導航:首頁 > 污水知識 > 煤礦酸性廢水形成

煤礦酸性廢水形成

發布時間:2023-03-26 06:24:36

⑴ 露天煤礦的礦區環境污染的問題和策略論文

露天煤礦的礦區環境污染的問題和策略論文

我國煤炭資源量佔一次能源資源總量的90%以上,每年消耗的一次能源中煤炭佔70%以上,而且今後相當長的一段時期內這種狀況都不會有大的變化。我國適於露天開採的煤炭資源儲量大約為490億噸。目前,我國露天礦煤炭產量占總產量的5%左右,預計到2020年將達到12-14%。據統計,我國露天開采每萬噸煤炭約破壞土地0.22公頃,其中挖掘破壞0.12公頃,外排土場占壓0.1公頃。露天開采時破壞土地面積為露天礦采場本身面積的2-11倍。下面談一談露天煤礦開采過程中的環境保護問題。

1 露天礦開采過程對環境的影響

1.1 對生態環境的影響

露天礦開采對土地的破壞主要表現為挖損、占壓、塌陷,造成土壤的酸化、鹽鹼化和鹽漬化,從而使得土地沙化和土壤貧瘠化。一般來說,裸沙1畝,風力和水力侵蝕將影響鄰近3畝土地;沙化土壤有機含量將減少79.2%,全氮量減少77.7%,全磷量減少15.5%,物理性粘粒減少50%,造成原始土壤的嚴重貧化。

所有挖損、占壓、塌陷和其它一切對地表的人為擾動,都會破壞原有的自然景觀和生態植被,有些破壞是毀滅性的、不可逆的,在風力和水力侵蝕的作用下使得水土流失情況加劇。

1.2 煙塵與粉塵及有害氣體

1.2.1 有組織排放的煙塵

礦區內各類鍋爐、燃煤電廠等排放的煙塵。

1.2.2 礦區作業面產生的煙塵

采場工作面、采場煤幫暴露時間過長、煤層氧化燃燒;煤層中作為剝離物進入排土場的損失煤引起自燃;選煤廠煤矸石的自燃;露天儲煤廠和儲煤堆的自燃等產生的煙塵。

煙塵中含有SO2、NOX、CO、H2S等有害氣體,對生態系統構成影響。遇到雨水和潮濕的空氣生成酸性硫化物,其腐蝕性非常強,從鋼鐵、水泥構件到人體均會受到腐蝕和侵害。

1.2.3 礦區粉塵

礦區塵源主要來自大型剝離設備的採掘、運輸及排土作業粉塵;煤的採掘、運輸、儲煤、粉碎及作業過程粉塵;輔助設備作業粉塵;穿孔爆破粉塵;選煤廠;道路運輸粉塵等。粉塵附著在植物葉片,影響植物的光合作用,太陽爆曬溫度升高會灼傷植物。

1.2.4 煤層氣排放

煤層氣的主要成分是甲烷,通過直接排放、燃燒排放、通風系統排放。甲烷是一種重要的溫室效應氣體,能使對流層中的臭氧增加,使平流層中的臭氧減少。

1.3 對水循環系統的影響

1.3.1 對地下水的污染

煤礦開采不但對地下水的正常循環與補給產生影響,而且造成嚴重污染。例如:煤層中硫含量高,且伴有硫鐵礦,氧化成酸過程大大加快而形成酸性水造成pH值超標、硫酸根離子含量偏高、鐵離子含量高等;礦坑水在氧化成酸的過程中對含水體圍岩不斷溶蝕,造成地下水總硬度偏大;開采條件下酚類有機反應加快造成礦坑水中酚含量增加;汞主要與煤系地層中的黃鐵礦與硃砂伴生,在煤礦開采時,硃砂被加速氧化溶解,而使汞離子進入水體;受礦坑水污染的地表水,直接補給淺層地下水,致使淺層地下水也受到不同程度的污染。

