❶ 我工廠廢水COD達到30000以上,主要是枝葉提取產生的,如何能把 COD降下來呢
因為你工廠COD濃度很高,而且考慮到可能含有難溶性有機物。如果如你所言,單純的將COD降下來後用於回用的話。那麼我推薦的工藝是厭氧+好氧生化處理技術,後續可加一道沙濾和活性炭過濾系統。
如果是要達標排放的話,那麼要在厭氧+好氧生化處理技術後面加一道MBR處理系統。這樣才能確保達標。
現在有一種芬頓氧化技術還可以考慮下,放在系統前端。
❷ 有機磷廢水有什麼好方法去除
1 有機磷農葯的分類、生化特點及廢水共性
1.1 有機磷農葯按化學結構大致分為
(1) 磷酸酯類,如敵百蟲、草甘膦等,該類化合物生化處理比較容易,如南通農葯廠生產的敵百蟲,久效磷等廢水直接稀釋進生化,COD 去除率可達85%左右[1]。
(2) 一硫代磷酸酯類,如甲基對硫磷、甲基嘧啶磷、丙溴磷等,該類化合物因含硫而味臭,不能被微生物降解,與可生化降解物混合,可部分降解為正磷酸。
(3) 二硫代磷酸酯類,如樂果、馬拉硫磷等,該類化合物因含多硫味特臭,不能被微生物降解,與可生化降解物混合,極少部分降解為正磷酸。
由以上可知,硫代磷酸酯類有機磷農葯是該類農葯預處理的重點和難點,只有通過預處理降解才能進一步進生化池生化。
s
2.2 有機磷農葯廢水共性成分
通過對有機磷廢水的成分分析可知,廢水中95% 以上不是農葯本體,而是它們的中間體及不同階段的降解產物(圖2)中含量較多的有:
3 有機磷農葯廢水預處理的方法
近年來對有機磷廢水的處理,基本圍繞著分解和去除廢水中的有機硫、磷進行,大體可分為物理處理法和化學處理法。物理處理法包括: 吸附、萃取、氣提、絮凝沉降等方法,化學處理法包括: 氧化、還原、水解等方法。
3.1 物理處理
3.1.1 吸附
吸附是一種物質附著在另一物質表面的過程。目前採用較多的吸附劑有大孔樹脂、活性炭、粉煤灰及膨潤土。其中大孔樹脂及活性炭因價格昂貴,使用受到一定的限制,且存在活化再生的問題,而粉煤灰吸附雖效果不及前者,但處理簡便、成本低廉,可達到以廢治廢的效果、目前得到廣泛應用。如文獻報道[2]採用季銨鹽改性粉煤灰處理有機磷廢水,磷的吸附率可達97%。
3.1.2 萃取
萃取: 採用與水不溶而能很好溶解污染物的萃取劑,使其與廢水充分接觸,利用污染物在水及溶劑中溶解度的不同,達到分離和凈化廢水的目的。使用比較多的有絡合萃取、液膜萃取。在處理丙溴磷廢水時採用TBP 與環己烷形成絡合劑萃取回收水中的氯酚,氯酚回收率可達98%。沈陽化工院採用液膜萃取含酚廢水,也達到很好的效果[3]。
3.1.3 氣提、吹脫
氣提、吹脫法是將氣體吹入廢水,使溶解性氣體或易揮發性物質變成氣體,從而凈化廢水的過程。湖南海利集團採用蒸汽氣提回收樂果硫磷酯工段廢水中的氨氮,氨氮去除率可達85%,大大提高了廢水的可生化性。
3.1.4 絮凝、沉降
絮凝沉降是採用加入絮凝劑破壞廢水懸浮顆粒的穩定性,消除顆粒間的斥力,使顆粒接觸並吸附在一起,再通過絮凝劑進行架橋及網捕,形成大顆粒從水中分離的方法。該方法因簡單,成本低廣泛應用在廢水處理中。現有絮凝劑主要有無機絮凝劑及有機絮凝劑兩大類,無機絮凝劑主要有硫酸鋁,聚合氯化鋁、聚合硫酸鐵等,有機絮凝劑主要有聚丙烯醯胺和甲醛-雙氰胺類。
3.2 化學處理
3.2.1 化學氧化法
化學氧化法主要包括電催化氧化、芬頓氧化、及濕式氧化法。
(1) 電催化氧化處理技術
電催化氧化處理技術是一種高級的電化學氧化工藝,是利用外加電場作用,在特定的電化學反應器內,通過一系列設計的化學反應、電化學過程或物理過程,達到預期的去除廢水中污染物或回收有用物資的目的。在反應過程中一般是直接氧化和間接氧化同時進行。現在應用較多的電催化氧化技術是以活性碳、惰性金屬(Ag,Pt,Ti 等) 和表面塗覆PbO2,SnO2,Sb2O5等氧化膜的惰性金屬為陽極,以鐵板為陰極,通過電極的直接和間接作用,達到去除污染物、凈化水質的目的[4]。湖南海利集團將這一技術運用到硫磷酯廢水及甲基嘧啶磷的廢水處理中,COD 去除率可達45%,可生化性得到大幅的提高。
