導航:首頁 > 污水知識 > 焦化廢水高效生物處理技術

焦化廢水高效生物處理技術

發布時間:2023-06-28 05:58:28

⑴ 焦化廢水深度處理研究現狀

焦化廢水主要是焦化廠在煤氣化、液化、煉焦過程中所產生的廢水,此種廢水中含有大量的有毒、難降解的有機物是一種較難處理的有機廢水。目前主要採用以下方法對焦化廢水進行處理:首先利用常規方法對廢水進行預處理、然後利用生化方法對預處理廢水進行二次處理。
但是,經過上述過程處理後的焦化廢水外排水中的氰化物、COD及氨氮含量仍然無法達標。針對焦化廢水組成復雜、難於處理、經傳統方法處理後無法達標排放這種狀況,綜合了近幾年來國內外有關焦化廢水處理方面的大量的研究成果,系統地介紹了焦化廢水深度處理過程中所應用的物化方法、氧化方法、膜處理三大類方法的優缺點,列舉了當前幾種焦化廢水回用實例及不足,並指出了焦化廢水處理技術今後的發展方向。
焦化廢水主要是指在煤煉焦、煤氣凈化、化工產品回收和化工產品精製過程中產生的廢水。由於受原煤性質、產品回收、生產工藝等多種因素的影響,導致廢水成分異常復雜。焦化廢水中所含有機物主要以酚類化合物為主,其含量達到有機物總量的一半以上,剩餘有機化合物主要為含硫、氧、氮的雜環有機化合物以及多環芳香族有機化合物等。
焦化廢水以其排放量大、成分復雜、處理困難等特點使焦化廢水極難再循環利用或者達標排放。因此,降低焦化廢水中的污染物濃度,提高廢水的循環利用率是亟待解決的問題。
隨著人們環保意識的加強和國家對環保問題的重視,中國環境保護部於2012年6月頒布了《煉焦化學工業污染物排放標准》(GB16171-2012),該標准除對廢水中主要污染物給出了更為嚴格的排放標准,而且在原標准基礎上增加了苯、苯並芘、多環芳烴以及總氮等化合物的排放指標,該標准同時也對單位產品的排水量做了更為嚴格的要求,開發研究新型、高效能、低成本的廢水處理技術以及對現有技術進行優化改進提高廢水處理效果使其能夠達標排放是目前亟待解決的問題。
多年以來,雖然前人已做了大量關於焦化廢水處理的基礎研究工作,但是由於焦化廢水排放量大,水中污染物種類多且有些污染物難於生物降解而使得焦化廢水處理至今為止仍未有突破性的研究進展。因此研究並開發一種高效能、低成本、處理效果好的廢水處理技術以及對現有技術進行優化改進是今後焦化廢水處理研究的重點。
本文對廢水深度處理過程中所應用的物化方法、氧化方法、膜處理三大類方法進行了分析對比,並列舉了當前幾種焦化廢水回用實例及不足,同時指出了今後焦化廢水處理技術的發展方向。
1 焦化廢水深度處理技術
1.1 物理化學法
1.1.1 混凝沉澱法
混凝沉澱法是利用電中和原理對焦化廢水進行處理,具體處理過程如下:將混凝劑在一定條件下定量投入到焦化廢水中,廢水中的帶電物質與混凝劑發生電中和形成大顆粒膠團,而後經過進一步的沉澱使焦化廢水得以凈化處理。
盧建杭、王紅斌等開發出了針對上海寶鋼集團下屬焦化廠焦化廢水專用的混凝劑——M180,用於處理上海寶鋼焦化廠 A/O 生化池出水,通過實驗發現在 pH 值為 6.0~6.5、混凝劑投加量為 300mg/L時,專用混凝劑對焦化廢水的 COD、色度、CN等指標有良好的處理效果,並且在實驗過程中還發現進水水質的波動對專用混凝劑處理效能的影響很小。
周靜和李素芹研製出了一種新型的復合絮凝劑——PFASSB,並將其與 PFS、PAC 和 PFAC 進行對比研究,考察了 PFS、PAC、PFAC 以及新型新型絮凝劑 PFASSB 對焦化廢水 COD、濁度等的處理效果。
通過實驗結果發現,在相同的條件下新型復合絮凝劑對焦化廢水的處理效果明顯優於 PAC、PFS和 PFAC,並且新型絮凝劑的用量明顯比其他絮凝劑的用量低;當廢水 PH 為 8,新型絮凝劑投加量在 10 mg/L 時,經過絮凝處理後的出水 SS<70 mg/L,CODcr<150 mg/L。
鄭義、張琢等研究對比了硫酸鋁、聚合硫酸鐵和聚丙烯醯胺對焦化廠生化池出水的處理效果,並將其組合搭配,考察了它們聯合處理焦化廢水的能力。通過實驗發現,將聚合硫酸鐵與聚丙烯醯胺組合處理焦化廢水,處理效果明顯優於各混凝劑單獨使用時的處理效果;當 pH 為 5,投加量為聚合硫酸鐵 40 mg/L、聚丙烯醯胺 6 mg/L 時,組合混凝劑對焦化廢水處理效果最佳,此時處理後廢水出水色度為 70 倍,COD 為 68 mg/L,去除率分別達到了73.08%、62.22%。