1.3.2 對地表水的影響

首先,隨著煤礦開采量的不斷增加,礦坑水排出量增加,由於河水的自凈能力很弱,在河水斷流時期,河道容納的幾乎全是污水。因此,未經處理的礦井污染水直接排放,造成對地表水、土壤等的環境污染;其次,由於煤層淺埋藏區煤礦開采采空面積不斷擴大,采空區導水裂隙帶和地面塌陷范圍也隨之擴大,造成河川徑流量大量滲漏,使地表水與地下水、礦坑水發生了直接的水力聯系地表水在匯流區及徑流區水量漏失嚴重,河川徑流明顯減少。

1.4 雜訊與振動

雜訊與振動源主要有以下類型:

1)空氣動力源。如風機、風扇、跳汰機和風閥等。

2)機械動力源。如鉚槍、振動篩、溜槽、各種採掘設備和運輸設備,以及其它各種機械設備。

3)電磁動力源。如電機、電焊機、電器設備等。

4)人工動力源。如爆破、人力施工等。

2 防範及治理措施

2.1 加強有關法律法規的宣傳力度,提高環保意識

煤炭能源的開發是經濟發展的重要基礎,而土地資源,生態環境,又是人類賴以生存的最重要條件。礦區可持續發展的'核心內容之一是保持礦區經濟與環境的協調發展。樹立保護環境就是保護生產力的意識,改變過去那種將經濟發展與環境保護相對立的落後觀念,實行礦區環境與經濟發展的綜合決策機制。制定切實可行的礦山生態治理與恢復的方案,並予以實施。

2.2 礦區的生態恢復

根據「以防為主、防治結合」的原則,採取工程措施與生物措施相結合的辦法,對內外排土場層層碾壓、修建擋水牆、排水溝、集水池等,在坡面修挖水平溝、魚鱗坑,坑內植樹種草,採取網障固沙、林草綠化相結合的多層次防護體系。針對露天開采對土地的破壞,嚴格執行《土地復墾規定》,一邊開挖,一邊分層回填。借鑒國內外經驗,結合本地區的環境特點制定采場和排土場的土地復墾計劃,確定復墾措施,使復墾區逐步轉變為現代化的人造生態園。

2.3 大氣污染源的治理

(1)針對露天礦區的防塵主要措施是採用濕式作業和灑水降塵,採掘機械配套袋式集塵器。

(2)對儲煤場實施全封閉,場內設置灑水噴頭,四周設置擋風抑塵網。

(3)聯絡道路硬化、外排道路硬化、道路灑水降塵。

(4)工業場地內設置集中供熱鍋爐房配置脫硫除塵設施。

2.4 水環境污染源的治理

(1)針對生活污水採取建化糞池、生化處理設施等措施,處理後廢水可作為道路的灑水降塵及綠化。

(2)針對礦坑疏干水修建凈化車間、調節池、沉泥池和回用水池,處理後的水可作為水源用於場地綠化及生產用水等。

2.5 雜訊治理

針對不同類型的雜訊源採取將設備置於廠房內、安裝雙層玻璃、配備機器隔聲降噪設施、配發耳塞等措施,將雜訊危害降到最低。

2.6 煤矸石的綜合利用

據統計,所有的洗矸、煤泥和部分的採掘出的煤矸石,都具有一定的發熱量(300~3 500千卡/千克),可以用於循環硫化床鍋爐燃燒發電,真正毫無熱值的白矸只有15%左右。煤矸石、洗矸、煤泥中的不可燃物質部分,經過循環硫化床低溫燃燒後,同時具脫炭和活化作用,其灰渣是很好的建材原料,部分可以直接摻入水泥中,部分可用於制磚,其經濟效益和環境效益十分可觀。

露天礦開采環境保護的總體目標是:在礦區地質環境勘察的基礎上,以露天開采為重點,對環境進行治理,開展露天礦區環境綜合治理,確保露天礦區安全生產,延長露天礦區服務年限,恢復露天礦區生態環境和改善露天礦區大氣環境,實現露天礦區廢水零排放,使固體廢棄物資源化、減量化。

實現露天煤礦生產與礦區生態環境重建一體化,是煤礦企業自身和國民經濟可持續發展的必然要求與必然結果。

參考文獻

[1]蔣仲安. 礦山環境工程. 冶金工業出版社.2009-9-1.

[2]尹國勛. 礦山環境保護 中國礦業大學出版社 2010-5-1.