(2) 芬頓氧化法
Fenton 法是一種高級氧化工藝。通過Fe2 + 和H2O2結合生成高反應活性的羥基自由基,它可有效處理絕大多數難降解有機廢水。與其他高級氧化工藝相比,具有操作簡單、反應快速等優點。由於使用雙氧水,成本還比較高,限制了該法的廣泛應用。如李榮喜等將芬頓法運用到降解湖南天宇化工農葯有限公司的三唑磷農葯廢水,COD 去除率高達95%[5]。為提高芬頓試劑的效率,目前有報道採用UV/Fenton 及超聲(微波) /Fenton 的方法,能使COD 去除率提高10% ~ 20%[6]。
(3) 濕式氧化法
濕式氧化法簡稱WAO,是以空氣及氧氣為氧化劑將溶解及懸浮於水中的有機物或還原性無機物,在高溫高壓下進行液相氧化分解,大幅去除COD/BOD/SS 的方法。該方法氧化徹底,如處理硫磷酯廢水,能將其完全無機化,但該法對設備要求高,反應條件苛刻、設備成本高,在國內使用尚不普遍[7]。
3.2.2 化學還原法
鐵/炭微電解屬電化學還原技術,利用鐵一炭體系形成的微原電池對水中難降解污染物進行處理。微電解作用機理主要包括:(1) 鐵屑的吸附作用; (2) Fe 的還原作用; (3) 微電解產物Fe2 +、氫的還原作用; (4) Fe2 + /Fe3 + 的絮凝作用。匡蕾、揚庚等將此法用在處理有機磷農葯中間體乙基氯化物生產廢水中,處理後水的COD、硫化物、總磷的去除率分別高達90.2%、99.4%、95.0%,廢水的可生物降解性明顯提高,為進入生化創造了條件[8]。
3.2.3 水解法
有機磷農葯水解分鹼式水解、酸式水解[9]。鹼式水解機理為OH-進攻P 原子,發生Sn2取代。鹼性條件下從三酯水解成二酯容易,再繼續水解困難,因此一般停留在一級水解階段。在酸性條件下水解反應的機理一般認為首先使連酯的氧原子上質子化,然後碳原子受到攻擊發生Sn2取代反應,經不斷取代,最終水解為無機磷。化學水解法處理有機磷農葯廢水從理論上看是可行的,從實際應用看是有效的,尤其適宜處理高濃度有機磷廢水處理。如在酸性條件水解水胺硫磷,有機磷、硫化物、NH3- N 和總磷去除率均大於90%,COD 去除率達50%以上[10]。
❸ 目前有哪些針對難生化高濃度有機廢水處理方法
針對難生化的高濃度有機廢水應該採用預處理+生化處理的方法,而且關鍵在生化前的預處理上,通過預處理降低廢水中對生化有抑製作用的物質,把大分子的有機物分解成小分子有機物,提高廢水的可生化性。
常見的預處理方法有:
1、高級氧化(臭氧氧化、芬頓試劑氧化、雙氧水氧化等),將廢水中難降解有機物直接氧化降解;
2、微電解工藝(如鐵碳微電解等),利用微電解產生的電子,將有機物的一些基團打開,分解成小分子物質,有利於後續的生化處理;
3、蒸餾工藝,將高濃度的含鹽類母液等進行蒸餾,減少廢水中的對生化細菌有抑製作用的無機鹽類等。
4、水解酸化,利用生物的厭氧發酵的前面兩個階段,將廢水中的有機物水解酸化成小分子物質,有利用後續的生化降解。
預處理後的生化系統有:
1、厭氧工藝(UASB、IC、普通厭氧工藝及其演變工藝等)
2、A/O(兼氧、好氧工藝)等。
江山海怡環境科技有限公司 科技改善環境 QQ:836714684
❹ 廢水中的苯環如何破除
如何破解高濃廢水?用高效催化氧化處理工藝
:一、高濃度廢水背景概述
高濃度難降解廢水越來越多,與此同時隨著生活水平的提高,環保意識增強,人們對難降解的有機物在環境中的遷移、變化越來越關注,然而高濃度難降解有機污染物的處理,是廢水處理的一個難點,難以用常規工藝(如混凝、生化法)處理,這是因為?
