
Kd=0.04~0.075(20℃)
當水溫變化時,按下式修正:
Kdt=Kd20(θt)t-20 (3)
式中 θt——溫度系數,θt=1.02~1.06
θc——高負荷取0.2~2.5,中負荷取5~15,低負荷取20~30
可以看出,它們的取值范圍都很寬,Y值的變化幅度達100%,Kd值的變化幅度達87.5%,θc值的變化幅度從50%到幾倍,實際計算時很難取值,這也是泥齡法在我國難以推廣的原因之一。
為了使泥齡計演算法實用化,筆者根據自己的設計體會,建議採用德國目前使用的ATV標准中的計算公式,並對式中的關鍵參數取值結合我國具體情況適當修改。實踐證明,按該公式計算概念清晰,特別便於操作,計算結果都能滿足我國規范的要求,不失為一種簡單、可信而又十分有效的設計計算方法。其基本計算公式為:
V=24QθcY(Lj-Lch)/1000Nw (4)
式中 Y——污泥產率系數(kgSS/kgBOD)
Q、Lj、Lch值是設計初始條件,是反映原水水量、水質和處理要求的,在設計計算前已經確定。
泥齡θc是指污泥在曝氣池中的平均停留時間,其數值為:
θc=VNw/W (5)
式中 W——剩餘污泥量,kgSS/d
W=24QY(Lj-Lch)/1000 (6)
根據以上計算式,採用泥齡法設計計算活性污泥工藝時,只需確定泥齡θc、剩餘污泥量W(或污泥產率系數Y)和曝氣池混合液懸浮固體平均濃度Nw(MLSS)即可求出曝氣池容積V。與污泥負荷法相比,它用泥齡θc取代Fw或Fr作為設計計算的最基本參數,與數學模型法相比,它只需測定一個污泥產率系數Y,而不需測定13或19個參數數據。
3.2泥齡的確定
泥齡是根據理論同時又參照經驗的累積確定的,按照處理要求和處理廠規模的不同而採用不同的泥齡,德國ATV標准中單級活性污泥工藝污水處理廠的最小泥齡數值見表1。
表1 德國標准中活性污泥工藝的最小泥齡
d處理目標處理廠規模
≤5 000 m3/d≥25 000 m3/d
無硝化54
有硝化(設計溫度:10 ℃)108
有硝化、反硝化(10 ℃)
VD/V=0.2
VD/V=0.3
VD/V=0.4
VD/V=0.512
13
15
1810
11
13
16
有硝化、反硝化、污泥穩定25不推薦
注 VD/V為反硝化池容與總池容之比。

表中對規模小的污水廠取大值,是考慮到小廠的進水水質變化幅度大,運行工況變化幅度大,因而選用較大的安全系數。
泥齡反映了微生物在曝氣池中的平均停留時間,泥齡的長短與污水處理效果有兩方面的關系:一方面是泥齡越長,微生物在曝氣池中停留時間越長,微生物降解有機污染物的時間越長,對有機污染物降解越徹底,處理效果越好;另一方面是泥齡長短對微生物種群有選擇性,因為不同種群的微生物有不同的世代周期,如果泥齡小於某種微生物的世代周期,這種微生物還來不及繁殖就排出池外,不可能在池中生存,為了培養繁殖所需要的某種微生物,選定的泥齡必須大於該種微生物的世代周期。最明顯的例子是硝化菌,它是產生硝化作用的微生物,它的世代周期較長,並要求好氧環境,所以在污水進行硝化時須有較長的好氧泥齡。當污水反硝化時,是反硝化菌在工作,反硝化菌需要缺氧環境,為了進行反硝化,就必須有缺氧段(區段或時段),隨著反硝化氮量的增大,需要的反硝化菌越多,也就是缺氧段和缺氧泥齡要加長。上述關系的量化已體現在表1中。
無硝化污水處理廠的最小泥齡選擇4~5 d,是針對生活污水的水質並使處理出水達到BOD=30 mg/L和SS=30 mg/L確定的,這是多年實踐經驗的積累,就像污泥負荷的取值一樣。
有硝化的污水處理廠,泥齡必須大於硝化菌的世代周期,設計通常採用一個安全系數,以確保硝化作用的進行,其計算式為:
θc=F(1/μo) (7)
式中θ c——滿足硝化要求的設計泥齡,d
F——安全系數,取值范圍2.0~3.0,通常取2.3
1/μo——硝化菌世代周期,d
μo——硝化菌比生長速率,d-1
μo=0.47×1.103(T-15) (8)
式中 T——設計污水溫度,北方地區通常取10 ℃,南方地區可取11~12 ℃
代入式(8)得:
μo=0.47×1.103(10-15)=0.288/d
再代入式(7)得:
θc=2.3×1/0.288=7.99 d
計算所得數值與表1中的數值相符。
表1是德國標准,但它的理論依據和經驗積累具有普遍意義,並不隨水質變化而改變,因此筆者認為可以在我國設計中應用。
在污泥負荷法中,污泥負荷是最基本的設計參數,泥齡是導出參數。而在泥齡法中,泥齡是最基本的設計參數,污泥負荷是導出參數,兩者呈近似反比關系:
θcFw=Lj/Y(Lj-Lch) (9)
式中污泥產率系數Y是泥齡θc的函數。