[3]何國清,楊倫,凌賡娣等 礦山開采沉陷學. 中國礦業大學出版社, 1991.

;

⑵ 煤礦為什麼會有地下水處理

一、 概述
煤炭在我國能源結構中佔70%以上,煤炭開采過程中排放大量廢水,若不經處理直接排放,勢必對環境造成嚴重污染,同時造成水資源的大量浪費,無法實現循環經濟的目標。據統計我國40%的礦區嚴重缺水,已制約了煤炭生產的發展。西北礦區多處於山區,水資源更為缺乏,地表水又多為間歇性河流,枯洪水季節流量相當懸殊,常年流量稀釋能力差,排入河流的污水造成嚴重污染。因此,開發、管理、利用好煤礦水資源,對煤炭工業可持續發展具有重要意義。
1、煤廢水污染嚴重

據包括10多位院士在內的專家學者鑒定通過的一項課題研究表明,山西每年挖5億噸煤,使12億立方米的水資源受到破壞。這相當於山西省整個引黃河水入晉工程的總引水量。專家呼籲,應當從技術、人才、資金投入和經營機制等多方面解決這一世紀難題,幫助山西省等煤炭主產區擺脫「產煤致旱、因煤致渴」的困擾。

這項關於山西省煤炭產業可持續發展的研究表明,山西省採煤造成嚴重的水資源破壞,加劇了水資源短缺問題。這項課題研究表明,山西每挖1噸煤損耗2.48噸的水資源。每年挖5億噸煤,使12億立方米的水資源受到破壞。這相當於山西省整個引黃工程的總引水量。因此,這對於山西這個人均水資源量僅佔全國平均水平不到五分之一的地區來說是個非常嚴重的問題。

目前,由於煤炭開采對地下水系破壞非常嚴重。據統計,山西採煤對水資源的破壞面積已達20352平方公里,佔全省總面積的13%。山西省大部分農村人畜吃水靠煤系裂隙水,而煤礦開采恰好破壞了該層段的含水層。據統計,全省由於採煤排水引起礦區水位下降,導致泉水流量下降或斷流,使近600萬人及幾十萬頭大牲畜飲水嚴重困難。

2、煤炭採掘業廢水治理技術問題

99%的採煤項目廢水沒有進行治理,從主觀上應該說是環保監管不力。從客觀上說是我們環保部門對採煤項目廢水治理技術持謹慎態度。採煤廢水治理技術多如牛毛,那種技術最適用、工藝最成熟、操作管理最方便、投資最省、運行費用最低,一直是我們環保部門在尋求的。由於採煤廢水復雜多變,在同一礦井廢水中,同時含有鐵、錳等重金屬,硫、氟、氯等非金屬及有機污染物和懸浮物,有的礦井廢水呈弱酸性(如織金縣珠藏、鳳凰山等),再就是即使是同一礦井,所采層不同,廢水性質也不同,甚至是差別很大。這就給煤礦廢水治理技術的選用帶來很大的困難。通常情況是某一技術只能有效處理某一污染物,不可能把所有超標的污染物都處理好。一個煤礦不可能投入很多資金對污染物進行單項處理,這就是採煤廢水治理在技術上的難點。有的業主自行修了一兩個池子,把礦井廢水往池子一放,就是對廢水進行處理了。事實上不是這樣簡單,可能連懸浮物也處理不了,金屬和非金屬就更不可能處理了。

3、煤礦廢水處理要求

1.1煤礦廢水包括礦井涌水、煤場和矸石場淋溶廢水等。在進行處理前,應先委託地區環境監測站進行監測,以監測資料作為廢水處理工程設計的依據。DFMC煤礦廢水治理技術和成套設備是目前經實踐證明的實用技術,50萬噸以下、小時涌水量50m3以下的煤礦可採用此技術和設備。對於酸性煤礦廢水還需新增設備和葯劑。煤礦廢水經處理達標後盡可能循環使用,循環使用率不低於50%,經處理後排放的廢水列為總量控制指標進行考核。