一、是此類廢水濃度高,CODcr一般為數萬mg/L,高的甚至達到十多萬mg/L以上;
二、是其中所含是污染物主要是芳烴化合物,BOD/COD很低,一般在0.1以下,難以生物降解;
三、是污染物毒性大,許多物質被列入環境污染物黑名單,如苯胺、硝基苯類等;
四、是無機鹽含量高,達數萬甚至十多萬以上。因此開發高濃度難降解有機廢水的有效處理技術迫在眉睫。常溫常壓下的新型高效催化氧化技術就是在這種背景下應運而生的。
二、高效催化氧化原理
新型高效催化氧化的原理就是在表面催化劑存在的條件下,利用強氧化劑——二氧化氯在常溫常壓下催化氧化廢水中的有機污染物,或直接氧化有機污染物,或將大分子有機污染物氧化成小分子有機污染物,提高廢水的可生化性,較好地去除有機污染物。在降解COD的過程中,打斷有機物分子中的雙鍵發色團,如偶氮基、硝基、硫化羥基、碳亞氨基等,達到脫色的目的,同時有效地提高BOD/COD值,使之易於生化降解。這樣,二氧化氯催化氧化反應在高濃度、高毒性、高含鹽量廢水中充當常規物化預處理和生化處理之間的橋梁。高效表面催化劑(多種稀有金屬類)以活性炭為載體,多重浸漬並經高溫處理。
ClO2在常溫下是黃綠色的類氯性氣體,溶於水中後隨濃度的提高顏色由黃綠色變為橙紅色。其分子中具有19個價電子,有一個未成對的價電子。這個價電子可以在氯與兩個氧原子之間跳來跳去,因此它本身就像一個游離基,這種特殊的分子結構決定了ClO2具有強氧化性。ClO2在水中發生了下列反應:
ClO2 +H2O→HClO3+HCl
ClO2→ClO2 +O2
ClO2+ .HO→HCl+HClO
HClO→O2 +H2O
HClO2+ Cl2 +H2O→HClO3+HCl
氯酸和亞氯酸在酸性較強的溶液里是不穩定的,有很強的氧化性,將進一步分解出氧,最終產物是氯化物。在酸性較強的條件下,二氧化氯回分解並生成氯酸,放出氧,從而氧化、降解廢水中的帶色基團與其他的有機污染物;而在弱酸性條件下,二氧化氯不易分解污染物而是直接和廢水中污染物發生作用並破壞有機物的結構。因此,pH值能影響處理效果。
從上式可以看出,二氧化氯遇水迅速分解,生成多種強氧化劑——HClO3、HClO2、Cl2、H2O2等,並能產生多種氧化能力極強的活性基團(即自由基),這些自由基能激發有機物分子中活潑氫,通過脫氫反應生成R*自由基,成為進一步氧化的誘發劑;還能通過羥基取代反應將芳烴上的——SO3H、——NO2等基團取代下來,生成不穩定的羥基取代中間體,此羥基取代中間體易於發生開環裂解,直至完全分解為無機物;此外ClO2還能將還原性物質如S2—等氧化。二氧化氯的分解產物對色素中的某些基團有取代作用,對色素分子結構中的雙鍵有加成作用。因此,二氧化氯可以很好的氧化分解水中的酚、氯酚、硫醇、仲胺、叔胺等難降解有機物和硫化物、鐵、錳等無機物。
二氧化氯作催化劑的催化氧化過程對含有苯環的廢水有相當好的降解作用,COD的去除率也相當高。但在有機物質的降解過程中,有一些中間產物產生,主要有:草酸、順丁烯二酸、對苯酚和對苯醌等,這就造成了COD的去除率相對較低,但其B/C比即可生化性大大提高。
三、氧化劑制備
二氧化氯採用現場制備的方法,在塔式噴淋反應器內,用氯酸鈉與鹽酸在催化劑存在的條件下反應,生成二氧化氯,反應方程式如下:
NaClO3+HCl → NaCl +ClO2+Cl2
反應過程是在射流作用下使反應器形成負壓,使原料經轉子流量計自動吸入反應器,反應生成二氧化氯,最終被射流帶入水體中。負壓條件可使操作過程比較安全,而且二氧化氯不會外泄,操作環境無異味。在本反應中,可利用催化劑作用,減少氯氣的產生,提高二氧化氯的產率。
四、設計與應用
(一)催化氧化的處理工藝
一般催化氧化的處理工藝為:廢水→物化前處理→催化氧化→配水→生化
工藝說明如下:
⑴前處理採用混凝、沉澱、氣浮、微電解、中和、預曝氣等物化處理方法。經過這些物化處理,去除懸浮物,降低了廢水的COD,調節了pH值,使廢水能更適合進行催化氧化;
⑵催化氧化過程中降低了一部分COD,提高了B/C,使之能更好地進行生化處理,在物化與生化處理之間充當橋梁作用;
(3)催化氧化塔出水進行配水是為了降低含鹽量,使之能更好地進行生化處理;
(4)生化處理的主要目的是進一步降低COD,最大限度地去除有機污染。
(二)催化氧化的處理效果
COD去除率≥70% ;色度去除率≥95 ;揮發酚去除率≥99% ;苯氨類去除率≥95%;硝基苯類去除率≥95% ;氰化物去除率≥99%。
五、鐵碳微電解工藝介紹:
微電解技術是目前處理高濃度有機廢水的一種理想工藝,又稱內電解法。它是在不通電的情況下,利用填充在廢水中的微電解材料自身產生1.2V電位差對廢水進行電解處理,以達到降解有機污染物的目的。當系統通水後,設備內會形成無數的微電池系統,在其作用空間構成一個電場。在處理過程中產生的新生態[H] 、Fe2+ 等能與廢水中的許多組分發生氧化還原反應,比如能破壞有色廢水中的有色物質的發色基團或助色基團,甚至斷鏈,達到降解脫色的作用;生成的Fe2+ 進一步氧化成Fe3+ ,它們的水合物具有較強的吸附- 絮凝活性,特別是在加鹼調pH 值後生成氫氧化亞鐵和氫氧化鐵膠體絮凝劑,它們的吸附能力遠遠高於一般葯劑水解得到的氫氧化鐵膠體,能大量吸附水中分散的微小顆粒,金屬粒子及有機大分子。
工作原理:基於電化學、氧化- 還原、物理吸附以及絮凝沉澱的共同作用對廢水進行處理。該法具有適用范圍廣、處理效果好、成本低廉、操作維護方便,不需消耗電力資源等優點。鐵碳微電解填料用於難降解高濃度廢水的處理可大幅度地降低COD和色度,提高廢水的可生化性,同時可對氨氮的脫除具有很好的效果
鐵碳-芬頓反應器可通過催化氧化方式提高污水的可生化性。
1894年,法國人H,J,HFenton發現採用Fe2++H2O2體系能氧化多種有機物。後人為紀念他將亞鐵鹽和過氧化氫的組合稱為Fenton試劑,它能有效氧化去除傳統廢水處理技術無法去除的難降解有機物,其實質是H2O2在Fe2+的催化作用下生成具有高反應活性的羥基自由(•OH) •OH可與大多數有機物作用使其降解。隨著研究的深入,又把紫外光(UV)、草酸鹽(C2O42-)等引入Fenton試劑中,使其氧化能力大大增強。從廣義上說,Fenton法是利用催化劑、或光輻射、或電化學作用,通過H2O2產生羥基自由基(•OH)處理有機物的技術。近年來,越來越多的研究者把Fenton試劑同別的處理方法結合起來,如生物處理法、超聲波法、混凝法、沉澱法,活性炭法等。
工作原理及主要特點
芬頓試劑為常用的催化試劑,它是由亞鐵鹽和過氧化物組成,當PH值足夠低時,在亞鐵離子的催化作用下,過氧化氫會分解產生OH˙,從而引發一系列的鏈反應。芬頓試劑在水處理中的作用主要包括對有機物的氧化和混凝兩種作用。
氧化作用:芬頓試劑之所以具有非常高的氧化能力,是因為在Fe2+離子的催化作用下H2O2的分解活化能低(34.9kJ/mol),能夠分解產生羥基自基OH•。同其它一些氧化劑相比,羥基自由基具有更高的氧化電極電位,因而具有很強的氧化性能。芬頓試劑處理難降解有機廢水的影響因素根據上述芬頓試劑反應的機理可知,OH•是氧化有機物的有效因子,而[Fe2+]、[H2O2]、[OH]決定了OH•的產量,因而決定了與有機物反應的程度。
電化學作用:鐵碳和電解質溶液接觸時,形成以鐵碳為兩極的原電池。其中碳極的電位高,為陰極,而鐵極的電位低,為陽極。在廢水中,電化學腐蝕作用可以自動進行。由於Fe2+的不斷生成能有效克服陽極的極化作用,從而促進整個體系的電化學反應,使大量的Fe進入溶液,具有較高化學還原活性。電極反應所產生的新生態,能與溶液中許多組分發生氧化還原反應。同時鐵是活潑金屬,它的還原能力可使某些組分還原為還原態。
過濾吸附及共沉澱作用:由鐵屑和碳粒共同構成的內電解反應柱具有良好的過濾作用,反應生成的膠體不但可以強化過濾吸附作用,而且產生新的膠粒。其中心膠核是許多Fe(OH)聚合而成的有巨大比表面積的不溶性粒子。易於裹挾大量的有害物質,並可和多種金屬發生共沉澱作用,達到去除的目的。
電泳作用:在微原電池周圍電場的作用下,廢水中以膠體狀態存在的污染物可在很短的時問內完成電泳沉積作用。即帶電的膠粒在靜電引力和表面能的作用下,向帶有相反電荷的電極移動,附集並沉積在電極上而得以去除。
❺ Fenton氧化法能處理高濃度有機廢水嗎
的確可以處理高濃度有機廢水
1、Fenton試劑簡介
1894年,法國科學家H.J.H.Fenton發現H2O2在Fe2+催化作用下具有氧化多種有機物的能力,後人為紀念他將亞鐵鹽和H2O2的組合稱為Fenton試劑。Fenton試劑中Fe2+作為同質催化劑,而H2O2 具有強烈的氧化能力。特別適用於處理高濃度、難降解、毒性大的有機廢水。1964年,H.R.Eisen Houser才首次使用Fenton試劑處理苯酚及烷基苯廢水,開創了Fenton試劑應用於工業廢水處理領域的先例。後來人們發現這種混合體系所表現出的強震化性是因為Fe2+的存在有利於H2O2分解產生出HO˙的緣故,為進一步提高對有機物的去除效果,以標准Fenton試劑為基礎,能夠改變和偶合反應條件,可以得到一系列機理相似的類Fenton試劑。
2、Fenton試劑的催化機理及氧化性能
催化機理
