1. mbr工藝微動力生活污水處理設備有哪些常見的參數啊
MBR工藝的生活污水處理設備對於參數的設計要求較高,參數的合理性直接影響設備污水處理能力。如下是生活污水處理設備中混合液污泥濃度(MLSS)、污泥泥齡(SRT)、迴流比、水力停留時間(HRT)的具體參數作用。
1、混合液污泥濃度(MLSS)相關參數
MLSS是具有活性的微生物(Ma)、微生物自身氧化的殘留物(Me)、吸附在污泥上不能被生物降解的有機物(Mi)以及無機物(Mii)這四者的總量。MBR膜生活污水處理設備一般膜池MLSS控制在10g/L,缺氧池MLSS為6.5g/L,厭氧區MLSS為5g/L,好氧區穩定在8.0g/L
2、污泥泥齡(SRT)
不同污泥齡(SRT)參數對同步硝化內源反硝化除磷(SNEDPR)系統脫氮除磷性能有著緊密關聯。同時SRT計算時需考慮對膜污染的控制,短SRT有利於提高PAOs的競爭優勢,在SRT為10-15h,系統除磷性能均較高。所以不同廠家的生活污水處理設備其SRT也是有差異的
3、迴流比
膜池向好氧區、好氧區向缺氧區、缺氧區向厭氧區的迴流液比例分別控制在300-500%,200-300%,100-200%
四、水力停留時間(HRT)
硝化和反硝化效果與HRT之間有著密切的關系,過短的HRT難以保證硝化和反硝化效果,具體HRT時間的設置需要根據項目具體情況來確定,常規MBR工藝生活污水處理設備的HRT區間是10-12小時。
2. 污水處理行業中SPT和HRT是什麼的縮寫具體涵義
SRT=污泥停抄留時間,HRT=水力停留時間。
污泥停留時間就是指曝氣池活性污泥的平均停留時間,也就是全池子的污泥都更新一次所需的天數,就是總污泥量/剩餘污泥量。水力停留時間就是處理的污水跟微生物作用的平均反應時間,就是池子的容積/進水的流量。
3. 廢水處理中怎樣計算各池的大小和水的停留時間啊
池大小根據負荷和流量來計算的。如預沉池根據表面負荷,接觸氧化池、A/O池、濾池等等回都是根據有答機負荷計算。
時間:是池體的容積,除以平均進水流量(m3/h)。譬如污水廠處理水量100m3/h(2400m3/d),一個調節池為800m3,HRT就是8小時。
而泥的停留時間一般叫SRT。
(3)SRT廢水擴展閱讀:
電鍍和金屬加工業廢水中鋅的主要來源是電鍍或酸洗的拖帶液。污染物經金屬漂洗過程又轉移到漂洗水中。酸洗工序包括將金屬(鋅或銅)先浸在強酸中以去除表面的氧化物,隨後再浸入含強鉻酸的光亮劑中進行增光處理。
該廢水中含有大量的鹽酸和鋅、銅等重金屬離子及有機光亮劑等,毒性較大,有些還含致癌、致畸、致突變的劇毒物質,對人類危害極大。因此,對電鍍廢水必須認真進行回收處理,做到消除或減少其對環境的污染。
電鍍混合廢水處理設備由調節池、加葯箱、還原池、中和反應池、pH調節池、絮凝池、斜管沉澱池、廂式壓濾機、清水池、氣浮反應,活性炭過濾器等組成。
4. 城市污水處理廠再生水回用工藝的研究
城市污水處理廠再生水回用工藝的研究具體內容是什麼,下面中達咨詢為大家解答。
0.導言
近年來,地下水位的下降和城市降雨的減少,使得再生水成為城市的第二供水水源。污水處理廠的再生水回收技術就是對污水進行改造升級,使再生水達到地表IV類水質標准,為居民提供穩定可靠的水源。
1.污水處理工藝研究
1.1以磁技術為核心的污水去除工藝