1.2新建煤礦必須執行「三同時」規定,試產三個月必須申請地區環保局驗收,驗收達標的發給排污許可證,不達標的停產治理。

1.3原有煤礦分期分批進行治理,2005年50%左右的原有煤礦治理完工並通過達標驗收。列入家2005年治理計劃的煤礦不治理的,依法予以處罰;治理不達標的,停產治理。治理計劃由各縣市環保局商煤炭局提出,報地區環保局綜合平衡後以治理計劃下達執行。

表1 某A煤礦廢水處理監測結果 單位:mg/l

指標 排放

標准 處理前

濃度 超標倍數(倍) 處理後

濃度 比排放標准低(%) 懸浮物 70 258 2.7 11.5 83.6 鐵 1 2.58 1.6 0.68 32 硫化物 1 2.8 1.8 0.5 50 COD 100 281.9 1.8 7 93 錳 2 0.13 未超標 0.1 —

表2某B煤礦廢水處理監測結果單位:mg/ l

指標 排放

標准 處理前

濃度 超標 倍數 (倍) 處理後

濃度 比排放標准低(%) 懸浮物 70 318 3.5 4.5 93.6 鐵 1 2.28 1.3 0.74 26 硫化物 1 3.21 2.2 0.5 50 COD 100 228.4 1.3 18.8 81.2 錳 2 0.37 未超標 0.18 — 1.4、煤礦廢水中鐵含量高,如濃度大於100mg/l,其處理設備投資和運行費用將要增加。因為鐵含量過高,要達到1mg/l的排放標准,一級除鐵是不行的,必須三至四級除鐵。

1.5、酸度高的煤礦廢水應使達標(6~9)。

1.6、煤礦要對煤場、矸石場進行硬化處理,建導流溝,把因大氣降水產生的這一部分淋溶水引入廢水處理系統進行處理。

1.7、 預防事故和自然因素引起的非正常排放

為預防因降暴雨致使廢水次理池溢流,工程設計必須考慮廢水處理池有足夠的容積。為防止事故性排放,必須建事故調節池。四、煤礦生活廢水處理要求洗煤廠和煤礦生活廢水處理採用深圳開發研製的微型生活廢水處理裝置進行處理。生活廢水經處理達標後可排放。五、煤礦廢水治理技術選用

實踐證明是可行的 DFMC煤礦廢水治理技術和成套設備可選用。未經試點的技術只能試點,不能推廣。經試點並由A地區環境監測站監測、提出監測報告,從治理效果、投資、運行費用等全面評價後由地區環保局決定是否推廣。

二、廢水主要處理技術

我國煤礦礦井水處理技術起始於上世紀70年代末,大多污水治理工作都只停留在為排放而治理。然而回用才是當今污水治理發展的必然趨勢,將防治污染和回用結合起來,既可緩解水源供需矛盾,又可減輕地表水體受到污染。現國內使用的處理技術主要有:沉澱、混凝沉澱、混凝沉澱過濾等。處理後直接排放的礦井水,通常採用沉澱或混凝沉澱處理技術;處理後作為生產用水或其它用水的,通常採用混凝沉澱過濾處理技術;處理後作為生活用水,過濾後必須再經過除酚等對人體有害物質及消毒處理;有些含懸浮物的礦井水含鹽量較高 ,處理後作為生活飲用水還必須在凈化後再經過淡化處理。三、礦井水處理回用的條件

1、礦井廢水的產生及特點

煤礦礦井廢水包括:煤炭開采過程中地下地質性涌滲水到巷道為安全生產而排出的自然地下水,井下採煤生產過程中灑水、降塵、滅火灌漿、消防及液壓設備產生的含煤塵廢水。因此,它既具有地下水特徵,但又受到人為污染。礦井廢水的特性取決於成煤的地質環境和煤系低層的礦物化學成分,其中井田水文地質條件及充水因素對於礦井開采過程礦井廢水的水質、水量有決定性的影響。因此,對礦井廢水處理要考慮開采過程中水質、水量的變化。某礦區M煤礦礦井廢水水質取礦井正常排水時井口水樣,結果見表1。