3.3污泥產率系數的確定
採用泥齡法進行活性污泥工藝設計計算時,准確確定污泥產率系數Y是十分重要的,從式(4)中看出,曝氣池容積與Y值成正比,Y值直接影響曝氣池容積的大小。
式(6)給出了Y值和剩餘污泥量W的關系,剩餘污泥量是每天從生物處理系統中排出的污泥量,它包括兩部分:一部分隨出水排除,一部分排至污泥處理系統,其計算式為:
W=24QNch/1000+QsNs (10)
式中 Nch——出水懸浮固體濃度,mg/L
Qs——排至污泥處理系統的剩餘污泥量,m3/d
Ns——排至污泥處理系統的剩餘污泥濃度,kg/m3
剩餘污泥量最好是實測求得。從式(10)可以看出,對於正常運行的污水處理廠,Q、Nch、Qs及Ns值都不難測定,這樣就能求出W和Y值。問題在於設計時還沒有污水處理廠,只有參照其他類似污水處理廠的數值。由於污水水質不同,處理程度及環境條件不同,各地得出的Y值不可能一樣,特別是很多城市污水處理廠由於資金短缺等原因,運行往往不正常,剩餘污泥量W的數值也測不準確,這勢必影響設計的精確性和可靠性。
從理論上分析,污泥產率系數與原水水質、處理程度和污水溫度等因素有關。首先,污泥產率系數本來的含義是一定量BOD降解後產生的SS。由於是有機物降解產物,這里的SS應該是VSS,即揮發性懸浮固體,但污水中還有相當數量的無機懸浮固體和難降解有機懸浮固體,它們並未被微生物降解,而是原封不動地沉積到污泥中,結果產生的SS將大於真正由BOD降解產生的VSS,因此在確定污泥產率系數時,必須考慮原水中
無機懸浮固體和難降解有機懸浮固體的含量。其次,隨著處理程度的提高,污泥泥齡的增長,有機物降解越徹底,微生物的衰減也越多,這導致剩餘污泥量的減少。至於水溫,是影響生化過程的重要因素,水溫增高,生化過程加快,將使剩餘污泥量減少。對於各種因素的影響,可根據理論分析通過實驗建立數學方程式,其計算結果如經受住實踐的檢驗,就可用於實際工程。德國已經提出了這樣的方程式,按這個方程式計算出的Y值已正式寫進ATV標准中。
Y=0.6(Nj/Lj+1)-0.072×0.6θc×FT/1+0.08θc×FT (11)
F=1.072(T-15) (12)
式中 Nj ——進水懸浮固體濃度,mg/L
FT——溫度修正系數
T——設計水溫,與前面的計算取相同數值
可以看出,Nj/Lj值反映了污水中無機懸浮固體和難降解懸浮固體所佔比重的大小,如果它們占的比重增大,剩餘污泥量自然要增加,Y值也就增大了。θc值影響污泥的衰減,θc值增長,污泥衰減得多,Y值相應減少。溫度的影響體現在FT值上,水溫增高,FT值增大,Y值減小,也就是剩餘污泥量減少。
這個方程式對我國具有參考價值。由於我國的生活習慣與西方國家差異很大,污水中有機物比重低,有機物中脂肪比例低,碳水化合物比例高,因而產泥量也不會完全相同。根據國內已公布的數據和筆者的經驗,我國活性污泥工藝污水處理廠的剩餘污泥產量比西方國家要少,因此,式(11)中須乘上一個修正系數K:
Y=K×0.6(NjLj+1)-〔(0.072×0.6θc×FT)/(1+0.08θc×FT) (13)
一般取K=0.8~0.9。
在目前缺乏我國自己的Y值計算式的情況下,筆者認為採用式(13)計算Y值是可行的。
3.4 MLSS的確定
不管採用哪種設計計算方法,都需要合理確定MLSS。在其他條件不變的情況下,MLSS增大一倍,曝氣池容就減小一倍;MLSS減小一倍,曝氣池容就增大一倍。它直接影響基建投資,因此需要慎重確定。
在設計規范和手冊中,對MLSS值推薦了一個選用范圍,如普通曝氣是1.5~2.5 kg/m3,延時曝氣是2.5~5.0 kg/m3,變化幅度都比較大,設計時不好操作。為了選定合適的MLSS值,有必要弄清影響它的因素。
MLSS不能選得過低,主要有三個原因:
①MLSS過低,曝氣池容積V就要相應增大,在經濟上不利。
②MLSS過低,曝氣池中容易產生泡沫,為了防止泡沫,一般需保持2 kg/m3以上的污泥濃度。
③當污泥濃度很低時,所需氧量較少,如MLSS過低,池容增大,單位池容的供氣量就很小,有可能滿足不了池內混合的要求,勢必額外增加攪拌設備。MLSS也不能選得過高,主要是因為:
①要提高MLSS,必須相應增加污泥迴流比,降低二沉池表面負荷,加長二沉池停留時間,這就要求增大二沉池體積和迴流污泥能耗。把曝氣池、二沉池和迴流污泥泵房作為一個整體來考慮,為使造價和運行費用總價最低,污泥迴流比通常限制在150%以內。對於一般城市污水,二沉池的迴流污泥濃度通常為4~8 kg/m3,若按最高值約8 kg/m3計,迴流比為150%時的曝氣池內MLSS為4.8kg/m3,實際設計中MLSS最高一般不超過4.5kg/m3。
②污水的性質和曝氣池運行工況對MLSS有巨大影響,如果污水中的成分或曝氣池的工況有利於污泥膨脹,污泥指數SVI值居高不下(如SVI>180 mL/g),迴流污泥濃度就會大大降低,MLSS就必須選擇低值。
根據以上分析,在選定MLSS時要照顧到各個方面:
①泥齡長、污泥負荷低,選較高值;泥齡短、污泥負荷高,選較低值;同步污泥好氧穩定時,選高值。
②有初沉池時選較低值,無初沉池時選較高值。
③SVI值低時選較高值,高時選較低值。
④污水濃度高時選較高值,低時選較低值。
⑤合建反應池(如SBR)不存在污泥迴流問題,選較高值或高值。
⑥核算攪拌功率是否滿足要求,如不滿足時要進行適當調整。
德國ATV標准對MLSS值規定了選用范圍,有硝化和無硝化時其MLSS值是一樣的,這不完全符合我國具體情況。我國城市污水污染物濃度通常較低,在無硝化(泥齡短)時如果MLSS值過高,有可能停留時間過短,不利於生化處理,故將無硝化時的MLSS值降低0.5kg/m3,推薦的MLSS值列於表2。
表2 推薦曝氣池MLSS取值范圍
kg/m3處理目標MLSS
有初沉池無初沉池
無硝化2.0~3.03.0~4.0
有硝化(和反硝化)2.5~3.53.5~4.5
污泥穩定 4.5