對於Fenton試劑催化機理,目前公認的是Fenton試劑能通過催化分解產生羥基自由基(HO˙)進攻有機物分子,並使其氧化為CO2、H2O等無機物質。這是由Harber Weiss於1943年提出的。在此體系中HO˙實際上是氧化劑反應,反應式為:
Fe2+ +H2O2+H+—— Fe3+ +H2O+HO˙
由於Fenton試劑在許多體系中確有羥基化作用,所以Harber Weiss機理得到普遍承認,有時人們把上式稱為Fenton反應。
氧化性能
Fenton試劑之所以具有非常高的氧化能力,是因為H2O2 在Fe2+的催化作用下,產生羥基自由基HO˙,HO˙與其他氧化劑相比具有更強的氧化電極電位,具有很強的氧化性能。氧化還原電位以電極電位為測定值,HO˙與其他強氧化劑電極電位見下表。
由此表可以看出,HO˙的氧化還原電位遠高於其他氧化劑,具有很高的氧化能力,故能使許多難生物降解及一般化學氧化法難以氧化的有機物有效分解,HO˙具有較高的電負性或電子親和能。
對於多元醇(乙二醇、甘油)以及澱粉、蔗糖、葡萄糖之類的碳水化合物在HO˙作用下,分子結構中各處發生脫H(原子)反應,隨後發生C=C鍵的開裂最後被完全氧化為CO2。對於水溶性高分子物(聚乙烯醇、聚丙烯醇鈉、聚丙烯醯胺)和水溶性丙烯衍生物(丙烯腈、丙烯酸、丙烯醇、丙烯酸甲酯等)HO˙加成到C=C鍵,使雙鍵斷裂,然後將其氧化成CO2。對於飽和脂肪族一元醇(乙醇、異丙醇)飽和脂肪族羧基化合物(乙酸、乙酸乙基丙酮、乙醛),主鏈為穩定的化合物,HO˙只能將其氧化為羧酸,由復雜大分子結構物質氧化分解成直碳鏈小分子化合物。
對於酚類有機物,低劑量的Fenton試劑可使其發生偶合反應生成酚的聚合物大劑量的Fenton試劑可使酚的聚合物進一步轉化成CO2。對於芳香族化合物,HO˙可以破壞芳香環,形成脂肪族化合物,從而消除芳香族化合物的生物毒性。對於染料,HO˙可以直接攻擊發色基團,打開染料發色官能團的不飽和鍵,使染料氧化分解。而色素的產生是因為其不飽和共軛體系的存在而對可見光有選擇性的吸收,HO˙能優先攻擊其發色基團而達到漂白的效果。
Fenton試劑的作用機理
標准Fenton試劑是由H2O2 在Fe2+ 組成的混合體系,標准體系中HO˙的引發,消耗及反應鏈終止的反應機理可歸納如下:
Fe2+ +H2O2 ——Fe3++ OH-+HO˙ ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙(1)
Fe2+ + HO˙ ——Fe3++ OH- ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙(2)
H2O ˙+Fe3+ —— Fe2+ +O2 +H+ ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙(3)
HO˙+H2O2 ——H2O +HO2˙ ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙(4)
Fe2+ +HO˙——Fe3+ +HO2- ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙(5)
Fe3+ +H2O2—— Fe2+HO2 +H+ ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙(6)
3、Fenton試劑類型
Fenton試劑自出現以來就引起了人們的廣泛青睞和重視,並進行了廣泛的研究,為進一步提高對有機物的氧化性能,以標准為基礎,發展成了一系列機理相似的類Fenton試劑,如改性-Fenton試劑、光-Fenton試劑、電-Fenton試劑、配體-Fenton試劑等。
標准Fenton試劑
標准Fenton試劑是由Fenton試劑Fe2+和H2O2組成的混合體系,它通過催化分解H2O2 產生HO˙來攻擊有機物分子奪取氫,將大分子有機物降解成小分子有機物或CO2和H2O,或無機物。
反應過程中,溶液的pH值、反應溫度、H2O濃度和Fe3+的濃度是影響氧化效率的主要因素,一般情況下,pH值3~5為Fenton試劑氧化的最佳條件,pH值的改變將影響溶液中鐵的形態的分布,改變催化能力。降解速率隨反應溫度的升高而加快,但去除效率並不明顯。
在反應過程中,Fenton試劑存在一個最佳的H2O2和Fe2+投加量比,過量的H2O2 會與HO˙發生反應(4);過量的Fe2+會與HO˙發生反應(5),生成的Fe3+又可能引發反應(6)。
改性-Fenton試劑