M煤礦礦井廢水污染物監測表

表1 單位:mg/L

序號 監測項目 日均值濃度范圍 序號 監測項目 日均值濃度范圍 1 肉眼可見物 微粒懸浮物 9 總氮 5.600~5.854 2 PH值 8.41~8.55 10 砷(ng/L) 3.4~5.2 3 CODcr 66.4~131.7 11 總磷 0.085~0.104 4 硫化物 1.09~1.67 12 糞大腸菌 260~393 5 懸浮物 360~500 13 銅 0.0207~0.0294 6 酚 0.006~0.051 14 鉛 -- 7 BOD5 14.10~24.73 15 鎘 -- 8 LAS 0.198~0.220 16 鋅 0.0381~0.0407

通過網路調查和資料查找,收集了多年來某礦區有關礦井水和地下水的化驗數據資料,以及環境監測站監測數據(表1)綜合分析,該煤礦礦井廢水含煤泥為主要懸浮物,有機物略有超標,糞大腸菌群超標,揮發酚超標。

2、礦井廢水回用途徑

煤礦礦井水處理後可作生產用水或生活用水,礦井生產用水主要是井下採掘設備液壓用水、消防降塵灑水,生活用水主要是沖廁、洗浴水以及深度處理後用於飲用水。水質標准分別為:

a、防塵灑水《煤礦工業礦井設計規范》(GB50215-94)

SS≤150mg/L,粒徑d<0.3mm;PH值為6~9;大腸菌群≤3個/L。

b、空壓機、液壓支柱用水水質SS≤10~200mg/L,粒徑d <0.15mm;硬度(碳酸鹽)2~7mg/L;pH值為6.5~9;濁度<20。

c、礦井洗浴水水質達到《地表水環境質量標准》(GB3838-2002)的Ⅲ類水體標准。

d、中水水質達到《生活雜用水水質標准》(CJ/T 48-1999)。

5、生活飲用水達到《生活飲用水衛生標准》(GB5749-85)。

四、處理工藝

從上表可知,M煤礦礦井廢水處理工程的設計處理能力為800~1000m3/d,處理後作為生產和生活用水,採用混凝反應、過濾、活性炭吸附及消毒工藝,流程見圖1。

圖1礦井廢水處理工藝流程

礦井廢水由井下排水泵提升至灌漿水池,部分用於黃泥灌漿,其餘廢水自流進入曝氣池,氣浮除油後進入斜板沉澱池進行初步沉澱,由提升泵提升進入混凝沉澱設備,同時加入混凝劑,經過斜管沉澱後,將絮狀物沉澱到底部而被去除,清水從上部溢流出水自流進入砂濾罐,出水自流進入清水池,清水池前投加二氧化氯進行殺菌消毒。砂濾罐的反沖冼水自流進入污泥池,上清液自流進入曝氣池,以提高礦井廢水資源的利用率。出水若用作生活用水,則砂濾罐出水進入活性炭吸附裝置處理後流入清水池用作生活用水。

五、主要處理單元

1、預沉池曝氣

礦井廢水中含有少量的有機物,通過曝氣接觸氧化去除廢水中的有機物。另外,井下液壓支柱等設備產生少量油類,通過氣浮除油,使廢水中油類達標。

2、混凝沉澱

煤礦礦井水主要污染物為懸浮物,處理懸浮物主要採用混凝沉澱法,用鋁鹽或鐵鹽做混凝劑,混凝劑混合方式採用管道混合器混合。混凝沉澱裝置採用倒喇叭口作為反應區,水流在反應區中流速逐漸降低,使廢水和混凝劑葯液的反應在反應器中逐漸全部完成。完全反應的廢水流出反應區後開始形成混凝狀物質,經過布水區進入斜管填料,由於斜管填料採用PVC六角峰窩狀填料,利用多層多格淺層沉澱,提高了沉澱效率。將絮狀物沉澱到底部而被去除,清水從上部溢流排出。

3、砂濾凈化

礦井廢水經混凝沉澱後,水中還含有較小顆粒的懸浮物和膠體,利用砂濾設備將懸浮顆粒和膠體截留在濾料的表面和內部空隙中,它是混凝沉澱裝置的後處理過程,同時也是活性炭吸附深度處理過程的預處理。砂濾罐為重力式無閥濾池,採用自動虹吸原理達到反沖洗,不需要人工單獨管理,操作簡便,管理和維護方便。砂濾罐通常採用不同等級的石英砂多層濾料。