為減輕清河污水處理廠運行壓力、提高污水廠的處理效果,污水處理廠採用磁分離水處理技術,實施臨時污水處理能力提升應急工程。磁分離技術工藝簡單,可對原污水中主要污染物COD的去除率可以達族歷譽到7O%以上。磁分離技術是利用外加磁載入物的作用增強絮凝以達到高效沉降和過濾的目的,其原理是向污水中投加少量混凝劑、磁種等與污染物絮凝結合成一體,然後通過高效沉澱和磁過濾將水中的污染物去除磁種通過磁鼓分離器,在外加磁場下磁性介質表面產生高梯度磁場,捕集經過它爛返的磁性顆兆段粒。在雨季時期,超水量和上游來水會造成沖擊負荷問題,採用磁技術可防止超負荷狀況下污水對河道景觀的局部污染。
1.2污水處理中脫氮除磷工藝研究
1.2.1A2/O工藝改造和運行參數優化
A2/O是最基本的生物脫氮除磷工藝,但傳統的A2/O工藝難以同時實現高效的脫氮和除磷,本工藝根據需去除的TN和TP的量及其所需要的碳源確定A2/O工藝三段進水的不同比例。通過規模為150m3/h的試驗表明,在預缺氧段、厭氧段、缺氧段的進水比例分別為15%、5O%、35%時,出水TN和TP的均值分別為O.41mg/L和15.3mg/L,能夠穩定達到國家一級B排放標准。
溶解氧對微生物的生長具有很大影響,對硝化反硝化和除磷的都有影響。在處理工藝中,溶解氧自動控制在工藝設定的參數范圍內,可保證硝化的順利進行,並同時防止對反硝化和除磷造成不利影響。厭氧/缺氧/好氧水力停留時間是污水廠設計的重要參數,根據工藝研究,預缺氧段容積為0.5~1HRT,厭氧段容積為1~1.5HRT.缺氧段容積為3.5~4.5HRT,好氧段容積為6~9HRT,脫氧段容積為0.3-0.5HRT時,可達到最佳的效果。硝化細菌的存在時間較短,要達到較好的硝化效果需要保證足夠長的好氧泥齡,通過工藝研究,得出當溫度從15℃上升到25℃時,好氧泥齡從9~1O天下降到4.5~9天。同步脫氮除磷系統應適當延長好氧段的水力停留時間或污泥濃度,使系統能夠在冬季同時滿足硝化和除磷所需的泥齡。
1.2.2碳源開發與高效利用工藝研究
當進水中碳源不足時,反硝化反應就不能進行完全,脫氮率就會受到限制。為了解決脫氮除磷中的碳源競爭,一可利用初沉污泥發酵技術增加碳源的供給量,其二是開發污泥消化液自養生物脫氮等新技術節約碳源的需求量。目前,國內外利用污泥開發碳源的應用上絕大多數採用的是初沉污泥,將污泥的厭氧消化過程式控制制在水解酸化階段,實現酸化產物的積累。通過試驗豎流式和折板式活性初沉池水解初沉污泥改善污水特性的效果,實現了高效生物脫氮除磷。試驗結果表明豎流式和折板式活性初沉池出水VFA、SBOD5、SCODcr、SBOD5/SCODcr。值比進水均有增加,表明活性初沉池具有較好的水解酸化效果。通過試驗對比2小時、4小時、6小時三個水力停留時間下的水解酸化效果.得出折板式水解酸化池的最佳水力停留時間為4小時。
1.2.3消化液高效脫氮工藝研究
在兩級完全混合式濃縮發酵工藝中,污泥發酵和囿液的分離在兩個獨立的系統中進行。兩級完全混合初沉污泥水解酸化系統的高效HRT為32到36小時.SRT為4到7天時,污泥迴流比在0.75―1之間。實現穩定的短程硝化是實現污泥消化液高效脫氮的基礎和前提。在高溶解氧(6~9mg/L)、常溫(15-29℃)、長SRT條件下,成功地在缺氧濾床加好氧懸浮填料生物膜連續流工藝中實現了部分亞硝化,並通過綜合調控進水ALR、進水鹼度/氨氮和好氧段水力停留時間,控制進水鹼度氨氮這些工藝技術,來實現ANAMMOX工藝的部分亞硝化,和TN的去除。
1.2.4基於進水負荷變化的A2/O工藝過程優化控制