利用Fe(Ⅲ)鹽溶液、可溶性鐵以及鐵的氧化礦物(如赤鐵礦、針鐵礦等)同樣可使H2O2催化分解產生HO˙,達到降解有機物的目的,這類改性Fenton試劑,因其鐵的來源較為廣泛,且處理效果比標准下cnt門n試劑處理效果更為理想,所以得到廣泛應用。使用Fe(Ⅲ)替代Fe(Ⅱ)與H2O2組合產生的HO˙反應式基本為:
Fe3+ +H2O2 ——[Fe (HO2)]2+ +H+
[Fe ( HO2 )]2+ —— Fe2++HO2˙
Fe2++H2O2 ——Fe3+ +OH-+HO˙
為簡單起見,上述反應中鐵的絡合體中都省去了H2O 。當pH>2時,還可能存在如下反應:
Fe3++OH-——[Fe(OH)]2+
[Fe (OH)]2++H2O2——[Fe(HO)(HO)2)]2++H+
[Fe(HO)(HO2)]2+—— Fe2++HO2 ˙ +OH-
光-Fenton試劑
在Fenton試劑處理有機物的過程中光照(紫外光或可見光)可以提高有機物的降解效果,如當用紫外光照射Fenton試劑,處理部分有機廢水時,COD去除率可提高10%以上。這種紫外光或可見光照下的Fenton試劑體系,稱為光-Fenton試劑。在光照射條件下,除某些有機物能直接分解外,鐵的羥基絡合物(PH值為3~5左右,Fe3+主要以[Fe(OH)]2+形式存在)有較好的吸光性能,並吸光分解,產生更多HO˙,同時能加強Fe3+的還原,提高Fe2+的濃度有利於H2O2催化分解,從而提高污染物的處理效果,反應式如下:
4Fe(HO)2++hv——Fe2+ +HO˙+HO2˙+ H2O
Fe2++H2O2 ——Fe3+ +HO˙+HO-
Fe3+ + H2O2 ——[Fe (OH)]2+ +H+
[Fe (OH)]2+——Fe2++ HO2˙
配體-Fenton試劑
當在Fenton試劑中引人某些配體(如草酸、EDTA等),或直接利用鐵的某些螯合體如[K3Fe(C2O4)3˙3H2O],影響並控制溶液中鐵的形態分布,從而改善反應機制,增加對有機物的去除效果,則得到配體Fenton試劑。另外,在光照條件下,一些有機配體(如草酸)有較好的吸光性能,有的還會分解生成各種自由基,大大促進了反應的進行。
Mazellier在用Fenton試劑處理敵草隆農葯廢水時,引人草酸作為配體,可形成穩定的草酸鐵絡合物{[Fe(C2O4)]+[Fe(C2O4)2]2- 或[Fe(C2O4)3]3- },草酸鐵絡合物的吸光度的波長范圍寬,是光化學性很高的物質,在光照條件下會發生下述反應(以[Fe(C2O4)3]3- 為例)
因此隨著草酸濃度的增加,敵草隆的降解速度加快,直到草酸濃度增加到與Fe3+濃度形成平衡時,敵草隆的降解速度最大。
電-Fenton試劑作用機理
電-Fenton系統就是在電解槽中,通過電解反應生成H2O2和Fe2+,從而形成Fenton試劑,並讓廢水進入電解槽,由於電化學作用,使反應機製得到改善,提高Fenton試劑的處理效果.
Panizza用石墨作為電極電解酸性Fe3+溶液,處理含萘、蒽醌-磺酸生產廢水,通過外界提供的O2在陰極表面發生電化學作用生成H2O2,再與Fe2+ 發生催化反應產生HO˙,其反應式如下:
O2十2H2O+e-——2H2O2
Fe2+ + H2O2 ——Fe3++HO ˙ +OH-
陳衛國則認為電催化劑反應在鹼性條件下,更利於陰極產生H2O2 ,其反應式為:
O2+H2O+ 2e-—— HO2- + OH-
HO2-+OH-+ 2e-—— HO2-+OH-
4、影響Fenton反應的因素
根據Fenton試劑反應機理可知,HO˙是氧化有機物的有效因子,而[Fe2+]、[H2O2 ]、[OH-]決定了HO˙的產生。影響Fenton試劑處理難降解難氧化有機廢水的因東包括pH值、H2O2投加公及投加方式、催化劑種類、催化劑投加量、反應時間和反應溫度等,每個因素之間的相互的作用是不同的。
pH值
pH值對Fenton系統會產生較大的影響,pH值過高或過低都不利於HO˙的產生、當pH值過高時會抑制式(1)的進行,使生成HO˙的數量減少;當pH值過低時、由式(6)可見,Fe3+很難被還原為Fe2+,而使式(1)中Fe2+的供給不足,也不利於HO˙的產生。大量試驗數據表明,Fenton反應系統的最佳pH值范圍為3~5,該范圍與機物種類關系不大。
H2O2投量與Fe2+投量之比