4、活性炭吸附

該煤礦礦井廢水主要含有揮發酚,酚類屬於高毒物質,它可以通過皮膚、粘膜、口腔進入人體內,低濃度可使細胞蛋白變性,高濃度可使蛋白質沉澱。長期飲用被酚污染的水源,會引起蛋白質變性和凝固,引起頭暈、出疹、貧血及各種神經症狀,甚至中毒。處理中水用作生活飲用水,必須用活性炭吸附裝置處理。活性炭的比表面積可達800~2000m2/g,具有很強的吸附能力。該裝置採用連續式固定床吸附操作方式,活性炭吸附劑總厚度達3.5m,廢水從上向下過濾,過濾速度在4~15m/h,接觸時間一般不大於30~60min。隨著運行時間的推移,活性炭吸附了大量的吸附質,達到飽和喪失吸附能力,活性炭需更換或再生。

5、消毒

廢水中含有一定的病菌、大腸菌群,處理後回用於洗浴時,若不經過消毒,對人體皮膚傷害嚴重。所以礦井廢水處理後作為生活用水必須經過消毒處理,本工藝採用二氧化氯消毒,現場用鹽酸和氯酸鈉反應產生二氧化氯,二氧化氯無毒、穩定、高效、殺菌能力是氯的5倍以上。

六、處理工藝特點

1、以上可知A煤礦礦井廢水處理工程是根據礦井水水質特點確定工藝技術參數,採用一次提升到混凝沉澱裝置,再自流進入後續各處理構築物,出水水質穩定可靠,動力設備較少,能耗較低。

2、採用混凝沉澱裝置與砂濾罐相結合的工藝技術,主要處理構築物採用組合式鋼結構,具有佔地面積小、使用壽命長、工程投資省、工藝簡單、操作管理方便、運行成本低等特點。砂濾罐設計採用重力式無閥濾池,反沖洗完全自動,操作管理方便。

3、該煤礦礦井廢水處理系統實現了自動加葯、自動反沖洗的全過程監控,包括電控系統、上位監控系統和儀表檢測系統。儀表檢測系統包括加葯流量、處理流量 、水池液位和加葯箱液位、進水和出水濁度等連續自動檢測。

⑶ 酸性廢水是什麼,酸性廢水是什麼知識

酸性廢水是什麼,酸性廢水是什麼知識
酸性廢水處理來說相對簡單,只需版要加入鹼性物質(權石灰、苛性鈉等),調節PH值到6--9范圍內,就可以達標排放.
但是一般酸性廢水不可能是單獨存在的,如果單獨存在的話,沒有其他物質干擾的話,完全可以做為資源化利用.
一般酸性廢水在冶金行業比較多,很多金屬都需要用酸來萃取.這類廢水俗稱污酸廢水.一般是通過調節ph值到鹼性,然後可以通過電化學、膜工藝、鐵鹽法、硫化法等技術手段來處理達標.

⑷ 煤礦赤紅色河水裡有什麼成份,危害大么,不讓排河裡,直接灑地上蒸發掉危害性大么,化學環保專家們求解

不處理直接排放的危害當然很大,
成分主要是
1.重金屬:比如鉛,鉻,具體是根據企業的提煉方法而異
2.亞硫酸,硫酸:主要來源於硫煤層中的硫化礦物,經分解,氧化,溶解於礦井水中,形成的酸性水
3.酚類有機物: 來源於洗煤廠間和煤礦成分分析實驗室排放的廢水
4.油類污染物:煤礦中常見污染物,加速植物死亡腐爛,有進一步提高廢水中有機物含量,形成惡性循環
不處理,直接直接撒在地上,終究還是會滲入泥土裡,看不見無非是自欺欺人罷了