3.5泥齡法的優缺點
①泥齡法是經驗和理論相結合的設計計算方法,泥齡θc和污泥產率系數Y值的確定都有充分的理論依據,又有經驗的積累,因而更加准確可靠。
②泥齡法很直觀,根據泥齡大小對所選工藝能否實現硝化、反硝化和污泥穩定一目瞭然。
③泥齡法的計算中只使用MLSS值,不使用MLVSS值,污泥中無機物所佔比重的不同在參數Y值中體現,因而不會引起兩者的混淆。
④泥齡法中最基本的參數——泥齡θc和污泥產率系數Y都有變化幅度很小的推薦值和計算值,操作起來比選定污泥負荷值更方便容易。
⑤泥齡法不像數學模型法那樣需要確定很多參數,使操作大大簡化。
⑥計算污泥產率系數Y值的方程式是根據德國的污水水質和實驗得出的,結合我國情況在應用時需乘以一個修正系數。
4 結論
①活性污泥工藝的設計計算方法有必要從污泥負荷法逐步向泥齡法過渡,最終過渡到數學模型法。在數學模型法實用化之前,泥齡法將發揮重要作用。
②按泥齡法計算用式(4),該式與設計規范中的計算式相比,Nw與Nwv的轉換和污泥衰減的影響在Y值的計算中考慮,這樣理論意義更加清晰,使用起來更加方便。
③德國ATV標准中推薦的泥齡選用數據(見表1)是根據有機物降解和微生物生長規律結合實
際經驗產生的,不涉及污水的具體水質變化,在我國有實用價值。
④污泥產率系數Y值的計算式(11)有充分的理論依據,但它是用德國污水實驗得出的,為了適用於我國,須乘以修正系數,修正後的計算式(13)可用於實際設計計算。
⑤MLSS的取值在設計規范中有規定,但范圍較大,不太好操作,建議參照表2中的數據選用,相互對比檢驗。
⑥建議對我國有一定代表性的城市污水進行實驗研究,推出自己的Y值計算方程式,使泥齡法的實用基礎更加扎實可靠。
活性污泥法處理城市生活污水主要運行方式:
1、推流式活性污泥法
2、完全混合活性污泥法
3、分段曝氣活性污泥法
4、吸附-再生活性污泥法
5、延時曝氣活性污泥法
6、高負荷活性污泥法
7、淺層、深水、深井曝氣活性污泥法
8、純氧曝氣活性污泥法
9、氧化溝工藝
10、序批式活性污泥法