通過以上分析發現,混凝沉澱法對焦化廢水色度,COD 等指標的去除效果較好,處理後的焦化廢水可實現達標排放。但是,使用混凝沉澱法對焦化廢水進行深度處理的過程中會產生大量的固體沉渣,而且這種固體沉澱物較難處理會對環境造成新的污染,並且採用混凝沉澱的方法處理焦化廢水需要對沉澱池入水以及出水調節 pH 值,而且混凝劑需要人工投加操作較為復雜,經過處理後的廢水只能外排無法實現達標回用。
1.1.2 吸附法
吸附法處理焦化廢水主要是利用吸附劑為比表面積較大的多孔類物質,對大分子有機物、油類物質、以及部分固體懸浮物等污染物具有良好的吸附性能,吸附劑在對焦化廢水吸附處理後經過沉澱得以分離。
周靜、李素芹等採用粉煤灰作為吸附劑,對焦化廢水生化出水中的氨氮進行深度處理,通過實驗對葯劑投加量、pH 值、吸附時間三個主要影響因素進行了考察。實驗結果表明:當廢水 pH 為 5,粉煤灰投加量為 150 g/L、生石灰投加量為 2.5 g/L,吸附時間為 1 h 時,焦化廢水中的氨氮含量由 77.67 mg/L降到了 25 mg/L 以下,氨氮去除率達到 70%以上。
王紅梅、鄭振暉利用改性膨潤土對焦化廢水生化出水進行深度處理。通過實驗結果發現:當焦化廢水 pH 在8.0~10.0,改性膨潤土投加量為 1 200~1 500 mg/L 時,焦化廢水脫色率達到 65%以上,氰化物、CODcr的去除率也分別達到了31%和26.5%。
孫寶東、馬雁林對南京鋼鐵聯合有限公司的兩座焦化廢水處理站進行技術改進,通過在原處理站基礎上增加活性炭過濾裝置,並對原有的操作方法進行改進。通過活性炭過濾裝置改進後,南京鋼鐵聯合有限公司焦化廢水處理站出水由原來的國家二級標准提升到了國家一級排放標准,並且通過改進操作方法使廢水處理站的運行成本得以降低,活性炭的使用壽命得以延長。
李茂、韓永忠等採用樹脂吸附和 Fenton 氧化的組合工藝處理高濃度的焦化廢水。通過實驗發現:當吸附樹脂與 Fenton 試劑在最佳的工作條件下時,焦化廢水中酚類有機化合物去除率幾乎可達100%,COD 的去除率達到 74.82%,並且經過樹脂吸附和Fenton氧化的組合工藝處理過的高濃度焦化廢水可生化性也有很大的提高。
張昌鳴等利用粉煤灰作為吸附劑對山西焦化集團有限公司下屬焦化廠的焦化廢水生化出水進行深度處理。當粉煤灰用量為 17.47 g/L 時,焦化廢水處理效果較好,除氨氮含量偏高外廢水中 COD、色度、油、硫化物、氰化物、揮發酚等污染物含量均達到國家排放標准。吸附後的粉煤灰可以燒磚或築路進行再利用。採用粉煤灰吸附處理焦化廢水,體現了以廢治廢的環保理念。
以活性炭作為吸附劑對焦化廢水進行深度處理,廢水處理效果較好,處理後的廢水可達標排放,但是由於活性炭價格較高再生困難使得廢水處理成本較高,目前絕大多數企業以棄之不用。而以粉煤灰作為吸附劑對焦化廢水進行深度處理,處理效果較好,吸附後的粉煤灰仍可進行燒磚築路等再利用對其品質不會產生影響,並且利用粉煤灰作為吸附劑處理焦化廢實現了廢物再利用符合當前國家綠色化工循環利用的政策。
1.1.3 化學沉澱法
採用化學沉澱的方法不僅使廢水中氨氮含量達到了國家的排放標准,同時也間接的提高了廢水的可生化性。但是,目前化學沉澱的方法處理焦化廢水的研究較少,技術還不成熟無法實現工業化
應用。
1.2 氧化法
1.2.1 Fenton 氧化法
Fenton 試劑通過將焦化廢水中難降解大分子有機物氧化分解成小分子有機物,降低了焦化廢水的COD 值和色度,同時在一定程度上提高了焦化廢水的可生化性,使焦化廢水得到較好的處理。
1.2.2 臭氧氧化法
臭氧分子中的氧原子具有強烈的親電子或親質子性以及極強的氧化活性,臭氧可將焦化廢水中的大分子有機物等物質氧化分解。臭氧氧化技術具有氧化能力強、反應速度快、處理效率高、不受溫度影響、不產生污泥等特點。
2 結 論
近年來,隨著國家對環保問題的的日益重視以及國民環保意識的不斷提高,廢水的排放標准也變得更為嚴格。各國學者經過不斷的探索研究出了一些新的焦化廢水處理技術,如:電化學氧化技術、光催化氧化技術、膜技術等。
這些技術對焦化廢水中的污染物處理的較為徹底且不會產生二次污染,但是這些技術投資成本和運行成本較高並且很多仍處於理論研究和實驗室研究階段,較難實現大規模工業化應用。因此在深人研究焦化廢水先進處理技術的同時,我們也應該充分發掘現有技術的優點,對現有技術進行優化改良提高其處理效能。
通過以上分析可以發現粉煤灰吸附效果較好且符合國家以廢治廢的環保節能政策,並且膜技術也已在部分工廠中應用並取得了較好的效果,採用粉煤灰吸附預先對焦化廢水進行預處理除去廢水中大部分有機物減輕膜過濾的負擔提高其使用壽命降低處理成本,將粉煤灰吸附技術與膜技術協同作用處理焦化廢水應是今後焦化廢水處理回用的研究重點。