⑸ 洗煤廠,遇到含硫量大的煤,摻水後酸性大,如何降低其酸性

洗煤廠常採用的工藝方法為石灰混凝法,其工藝為:
1、 使用石灰能夠迅速降廢水的酸性,中和其酸鹼度,並能夠混凝處理廢水中的硫離子,防止廢水發黑的現象出現。
2、之後石灰-聚丙烯醯胺混凝沉澱對洗煤廢水具有較好的處理效果,但石灰的投加方式、聚丙烯醯胺的性質以及投葯順序對處理效果都有一定程度的影響,尤其是投葯順序與傳統投加順序不同。所以在濕投石灰時,石灰溶液的濃度對處理效果有影響。當石灰投加量一定時,濃度越低,沉速越快,合液的清水分離率越高,但從洗煤廢水中實際分離出的清水量卻隨著石灰溶液濃度的降低而略有減少。 沉速隨石灰溶液濃度的降低而提高,主要是因為石灰溶液濃度的降低,導致了加葯後混合液體積的增加,從而使混合液中濃度降低,同時對煤泥起到了水力淘洗的作用,使粘度下降,因此,沉速有所提高。先投聚丙烯醯胺後投石灰效果好,不僅沉速快,而且清水分離率也高。另外,從絮凝體的外觀來看,先投聚丙烯醯胺生成的顆粒粒度大,強度也高,有利於進一步脫水。加葯後ph值的變化對聚丙烯醯胺的絮凝性能有較大影響。 http://www.shushihui.com/news/hydt/202.html望採納。

⑹ 礦山酸性廢水怎麼處理

礦山酸性廢水主要是由還原性的硫化礦物在開采,運輸,選礦及廢石排放和尾礦貯存等過程中經空氣,降水和菌的氧化作用形成的.礦山酸性廢水水量較大,pH值較低,含高濃度的硫酸鹽和可溶性的重金屬離子.

礦山酸性廢水的處理方法主要分為中和法和微生物法2種.中和法是最常用的方法,即向酸性廢水中投加鹼性中和劑(鹼石灰,消石灰,碳酸鈣,高爐渣,白雲石等),一方面使廢水的pH值提高,另一方面廢水中的重金屬離子與中和劑發生化學反應形成氫氧化物沉澱,去除水體中的重金屬離子.為了提高處理效果,中和法通常與氧化或曝氣過程(如將Fe2+轉變為Fe3+)相結合使用.王洪忠等人利用中和法對排入孝婦河的礦山酸性廢水進行處理,出水pH值達到7.5,硫酸根和總鐵含量為微量.陳喜紅對江西萬年銀金礦礦山廢水採用中和法處理,出水水質指標優於農灌用水標准.銀山銅鋅礦採用兩段石灰中和法處理礦山酸性廢水得到含鋅量達40%的鋅渣.柵原礦山和平水銅礦分別採用分段中和沉澱法處理酸性廢水,有效地回收了有價金屬.微生物法是利用自然界中的硫循環原理,利用硫酸鹽還原菌通過異化硫酸鹽的生物還原反應,將硫酸鹽還原成H2S,並利用某些微生物將H2S氧化為單質硫,同時重金屬離子在微生物體內"積累"起來.國外應用微生物法處理礦山酸性廢水的實例較多,如美國蒙大拿州對某礦山酸性廢水建立(硫化還原菌)處理系統,出水pH值達到7,Fe,Al,Cd和Cu的去除率也較高.隨著科學的進步,礦山酸性廢水的處理技術不斷得到新的發展,如濕地處理法,生物膜吸附處理法和生化材料過濾法等.

⑺ 開採煤礦對周邊水質有什麼影響

一是煤炭資源開發過程中有大量的礦石堆、殲石堆,它們受雨水淋溶,滲透溶解礦物中的
可溶成分形成淋濾廢水。這些廢水可以通過各種水力聯系發生污染轉移,從而造磨搏成對周圍環境的污染。二是礦井水或是含有世飢大量懸浮物或是高礦化度或是酸性水,有搜游返的甚至含有有毒有害元素。

⑻ 酸性、鹼性和中性的污水處理方法及其可能原因

其實很簡單的,酸性的水中加入鹼性物質,反之,鹼性水中加入酸性物質,中性的使之沉澱就行了.然後就是套酸鹼指示表就行了

⑼ 地下水資源保護與利用

焦作市地處豫西北,北依太行,南臨黃河,總面積6014km2,全區總人口348萬,有煤炭、石灰石、鋁土及鐵礦石等礦產資源,工業以電力、化工、機械和煤炭為主,目前已發展成為以能源化工為主的新興工業城市。焦作礦區工農業和生活用水,主要依靠地下水。焦作地區的地下水天然補給資源量為10.583m3/s,其中喀斯特水補給量為8.86m3/s,孔隙水補給量為1.723m3/s。