A2/O工藝處理單元較多.而且各單元順序串聯對進水負荷的抗沖擊能力較弱,需要建立適應進水負荷動態變化的過程式控制制模式。溶解氧的開始響應時間和峰值響應時間與系統的實際水力停留時間相同。對水力負荷變化為瞬間響應;而氮磷由於其微生物對環境的耐受能力,其響應時間有一定的滯後。在實際污水廠的控制中,有必要對進水負荷變化進行前饋控制,抑制進水負荷對後續氮、磷以及溶解氧的影響,保證出水水質的穩定。工藝建立了一套A2/O工藝前饋和反饋控制策略,該策略根據水量、COD濃度及氨氮濃度.通過計算系統進水的負荷水平,在線調整工藝運行中的外迴流量、內迴流比及曝氣方式等參數的設置,建立A2/O工藝前饋動態控制系統。
2.高品質再生水工藝技術研究
污水處理廠二級處理改造後可以使二級出水穩定達到一級B標准,可使再生水出廠水質達到地表Ⅳ類水水質標准。再生水深度處理工藝選擇中應考慮氨氮和總氮的進一步降低並保持穩定,有機物的強化去除是工藝選擇的重要考慮因素,此外懸浮物、色度和臭味也需在深度處理過程中得到去除以使再生水清澈可觀。
曝氣生物濾池工藝可實現有機物降解和硝化反應,將COD和氨氮進一步去除,而反硝化生物濾池通過強化微生物的反硝化作用,可將硝酸鹽或者亞硝酸鹽進一步轉化為氮氣,進一步降低出水中TN濃度。BAF和DNBF均具有抗沖擊能力強,受氣候、水量和水質變化影響小和工藝流程簡單等優點,為可選擇的經濟有效的深度處理工藝。砂濾池為給水處理廠和再生水廠採用的常規處理工藝,其運行管理費用相對較低。生物濾池和砂濾池雖然能夠在一定程度上降低二級出水中的色度,但可能難以達到再生水的要求,投加O3不但能夠進一步去除色度,而且能夠起到一定的消毒殺菌作用。一般情況下,可選擇的再生水工藝組合形式有BAF―DNBF→SF→O3(後置反硝化濾池工藝);DNBF→BAF→SF→O3(前置反硝化濾池工藝)DNBF→SF→O3。
BAF―DNBF→SF→O3組合工藝,在實現DNBF碳源精確控制的條件下.除TN外出水可實現地表四類水要求,出水TN可小於10mg/L。但DNBF碳源投加受多種因素的影響,部分情況下由於DNBF碳源投加過量可能造成出水COD濃度升高難以滿足再生水對COD濃度的要求。
DNBF→BAF→SF→O3組合工藝中,DNBF對硝態氮的平均去除率高於90%,BAF對氨氮和部分難降解有機物如磺胺類大環內酯類和喹諾酮類抗生素等有一定的去除效果,同時BAF還能夠進一步降解DNBF過量投加的外碳源,有利於保證再生水處理工藝的穩定運行。
DNBF→SF→O3組合工藝出水水質主要受二級出水水質和DNBF處理效果的影響,當二級出水中氨氮濃度已經滿足再生水水質要求時.可考慮採用採用該工藝,同時由於DNBF探源投加控制的穩定性對出水中的TN和COD有直接影響,因此,需要對組合工藝進行進一步的優化。
根據上述對各組合工藝的研究,採用DNBF→BAF→SF→O3組合工藝可穩定生產高品質再生水,最終工藝技術方案如下:
3.結束語
總而言之,要全面解決城市水資源匱乏的問題,就需針對性地研究污水廠脫氮除磷改造和優質再生水生產集成關鍵技術,從而保證水的生態循環和可持續利用。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
5. 污水設計中的SRT表示什麼意思
SRT:Sludge Retention Time,污泥停留時間,也就是污泥泥齡。指曝氣池微生物細胞的平均停留時間
6. 污水中總氮中的有機氮如何去除
污水中總氮中的有機氮用AO法及AOO法去除。
AO法及AOO法是近年來開發出的生物脫氮除磷新工藝,與傳統的化學和生物脫氮除磷相比,它還有效提高了BOD、COD、SS的出水指標。
AO法是缺氧、好氧的簡稱,AOO法是厭氧、缺氧和好氧的簡稱,脫氮是在缺氧段完成的,除磷則要求有厭氧段。AO法主要是脫氮,AOO法可以同時去除氮、磷。這兩種工藝都要求污水充分曝氣,使含氮有機物充分硝化,所以必須降低污泥負荷,延長曝氣時間和增大鼓風量。