㈥ pam是什麼用來污水處理

pam是聚丙烯醯胺。聚丙烯醯胺(PAM)為水溶性高分子聚合物,不溶於大多數有機溶劑,具有良好的絮凝性,可以降低液體之間的磨擦阻力,按離子特性分可分為非離子、陰離子、陽離子和兩性型四種類型。

在原水處理中與活性炭等配合使用, 可用於生活水中懸浮顆粒的凝聚、澄清。

用有機絮凝劑丙烯醯胺代替無機絮凝劑, 即使不改造沉降池, 凈水能力也可提高 20%以上; 在污水處理中, 採用聚丙烯醯胺可以增加水回用循環的使用率, 還可用作污泥脫水; 工業水處理中用作一種重要的配方葯劑。聚丙烯醯胺在國外應用領域是水處理, 國內在此領域的應用正在推廣。

在飲用水處理與工業廢水處理中, 聚丙烯醯胺與無機絮凝劑配合使用, 可明顯改善水質;提高絮體強度與沉降速度。聚丙烯醯胺形成的絮體強度高, 沉降性能好, 從而提高固液分離速度。

(6)污水處理廠成本模型擴展閱讀

使用特性:

1、絮凝性:PAM能使懸浮物質通過電中和,架橋吸附作用,起絮凝作用。

2、粘合性:能通過機械的、物理的、化學的作用,起粘合作用。

3、降阻性:PAM能有效地降低流體的摩擦阻力,水中加入微量PAM就能降阻50-80%。

4、增稠性:PAM在中性和酸條件下均有增稠作用,當PH值在10以上PAM易水解。呈半網狀結構時,增稠將更明顯。

㈦ 速分生物技術處理污水效果怎麼樣

該項目所採用的處理工藝的核心部分,即速分生化處理技術,為北京科凈源科技股份有限公司自主研發的專利技術,近年來取得了多項榮譽,並成功應用於多處國家級重點工程:
(1)幾項專利技術名稱與專利號;
「一種用於污水凈化裝置的速分生化球」——ZL 02253989.1 「速分生物污水處理系統」——ZL 2005201450346 「速分生物污水處理方法及系統」——ZL 200510132150.9
「用於水體生物凈化處理的載體生化球及生物凈化床」——ZL 200620158684.9
「速分生物處理裝置」——ZL 200720169890.4
「用於污水凈化裝置的速分生化球」——ZL 200720103339.X 「景觀水環境仿生強化凈化方法」——ZL 200710100171.1 「一種用於污水凈化裝置的填料」——ZL 200810113599.4 「一種用於污水凈化的速分生化球」——ZL 200820108330.2 (2)速分生化處理系統及裝置通過了國家級科學技術成果鑒定; (3)榮獲國家環保部頒發的2007年環境保護科學技術二等獎; (4)速分生化處理工藝是國家建築標准設計圖集《建築中水處理工程(二)》(08SS703-2)推薦使用的污水生化處理工藝;
(5)與大學合作完成了速分工藝的數學模型分析;
(6)應用於奧運會主會場——森林公園15座污水處理項目;
(7)應用於殘奧中心污水處理項目;
(8)應用於亞洲博鰲論壇北京文化壇污水處理項目;
(9)應用於全國三個生態縣之一 ——北京密雲縣污水處理項目。
1、速分生物處理技術的提出
1.1目前污水處理廠設計運行中存在的問題
國內外大部分污廢水的處理均採用以生物處理為主的工藝技術,原因在於生物處理工藝具有運行費用低,處理程度高的優勢,但同時生物法也存在著許多迫切需要解決的重大問題。
1.1.1氣味問題
由於污水處理過程中會產生不良氣味,導致污水處理廠建設一直遵循「宜遠不宜近」的原則,大多遠離城鎮居民生活區,繼而造成管網投資龐大,回用成本高。為了解決這一問題,需要從工藝原理上解決氣味問題,減少產生臭氣的環節。 1.1.2污泥問題
生物法往往伴隨著剩餘污泥的處理問題,造成污水處理廠建設運行過程中,大量剩餘污泥處理困難,增加投資、處理成本。為了解決這一問題,需要深入研究污泥減量化問題,從根本上降低污泥處理費用,同時可以改善污水處理廠周邊的環境。 1.1.3建設規模與實際負荷差距問題
污水處理廠建設,多執行「宜大不宜小」的原則,造成建設規模與實際負荷的巨大偏差,運行成本高,無法形成良性循環。由此,需研製一種啟動速度快,不需接種、馴化,可適應模塊化運行的生物處理工藝。再將污水處理構築物建設成模塊化的單元,根據污水量的變化決定模塊的建設數量和運行數量。 1.1.4微污染水的治理難
地表水富營養化程度日趨嚴重,但其水質指標較生活污水要低很多,造成常規污水生物處理工藝很難適應,處理效率低。而化學氧化等化學、物理深度處理技術,處理成本之高,很難大規模應用。因此需要研發出處理程度高、運行成本低的適用於微污染水體的處理技術和工藝。
1.1.5運行成本問題
各種化學、生物、膜處理工藝的運行成本問題,一直以來制約其推廣應用,特別是在我國目前經濟狀況下,很多處理設施建得起,用不起。為解決這一問題,只能從源頭的處理工藝上,降低能耗,解決運行費用高的問題。 1.1.6運行操作復雜問題
常規生物處理工藝,流程長,運行過程中其維護、操作均需較強的專業性,造成許多污水處理設施不能長期穩定運行。因此,需從工藝上解決操作難的問題,推出「傻瓜工藝」。