更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

⑵ 工業廢水中焦化廢水生化處理後尾水成分主要是什麼

焦化廢水的特點
焦化廢水主要成分有揮發酚、礦物油、氰化物、苯酚及苯系化合物、氨氮等,屬於污染物濃度高,污染物成分復雜,難於治理的工業廢水之一。其處理的關鍵之處在於:
酚含量高
廢水中酚含高,有的高達2~12g/L。由於酚的可生化性差,需用萃取法或其它物化法進行預處理加以回收利用。當它的含量高時,還是有很大的回收價值。
氨氮含量高
焦化廢水中氨含量高,有時高達2000mg/L。高濃度的氨不僅難以用生化法去除,而且其對生化處理單元有一定的毒害作用,嚴重時可殺死活性污泥,破壞整個生物處理系統。因此,該高含氨氮廢水在進入污水處理站之前,要設蒸氨預處理過程。
經過蒸氨預處理的廢水氨氮濃度在100~300mg/L左右,如果要處理到國家一級排放標准15mg/L以下,氨氮的去除塵器仍為該類污水處理工藝選擇時首先要考慮的問題。
難降解有機物含量高
焦化廢水中含有大量苯系、萘系及雜環類難降解有機物,通常的好氧活性污泥法難以直接處理達標。因此,在好氧法前,需改善其可生化性,提高BOD:COD值。
關鍵工藝的選擇
焦化廢水的處理方法主要分為物化法和生化法。
物化法
物化法由於要消耗大量的化學葯劑,運行成本非常高,所以很少採用。現在普遍採用生化法。
生化法
生化法可分為普通活性污泥法、A/O法、A2/O、SBR法,以及它們的各種變體。其中:
(1)普通活性污泥法在過去採用較普遍,但是由於焦化廢水的可生化性差,難以使COD及氨氮達標。即使延長廢水在好氧池中的停留時間,也不可能使氨氮達到一級標准。
(2)A/O法對氨氮有很好的去除效果,但由於焦化廢水的COD較高,可生化性差,難以使COD達標。
(3)SBR法操作復雜,針對性不強,同時去除COD和氨氮的效果不好。
(4)A2/O法既可以先改善廢水的可生化性,又可以高效地去除氨氮,因此,它非常適合處理焦化廢水,為焦化廢水的首選方案。