根據天津東郊污水處理廠和沈陽市北部污水處理廠的實踐,採用AO工藝比傳統活生污泥流程的曝氣池容積、二沉池容積、迴流污泥量、鼓風量和曝氣裝置數量都增大一倍左右,而且由於該工藝要求比較低的污泥負荷。
否則不足以達到污泥好氧穩定,所以AO法將帶來基建投資和電耗的大幅度增加。AOO法在缺氧段前面還加有一個厭氧池,以達到對磷的有效去除效果,基建費用與電耗比AO工藝更高點。
(6)SRT廢水擴展閱讀:
氮污染的來源:
其人為來源主要是燃燒化石燃料,產生硝酸、氮肥、火葯等排放的廢氣。氮氧化物是光化學煙霧反應的起始反應物,它和氧化亞氮在平流層對臭氧的分解起催化作用,因此它們都是破壞臭氧層的物質。水體中的氮主要來自生物體的代謝和腐敗,氮肥的流失,以及工業廢水和生活污水的排放。
水體中氮過量時會造成富營養化,使水質惡化,影響水生生物的生長及繁殖。土壤中的固氮菌和植物的根瘤菌等可將空氣中的單質氮轉化為氨、硝酸鹽等化合態氮,供植物作養分,但氨或銨鹽存在過量時,反而會使土壤的土質變壞,影響植物生長。
此外,土壤中的硝酸鹽可經反硝化作用生成N2O,N2O進入平流層大氣時會與臭氧發生化學反應而消耗臭氧層中的臭氧。所以,土壤也是產生臭氧層破壞的痕量氣體發生源之一。
參考資料來源:網路-氮污染
參考資料來源:網路-城市污水
7. srt污水處理中代表什麼
污水處理中「SRT」代表污泥泥齡,即污泥停留時間(Sludge Retention Time)。污泥泥齡是指曝氣池中微生物細胞的平均停留時間。對於有迴流的活性污泥法,污泥泥齡就是曝氣池全池污泥平均更新一次所需的時間(以天計)。
泥齡長,處理效果好,污泥量也少;但太長,則將使污泥老化,影響沉澱。普通活性污泥的泥齡一般為3-4天之間,對於高負荷活性污泥法,污泥泥齡為0.2-0.4天。泥齡必須不短於所需利用的微生物的世代期,才能使該微生物在曝氣池內繁殖壯大。
泥齡作用:
控制污水泥齡是選擇活性污泥系統中微生物種類的一種方法。如果某種微生物的世代期比活性污泥系統長,則該類微生物在繁殖出下一代微生物之前,就被以剩餘活性污泥的方式排走,該類微生物就永遠不會在系統內繁殖起來。
反之如果某種微生物的世代期比活性污泥系統的泥齡短,則該種微生物在被以剩餘活性污泥的形式排走之前,可繁殖出下一代,因此該種微生物就能在活性污泥系統內存活下來,並得以繁殖,用於處理污水。
SRT直接決定著活性污泥系統中微生物的年齡大小,一般年輕的活性污泥,分解代謝有機污染物的能力強,但凝聚沉降性差,年長的活性污泥分解代謝能力差,但凝聚性較好。用SRT控制排泥,被認為是一種最可靠,最准確的排泥方法,選擇合適的泥齡(SRT)作為控制排泥的目標。
一般處理效率要求高,出水水質要求高SRT應控制大一些,溫度較高時,SRT可小一些。分解有機污染物的決大多數微生物的世代期都小於3天。將NH3-N硝化成NO3--N的硝化桿菌的世代期為5天。
8. 污水處理srt是什麼意思
污水處理srt是污泥停留時間,也就是污泥泥齡,指曝氣池微生物細胞的平均停留時間。
SRT是指懸浮固體物質從消化器里被置換的時間。在一個混合均勻的完全混合式消化器里,SRT與HRT相等。
SRT在非完全混合消化器里與HRT無直接關系,在消化器內污泥密度與出水裡的污泥密度基本相等的情況下,消化器體積與出水體積不變時,SRT與消化器內總懸浮固體的平均百分濃度成正比,而與出水裡的總懸浮固體的平均百分濃度成反比。因此,延長SRT是提高固體有機物消化率的有效措施。
污水處理工藝選擇准則
1、城市污水處理工藝應根據處理規模、水質特性、受納水體的環境功能及當地的實際情況和要求,經全面技術經濟比較後優選確定。