H2O2投量和Fe2+投量對HO˙的產生具有重要的影響。由式(1)可見,當H2O2 和Fe2+投量較低時,HO˙產生的數量相對較少,同時,H2O2 又是HO˙捕捉劑,H2O2投量過高會發生式(4)的反應使最初產生的HO˙減少。另外,若Fe2+的投量過高,則在高催化劑濃度下,反應開始時從H2O2中非常迅速地產生大量的活性HO˙。HO˙同基質的反應不那麼快,使未消耗的游離HO˙積聚,這些HO˙彼此相互反應生成水,致使一部分最初產生的HO˙被消耗掉,所以Fe2+投量過高也不利於HO˙的產生。而且Fe2+投量過高也會使水的色度增加。在實際應用當中應嚴格控制Fe2+投量與H2O2投量之比,經研究證明、該比值同處理的有機物種類有關,不同有機物最佳的Fe2+投量與H2O2 投量之比不同。
H2O2投加方式
保持H2O2總投加量不變,將H2O2均勻地分批投加,可提高廢水的處理效果,其原因是H2O2分批投加時,[H2O2]/[Fe2+]相對降低,即催化劑濃度相對提高從而使H2O2的HO˙產率增大,提高了H2O2利用率,進而提高了總的氧化效果。
催化劑種類
能催化H2O2分解生成羥基自由基(HO˙)催化劑很多,Fe2+(Fe3+、鐵粉、鐵屑)、TiO2,/Cu2+/Mn2+/Ag+、活性炭等均有一定的催化能力,不同催化劑存在下H2O2對難降解有機物的氧化效果不同,不同催化劑同時使用時能產生良好的協同催化作用。
催化劑投加量
FeSO4˙7H2O催化H2O2分解生成羥基自由基(HO˙)最常用的催化劑。與過氧化氫相同、一般情況下,隨著用量的增加,廢水COD的去除率先增大,而後呈廠降趨勢。其原因是在Fe2+濃度較低時,Fe2+的濃度增加,單位量H2O2產生的HO˙增加,所產生的HO˙全部參加了與有機物的反應當Fe2+的濃度過高時,部分H2O2發生無效分解,釋放出O2。
反應時間
Fenton試劑處理難解有機廢水,一個重要的特點就是反應速度快,一般來說,在反應的開始階段,COD的去除率隨時間的延長而增大,一定反應時間後,COD的去除率接近最大值,而後基本維持穩定,Fenton試劑處理有機物的實質就是HO˙與有機物發生反應,HO˙的產生速率以及HO˙與有機物的反應速率的大小直接決定了Fenton試劑處理難降解有機廢水所需時間的長短,所以Fenton試劑處理難降解有機廢水的反應時間有關。
反應溫度
溫度升高HO˙活性增大,有利於HO˙與廢水中有機物的反應,可提高廢水以COD的去除率;而溫度過高會促使H2O2 分解為O2和H2O2,不利於HO˙的生成,反而會降低廢水COD的去除率。陳傳好等研究發現Fe2+-H2O2 處理洗膠廢水的最佳溫度為85。C,冀小元等則通過試驗證明H2O2-Fe2+/TiO2催化氧化分解放射性有機溶劑(TPB/OK)的理想溫度為95~99℃。
❻ 高濃度有機廢水的COD去除率比較低是什麼原因
據我接觸的抄化工廢水來襲看,化工廢水的可生化性是很差的。光靠厭氧和接觸氧化根本降解不了。我建議你做做芬頓實驗。將水解之後的廢水做芬頓實驗,然後將芬頓的產水用接觸氧化池的污泥曝啟。你看能否降到設計值。
我之前也碰到過精細化工的一個廢水,和你的工藝差不多。一點也降解不下來,而且你水力停留很久也沒有用。估計你們公司接項目的時候就是拍腦袋接的吧!特別是如果裡面有苯環類東西,就你這個工藝,你想都不要想了!
不給採納,誰理你。
還直接修改自己的問題,鄙視。
❼ 芬頓的鐵泥沉降問題,怎麼處理的
芬頓試劑法是針對一些特別難降解的機有污染物如高cod,利用硫酸亞鐵和雙氧水回的強氧化還原性答,生成反應強氧化性的羥基自由基,與難降解的有機物生成自由基,最後有效的氧化分解(芬頓(Fenton)試劑反應機理)。芬頓試劑的處理效果受到廢水污染物濃度,反應的pH值,硫酸亞鐵與雙氧水的比例,雙氧水的投加濃度的影響。首先要排除雙氧水是否過量?接著芬頓後沉澱PH值是多少?個人經驗PH在10--11...再說難沉降應該是廢水中陰陽離子比較平衡,建議投加陽離子PAM,破壞平衡。
❽ 雙氧水在污水處理中的使用方法使用環境注意事項是什麼
在高濃度的有機廢水處理中經常用到雙氧水,一般濃度在30%較為常見,和硫酸亞鐵或氯化亞鐵聯用,使用環境在PH為3左右,此法名為芬頓。
注意事項:PH一定要控制好,不然效果不佳,其次就是雙氧水見光分解、需要深色貯存容器。且屬於強氧化劑,需要謹慎保存。另外加了雙氧水之後會產生很多的氣泡,應該加點消泡劑。
(8)高濃度有機廢水芬頓擴展閱讀
雙氧水(化學名為過氧化氫)注意事項:
1、不得口服,應置於兒童不易觸及處。
2、對金屬有腐蝕作用,慎用。
3、避免與鹼性及氧化性物質混合。
4、避光、避熱,置於常溫下保存。
5、醫用的有效期一般為2個月。
6、不得用手觸摸。
❾ Fenton法處理污水後產生的氫氧化鐵污泥怎麼處置
普通Fenton法