⑶ 焦化廢水處理工藝會產生那些優化效果呢

焦化廢水處理工藝的優化流程具有一定的優勢,主要表現為以下幾方面:(1)焦化廢水的生化處理階段,按照比例將廢水分流,分別進入好氧池與厭氧池進行處理。此過程與傳統的處理工藝相比,能降低好氧池的壓力,提高污水的降解能力,並且將少部分廢水排入厭氧池,能補充好氧池的動力與碳源,從而促進反硝化反應的進行。(2)一沉池的廢水迴流到1號好氧池中,能促進硝化反應,提高了1號好氧池的污泥濃度,從而提高好氧池的COD降解能力,促進硝化菌的成長。(3)焦化廢水的生化處理過程,能將各個階段的反應融合在一起,微生物菌群比較獨立,在專門微生物的作用下,廢水中的化學物質能被有效地降解。此過程對焦化廢水中的COD、NH3-N、酚、以及氰化物等處理的效果較好,能促進脫氮的硝化反應,廢水處理的效果較好,並且效率較高。(4)好氧池利用彈性原料,可以使活性污泥不會產生膨脹,具有良好的出水效果,SS降低,有利於後續處理。

⑷ 焦化廢水怎麼處理

一般都是生化,AO工藝。預處理氣浮(除懸浮物)、微電解或者水解酸化(降低部分COD,增強可生化性)、缺氧(污水內迴流,進行反硝化)、好氧(出去大部分COD、氨氮、揮發酚),然後就是絮凝沉澱了。
當然,焦化廢水是比較難處理的廢水,在生化階段可以適當添加稀釋水或者把好氧設為兩段,中間加上一個臭氧氧化,這樣可能出水效果會好一些。
深度處理用高級氧化(一般是芬頓法),超濾+反滲透,或者是吸附(考慮經濟性,這個得有專門的可再生吸附材料)。
常用的方法就是這些,除非是大設計院,否則一般的環工公司也就是這樣了。