2、工藝選擇的主要技術經濟指標包括:處理單位水量投資、削減單位污染物投資、處理單位水量電耗和成本、削減單位污染物電耗和成本、佔地面積、運行性能可靠性、管理維護難易程度、總體環境效益等。
3、應切合實際地確定污水進水水質,優化工藝設計參數。必須對污水的現狀水質特性、污染物構成進行詳細調查或測定,作出合理的分析預測。在水質構成復雜或特殊時,應進行污水處理工藝的動態試驗,必要時應開展中試研究。
4、積極審慎地採用高效經濟的新工藝。對在國內首次應用的新工藝,必須經過中試和生產性試驗,提供可靠設計參數後再進行應用。
9. 污水處理氨氮超標怎麼辦
污水處理廠出水氨氮超標通常是由於在氧氣不足時含氮有機物分解而產生,或者是由於氮化合物被反硝化細菌還原而生成。水中的氨氮超標會對魚類呈現毒害作用,對人體也有不同程度的危害。其中氨氮中含有一種叫NO-2的物質,食用NO-2這種物質可以致癌。
氨氮超標的處理方法一改善污泥負荷與污泥齡
污水中的生物硝化反應屬低負荷工藝,負荷越低,硝化進行得越充分,NH3-N向NO3--N轉化的效率就越高。F/M一般在0.05~0.15kgBOD/kgMLVSS·d。負荷越低,硝化進行得越充分,NH3-N向NO3--N轉化的效率就越高。與低負荷相對應,生物硝化系統的SRT一般較長,因為硝化細菌世代周期較長,若生物系統的污泥停留時間過短,即SRT過短,污泥濃度較低時,硝化細菌就培養不起來,也就得不到硝化效果。SRT控制在多少,取決於溫度等因素。對於以脫氮為主要目的生物系統,通常SRT可取11~23d。
氨氮超標的處理方法二改善迴流比
生物硝化系統的迴流比一般較傳統活性污泥工藝大,通常迴流比控制在50~100%。主要是因為生物硝化系統的活性污泥混合液中已含有大量的硝酸鹽,若迴流比太小,污水處理中的活性污泥在二沉池的停留時間就較長,容易產生反硝化,導致污泥上浮。
氨氮超標的處理方法三改善水力停留時間
生物硝化曝氣池的水力停留時間也較活性污泥工藝長,因為硝化速率較有機污染物的去除率低得多,因而需要更長的反應時間。至少應在8h以上。
氨氮超標的處理方法四改變BOD5/TKN比
TKN系指水中有機氮與氨氮之和,入流污水中BOD5/TKN是影響硝化效果的一個重要因素。很多城市污水處理廠的運行實踐發現,BOD5/TKN值最佳范圍為2~3左右。BOD5/TKN越大,活性污泥中硝化細菌所佔的比例越小,硝化速率就越小,在同樣運行條件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。
氨氮超標的處理方法五改變溶解氧
硝化細菌為專性好氧菌,無氧時即停止生命活動,需保持生物池好氧區的溶解氧在2mg/L以上,特殊情況下溶解氧含量還需提高。硝化細菌的攝氧速率較分解有機物的細菌低得多,如果不保持充足的氧量,硝化細菌將「爭奪」不到所需要的氧。因此,需保持生物池好氧區的溶解氧在2mg/L以上,特殊情況下溶解氧含量還需提高。
氨氮超標的處理方法六改變溫度
冬季時污水處理廠特別是北方地區的污水處理廠出水氨氮超標的現象較為明顯因為硝化細菌對溫度的變化也很敏感,當污水溫度低於15℃時,硝化速率會明顯下降,當污水溫度低於5℃時,其生理活動會完全停止。
氨氮超標的處理方法七改變pH
盡量控制生物硝化系統的混合液pH大於7.0,因為硝化細菌對pH反應很敏感,在pH為8~9的范圍內,其生物活性最強,當pH<6.0或>9.6時,硝化菌的生物活性將受到抑制並趨於停止。
以上幾種方法主要是根據氨氮超標的原因給出的解決辦法,由於引起氨氮超標的原因可能不止一個,所以應逐一排除來解決氨氮超標的問題。