H2O2在Fe的催化作用下分解產生·OH,其氧化電位達到2.8V,它通過電子轉移等途徑將有機物氧化分解成小分子。同時,Fe被氧化成Fe產生混凝沉澱,去除大量有機物。可見,Fenton試劑在水處理中具有氧化和混凝兩種作用。
光Fenton法
2.1 UV/Fenton法
當有光輻射(如紫外光、可見光)時,Fenton試劑氧化性能有很大的改善。UV/Fenton法也叫光助Fenton法,是普通Fenton法與UV/H2O2兩種系統的復合,與該兩種系統相比,其優點在於降低了Fe2+用量,提高了H2O2的利用率。這是由於Fe3+和紫外線對H2O2的催化分解存在協同效應。該法存在的主要問題是太陽能利用率仍然不高,能耗較大,處理設備費用較高
2.2UV-vis/草酸鐵絡合物/H2O2法
當有機物濃度高時,被Fe3+絡合物所吸收的光量子數很少,且需較長的輻照時間,H2O2的投加量也隨之增加,·OH易被高濃度的H2O2所清除。因而,UV/Fenton法一般只適宜於處理中低濃度的有機廢水。當在UV/Fenton體系中引入光化學活性較高的物質(如含Fe3+的草酸鹽和檸檬酸鹽絡合物)時,可有效提高對紫外線和可見光的利用效果。草酸鐵絡合物在pH3~4.9時效果好,檸檬酸鐵絡合物在pH4.0~8.0時效果好,但因前者具有含Fe3+的其他絡合物所不具備的光譜特性,所以UV-vis/草酸鐵絡合物/H2O2法更具發展前景。該法提高了太陽能的利用率,節約了H2O2用量,可用於處理高濃度有機廢水。
電Fenton法
電Fenton法比普通Fenton法提高了對有機物的礦化程度,但仍存在光量子效率低和自動產生H2O2機制不完善的缺點。電Fenton法利用電化學法產生的H2O2和Fe2+作為Fenton試劑的持續來源,與光Fenton法相比具有以下優點:一是自動產生H2O2的機制較完善;二是導致有機物降解的因素較多(除羥基自由基的氧化作用外,還有陽極氧化、電吸附等)。由於H2O2的成本遠高於Fe2+,所以通過電化學法將自動產生H2O2的機制引入Fenton體系具有很大的實際應用意義。
EF-Fenton法
該法又稱陰極電解Fenton法,其基本原理是將O2噴射到電解池陰極上產生H2O2,並與Fe2+發生Fenton反應。電解Fenton體系中的O2可通過曝氣的方式加入,也可通過H2O在陽極氧化產生。該法不用外加H2O2,有機物降解徹底,且不易產生中間有毒有害物質,其缺點在於所用陰極材料(主要為石墨、活性炭纖維和玻璃炭棒)在酸性條件下產生的電流小,H2O2產量不高。
EF-Feox法
稱犧牲陽極法,通過陽極氧化產生的Fe2+與加入的H2O2進行Fenton反應。由陽極溶解出的Fe2+和Fe3+可水解成Fe(OH)2和Fe(OH)3,對水中的有機物具有很強的混凝作用,其去除效果好於EF-Fenton法,但需外加H2O2,能耗較大,成本高。
FSR法、EF-Fere法
FSR法即Fenton污泥循環系統,又稱Fe3+循環法。該系統包括一個Fenton反應器和一個將Fe(OH)3轉化成Fe2+的電池,可以加速Fe3+向Fe2+的轉化,提高·OH產率,但pH必須小於1。EF-Fere法是FSR法的改進,去掉了Fenton反應器,直接在電池裝置中發生Fenton反應,其pH操作范圍(小於2.5)和電流效率均大於FSR法。
結論:Fenton法在處理難降解有機廢水時,具有一般化學氧化法無法比擬的優點,至今已成功運用於多種工業廢水的處理。但H2O2價格昂貴,單獨使用往往成本太高,因而在實際應用中,通常是與其他處理方法聯用,將其用於廢水的預處理或最終深度處理。用少量Fenton試劑對工業廢水進行預處理,使廢水中的難降解有機物發生部分氧化,改變它們的可生化性、溶解性和混凝性能,利於後續處理。另外,一些工業廢水經物化、生化處理後,水中仍殘留少量的生物難降解有機物,當水質不能滿足排放要求時,可採用Fenton法對其進行深度處理。
❿ 雙氧水在污水處理中的使用方法使用環境注意事項是什麼
在高濃度的有機廢抄水處理中經常用到雙氧水,一般濃度在30%較為常見,和硫酸亞鐵或氯化亞鐵聯用,使用環境在PH為3左右,此法名為芬頓。
注意事項:PH一定要控制好,不然效果不佳,其次就是雙氧水見光分解、需要深色貯存容器。且屬於強氧化劑,需要謹慎保存。另外加了雙氧水之後會產生很多的氣泡,應該加點消泡劑。
(10)高濃度有機廢水芬頓擴展閱讀
雙氧水(化學名為過氧化氫)注意事項:
1、不得口服,應置於兒童不易觸及處。
2、對金屬有腐蝕作用,慎用。
3、避免與鹼性及氧化性物質混合。
4、避光、避熱,置於常溫下保存。
5、醫用的有效期一般為2個月。
6、不得用手觸摸。