⑸ 使用生物技術方法的廢水處理

生物強化技術的主要特點 生物強化技術是一種利用生物治理廢水的高效技術,在廢水治理中具有廣闊的應用前景。與傳統的活性污泥法相比,生物強化技術更體現出易於操作、針對性強等優點,這種廢水處理技術主要研究並投放特殊菌種進入污水,通過其新陳代謝,將分解並吸收廢水中的一些物質,凈化污水,具有明顯的低成本、高效率等特點,所以在近期成為廢水處理領域的重要研究方向。 首先來看其技術原理。所謂生物強化技術,就是以生物制住生物,以菌制菌,向自然菌群中投入特殊的微生物以增強生物力量,並對污水等特定環境或特殊污染物加以反應。按投入菌種與底質之間的不同作用,可分為直接作用與共代謝作用兩種方式。 其中,直接作用是以馴化、篩選、誘變、基因重組等一系列關鍵技術的實施,獲得一批以污水為主要能源的微生物,然後復制投入一定數量,對目標物質進行降解,達到去除污染的目標,這種技術方法使用的菌株大多通過質粒育種和基因工程獲取。共代謝作用則是針對廢水中的一些有害物質,在一定條件下降解,改變其化學結構,從而降低物質的有害性,主要包括菌株通過新陳代謝將二級基質共同氧化、不同微生物之間的協同作用、休眠細胞對污染物降解等三種類型。這三種類型所採取的原理有所不同,例如不同微生物協同,是因為有些污染物的降解必須以兩種甚至多種微生物共同作用才能完成,通過幾種微生物的交替作用,微生物製造氧化物,然後氧化物再被另一種微生物降解,多次作用後徹底消除污染物。再如休眠細胞降解,由於處於休眠狀態的微生物在含有不同有機物的污水中會產生不同的酶,在一定條件下可以相互作用,降解廢水中的不同有機物。 其次來看其應用。生物強化技術作用用於焦化廢水、印染廢水和制葯廢水等幾個領域。焦化廢水因成分復雜,無機物和有機物的種類多,被列為難以降解工業廢水,一般通過投放高效菌種,以固定化、高效降解微生物法等強化技術來進行處理。而印染廢水中的有機物含量非常大,以前採用生物膜法來處理,無法有效去除其中的有機物,通過應用高效脫氧色菌和pva降解菌,加快生物膜的形成速度,穩定性好,效率高。對於制葯廢水,近年通常以混合菌種加以處理,並得到廣泛推廣。因為混合菌比單一菌種具備更強的降解能力,降解速度和降解效率明顯提升,並且在穩定性和抑制其他雜菌生長等方面有大幅改善,這些特性單靠單一菌種根本無法完成。 總的說來,由於成本低廉、操作簡單、效率較高,生物技術在污水處理領域不斷得到推廣,並取得顯著效果。隨著對生物膜法和生物強化等生物技術的深入研究,發展出越來越多污水處理技術,成本降低和效益提升日漸突出,我們只有不斷吸收國際上先進的生物技術信息,勇於創新,敢於實踐,才能逐漸提高國內污水處理的系統性水平

⑹ 焦化廢水如何處理

焦化化工廢水處理一般需通過預處理、生化處理以及深度處理三個階段方能實現達標排放。今天,介紹下焦化廢水預處理步驟是什麼。預處理常用的方法有稀釋和氣提、混凝沉澱、氣浮和高級氧化技術等。預處理系統的任務是除油和水質、水量的調節,為後續處理工藝奠定基礎,是生化處理穩定運行的前提。

稀釋和氣提

焦化廢水中含有的高濃度氨氮物質以及微量高毒性的CN-等,對微生物有抑製作用。 因此這些污染物應盡可能在生化處理前降低其濃度。通常採用稀釋和氣提的方法。氣提是利用蒸餾對揮發性物質進行提取的方法,在氣提過程中,被處理的揮發性物質由液相傳遞到氣相。氣提法在焦化廢水的預處理中用於提取其中的氨氮。

氣浮法

焦化廢水處理方法的氣浮是將空氣以微小氣泡的形式通入水中,使微小氣泡與在水中懸浮的顆粒或油滴粘附,形成水-氣-顆粒(油滴)三相混合體系,顆粒粘附於氣泡上浮至水面,從水中分離出去形成浮渣。因過多的油類會影響後續生化處理的效果,氣浮法在焦化廢水預處理的作用是除去其中的油類並回收再利用,此外還起到預曝氣的作用。

高級氧化技術

由於焦化廢水中的有機物復雜多樣, 其中酚類、多環芳烴、含氮有機物等難降解的有機物佔多數,這些難降解有機物的存在嚴重影響了後續生化處理的效果,焦化廢水處理的高級氧化技術是在廢水中產生大量HO·自由基,HO·自由基能夠無選擇性地將廢水中的有機污染物降解為二氧化碳和水。

⑺ 焦化廢水一般都是用什麼方式處理

處理方式有很多,比如利用微生物煙花分解廢水中有機物的生物處理法,催化濕式氧 化法、還有微電解法等等。
比較推薦的是使用微電解法,我們之前使用拓步環保的TPFC鐵碳微電解填料反應後,COD 進一步去除,去除率達到47.2%,可生化性顯著提高,B/C值由原來的0.18提高到0.45 ,色度以及氣味也有明顯改觀