1.2速分生化處理工藝的技術指標
COD去除率85%以上,BOD去除率90%以上,NH3-N去除率90%以上,總氮去除率85%以上;

㈧ 大型污水處理廠水池結構的設計分析

下面是中達咨詢給大家帶來關於大型污水處理廠水池結構的設計相關內容,以供參考。
引言:
當前社會的快速發展,使得人們對環境污染的問題越來越重視,其中,工業污水是造成環境污染的重要因素之一。在瞎凳污水處理過程中,污水處理廠水池結構的建設尤為重要,它不僅直接關系著污水的處理質量,還對處理設施有一定的影響。為此,我們需要加強大型污水處理廠水池結構的設計,保證污水處理效果。下面我們首先來了解一下大型污水處理廠水池結構設計的相關內容,然後針對其相關問題提出有效的解決措施。
一、探討污水處理廠水池結構設計的相關內容
(一)污水處理廠水池荷載及荷載組合
首先,荷載主要包括池內的水壓、土對池壁的壓力、溫度濕度及地下水的壓力,其中水壓的計算大都按照滿水條件進行計算。而土壓力的影響因素較多,它與土質有著密切聯系,為此,我們可以通過朗肯理論對土壓進行計算。由於溫度濕度是隨著環境的變化而變化的,它們一旦變化就會導致結構物體積發生改變,從而產生一定的應力。地下水壓力對底板的影響尤為重要,為了避免水壓對底板造成破壞,需要我們在設計過程中對水壓做好准確的計算。其次,荷載組合包括水壓力與自重的組合、土壓力與自重的組合及水壓力、自重、溫差、濕差三者的組合。在水池結構設計中,水壓力與自重的組合和土壓力與自重的組合是最基礎的兩種組合,而水壓力、自重、溫差、濕差的組合是非常不利的。
(二)污水處理廠水池結構的計算
污水處理廠水池結構的類型有很多種,像敞口水池、有蓋水池、小型水池、大型水池等,對不同的結構類型我們要採取不同的計算模型。首先,對敞口水池要要將其假定為三邊支承,有走道板的需要其設計為橫向深梁,為了更加合理的對其進行計算,需要對敞口水池依據不動鉸支撐來分析。其次,對跨度在六米內的小型水池或有蓋水池,我們需要按照地基反力直接分布進行底板的計算。再就是對大型水池,我們可以利用單位截條來進行底板的計算。
二、分析大型污水處理廠水池結構設計中存在的問題
(一)水池上浮問題的分析
在水池結構設計過程中,一旦出現失誤就會導致水池的上浮問題。例如在對水池結構進行設計時,只考慮到水池整體穩定性,忽略磨亮旅了對水池中局部部分的抗浮驗算,就容易導致水池的上浮問題。而且,在水池結構設計規劃過程中,一旦出現基礎處理失誤、計算失誤、抗浮措施使用不當等問題,都容易導致水池上浮的發生。根據水池上浮問題產生的原因,我們要採取有效的措施避免上浮鍵迅事故。首先,為了避免水池抗浮力過小而導致上浮問題,需要我們採取加大水池抗浮力的措施,也就是說通過增加水池的自重力來與地下浮力相抗衡,具體方法包括增加水池覆蓋土的數量、保證水池填土質量、加大水池底板厚度等。其次,對水池的抗浮力要做到全方位驗算,不僅要對水池整體抗浮性進行驗算,還要對水池中間的多格水池、連接柱子的頂板及底板分別進行抗浮性驗算。這樣就可以根據驗算結果全面做好水池結構的抗浮設計。另外,在對水池結構進行抗浮設計時,要採用恰當的抗浮措施,包括錨桿、抗浮樁等方法,避免水池上浮事故的發生。
(二)水池滲漏問題的分析
在大型污水處理廠的建設中,水池結構多採用鋼筋混凝土結構,根據這一結構特性,一旦混凝土結構發生變形,就會導致水池滲透的問題。水池結構產生裂縫的原因有很多,包括混凝土結構受到外部環境的影響、水池結構設計中荷載組合選用不當、預埋件設計不符合規定、鋼筋使用不合理等。為了解決水池結構的滲透問題,需要我們採取以下措施控制水池裂縫的發生。首先,在進行水池結構設計時,要按照規定選擇混凝土強度等級,嚴格把控水泥用量,從而避免混凝土結構發生變形,控制水池滲透現象。其次,在水池結構設計過程中,要做好水池抗裂度的驗算,對構造配筋的選擇也要按照水池需要進行,並考慮好荷載組合的選擇,合理的進行水池結構設計,從而避免水池壁產生裂縫。再就是對穿牆管套的施工要進行充分的准備,對其使用數量及位置都要做出明確的規定。最後,為了避免混凝土結構受到外界環境的影響,要按照要求設置沉降縫或者伸縮縫,防止混凝土結構發生變形,進一步保證大型污水處理廠水池結構的設計質量。
總結:
綜上所述,我國工業化和城市化進程不斷發展,這也進一步加劇了環境污染問題,並且,工業中產生的大量污水對人們身體的健康造成了一定的威脅,為此,加強污水處理尤為重要。近年來,我國污水處理工程不斷擴大,大型污水處理廠的建設水平逐漸提高。但是,在水池結構設計過程中,仍然存在著一定的問題,像水池沉降不均問題、滲透問題等,需要我們採取相關措施解決這些問題,進一步保證污水處理質量。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