⑻ 焦化廢水的處理方法有哪些需要什麼設備嗎

焦化廢水的處理方法分為兩大類、化學處理法和物理處理法,回化學處理方法有催 化濕式氧化技答術,電化學氧化技術,光催化氧化法。物理處理方法有吸附法、 Fenlon試劑法、生物處理法。
一般情況下,看你是什麼廢水,採用不同的處理方法,設備也是不一樣的

⑼ 焦化廢水中的污染物有哪些如何處理焦化廢水

焦化生產過程中排放大量含酚、氰、油、氨氮等有毒、有害物質的廢水。焦化廢水所包含污染物有酚類、多環芳香族化合物及含氮、氧、硫的雜環化合物等是一種典型的含有難降解的有機化合物的工業廢水。
目前焦化廢水一般常規方法先進行預處理,然後進行生物脫酚二次預處理。但是,焦化廢水經上述處理後,外排廢水中氰化物、COD及氨氮等指標仍然很難達標。近年來國內外有研究了有效的4種方法包括分為生物法、化學法、物化法和循環利用法等。

⑽ 生物技術在廢水處理中的作用有哪些

生物脫氮技術工藝簡介
新型節能生物脫氮技術與傳統的焦化廢水處理工藝相比耗能更加低,投資少,處理效果大,因此目前使用生物脫氮技術的煉焦廠非常多。生物脫氮技術處理焦化廢水的工藝有:缺氧—好氧法,SBR法,厭氧—缺氧—好氧法等。使焦化廢水達到零排放的標准就是要去除廢水中的氨氮,目前生物脫氮技術是最經濟有效的,並且無污染的工藝技術,它利用生物化學的作用將焦化廢水中的氨氮轉化成無害的氮氣而去除,統稱為反硝化過程。
通過眾多用戶在焦化廢水生產回用過程中使用生物脫氮技術總結出其具有以下特點:
(1)效率高。該工藝對廢水中的有機物,氨氮等均有較高的去除效果。當總停留時間大於54h,經生物脫氮後的出水再經過混凝沉澱,可將COD值降至100mg/L以下,其他指標也達到排放標准,總氮去除率在70%以上。
(2) 流程簡單,投資省,操作費用低。該工藝是以廢水中的有機物作為反硝化的碳源,故不需要再另加甲醇等昂貴的碳源。尤其,在蒸氨塔設置有脫固定氨的裝置後,碳氮比有所提高,在反硝化過程中產生的鹼度相應地降低了硝化過程需要的鹼耗。
(3) 缺氧反硝化過程對污染物具有較高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有機物的去除率分別為62%和36%,故反硝化反應是最為經濟的節能型降解過程。

閱讀全文

與焦化廢水高效生物處理技術相關的資料

熱點內容
樹脂畫見解 瀏覽:434
怎麼拆掉機油濾芯 瀏覽:842
海爾凈水器更換ro膜 瀏覽:879
污水管子漏水怎麼辦 瀏覽:169
水處理運行加葯濃度的計算 瀏覽:680
怎麼檢查反滲透 瀏覽:386
最受歡迎的超濾機 瀏覽:621
凈水機進水管長什麼樣 瀏覽:888
智能飲水機怎麼控制時間 瀏覽:837
安吉爾超濾膜濾芯的安裝 瀏覽:504
漢蘭達6at變速箱濾芯是哪裡代工的 瀏覽:289
某城市污水處理廠工藝流程 瀏覽:561
豪沃重汽尿素濾芯在哪裡圖 瀏覽:745
楊子802空氣凈化器怎麼樣 瀏覽:374
插管式柴油濾芯怎麼拆 瀏覽:430
廢水是怎麼生產的 瀏覽:476
即熱飲水機的工作原理是什麼 瀏覽:683
油煙凈化器怎麼維修 瀏覽:36
空氣凈化器和香薰怎麼平衡 瀏覽:961
RO反滲透凈水器怎麼買 瀏覽:744