㈨ 數學建模污水處理問題

問題1.假設該工廠利用的是類似於沉澱法的處理,即污物處理按二項分布沉澱。有得到處理率為P=10%/小時,剩餘率H=1-P=90%
一天有24小時,則留下(90%)^24的污物=7.98%
設T時間長度剩餘一半,有H^T=50%,推出T=6.5788小時
問題2.設其容量為V,為保持池中容量的平衡,流入量始終要等於流出量,即每小時流出的處理水和提取物共100KG
設容器中有水含污物V2,水V1,處理完污物V3(V3+V2+V1=V),這次排除的量分別為處理完污物V3,水含污物(100-V3)/(V2/(V1+V2)),水(100-V3)/(V1/(V1+V2)),其中V3=(V3+V2)*10%
每小時流入100KG的污水,增加量中dV1=100×0.4,dV2=100×0.6,由於沉澱概率按二項分布,設原容器中有水含污物Q2,水Q1,處理完污物Q3,所以一小時後,V3=Q2*0.1+dV2*0.1,V2=Q2*0.9+dV2*0.9,V1=V-V3-V2
N小時後V2=Q2*0.9^N+dV2*(0.9^(N-1)+0.9^(N-2)……+0.9^1)
化簡後V2=Q2*0.9^N+dV2*((0.9(1-0.9^(N-1)))/(1-0.9))
數據分析:取lim(N趨於無窮)V2=dV2*9=100*0.6*9=540KG

閱讀全文

與污水處理廠成本模型相關的資料

熱點內容
咖啡除垢劑損傷機器嗎 瀏覽:628
居民生活用電污水處理 瀏覽:772
哪個硬碟驅動器升級可提升性能 瀏覽:737
24k純水怎麼喝 瀏覽:471
ro膜反滲透凈 瀏覽:352
燃油濾芯保養怎麼做 瀏覽:141
水處理除鐵錳設備價格 瀏覽:957
永川區污水處理廠電話 瀏覽:753
純水機進水電磁閥為什麼不出水 瀏覽:86
瓦爾塔免維護電池加蒸餾水 瀏覽:455
空調濾芯積灰怎麼清理 瀏覽:575
圍岩突水處理 瀏覽:614
飲水機怎麼放在水槽 瀏覽:629
釀酒為什麼不能用純凈水 瀏覽:923
污水管路下面能用什麼 瀏覽:842
屠宰養殖廢水處理計劃書 瀏覽:196
bt方式合同污水 瀏覽:734
福克斯原廠汽油濾芯是什麼牌子的 瀏覽:391
浙江環氧樹脂板 瀏覽:48
好美凈水器沒有水怎麼辦 瀏覽:214