一、地下水資源開發利用現狀

焦作市地下水資源由喀斯特水、孔隙水組成,且以喀斯特水為主,喀斯特水資源約佔全部地下水資源85%左右。焦作礦區山前地區是九里山泉域喀斯特水的集中排泄區,地下水資源極為豐富。近年來,隨著城市及工農業的發展及煤礦區的大量開采,在局部地段出現了小范圍的降落漏斗,地下水位呈現明顯下降的趨勢。盡管如此,降落漏斗范圍及漏斗中心水位穩定,多年來地下水位基本上處於動平衡狀態,在豐水期、豐水年因地下水位回升,降落漏斗范圍縮小乃至消失[4]

目前人工開采已成為孔隙水、喀斯特水的主要排泄方式。地下水的開采方式有廠礦自備水源地(井)集中和分散式開采、焦作市自來水公司水源地集中開采、礦井排水和農業零星分散式開采。

1.自備水源地(井)開采地下水狀況

1994年全市共有自備井234眼,年開采地下水量6347.86×104m3,平均2.013m3/s。其中全年開采孔隙地下水1939.36×104m3,平均0.615m3/s;喀斯特地下水4408.50×104m3,平均1.4000m3/s。1994與1993年相比減少了5.77%,1993年自備井開采地下水量6736.86×104m3。自備水源井除焦作電廠、中州鋁廠、焦作鋁廠、熱電廠、焦作市水泥廠、化工一廠、造紙廠等廠礦企業屬井群開采地下水外,其餘多屬零星分散式開采,且多以喀斯特水做供水水源。

(1)孔隙水開采量:受氣候及人工開采雙重因素影響,近年來焦作市區內孔隙水位呈下降趨勢,焦作市區南部形成了孔隙水水位下降漏斗,且水質變差。為改善這一狀況,自1990年開始對孔隙水的開采進行了限制,自備井開采量有所下降。1992年降至1466×104m3,1993年有所增加,達1765×104m3,1990年自備井開采孔隙水1991×104m3。1994年孔隙水開采量為1989.36×104m3,比1993年增加了173.86×104m3。自備井地下水開采總量年際變化較大,月最大采量為566.092×104m3(7月),月最低開采量為484.562×104m3(12月)。

(2)喀斯特水的開采量:焦作市喀斯特水資源豐富,水質好,是城市工業及居民生活的最佳供水水源。焦作市區各用水大戶多開采喀斯特水。1994年自備井共開采喀斯特水4408.50×104m3,占自備井開采地下水總量的70%。1993年自備井開采喀斯特地下水4972.31×104m3,1994年與1993年大致相同。

2.焦作市自來水公司開采地下水狀況

焦作市自來水公司現有6座水廠,其中第一水廠、第四水廠開采喀斯特地下水,第二水廠由新東公司(礦井排水)和焦作電廠崗庄自備水源聯合供水,第三水廠由焦西公司(礦井排水)和東小庄水源地(開采喀斯特水)聯合供水。焦作市自來水公司開采地下水的水源地只有第一水廠、第四水廠、東小庄水源地(崗庄水源地因屬焦作電廠自備水源地,未計入其中)共三處。1994年焦作市自來水公司總供水量5425.74×104m3,其中地下水開采量2071.68×104m3,占總供水量的38.2%。

第一水廠位於焦作市中心新華街,利用已報廢的2號、3號礦井供水,與1993年的142×104m3相比,增加了160.53×104m3,1994年共開采喀斯特地下水310.53×104m3,全年平均開采量0.0985m3/s。

第四水廠位於焦作市區北部近山前地帶,現有開采井22眼。該水廠是焦作市自來水公司以地下水做水源的主要供水水源地,占焦作市自來水公司開采地下水總量的53.68%,占焦作市自來水公司總供水量的20.46%。1994年全年共開采喀斯特水1112×104m3,平均0.3527m3/s。

東小庄水源地位於焦作市區西部東小庄,現有開采井19眼,全年開采喀斯特地下水649.00×104m3,平均0.2058m3/s,比去年增加了15.89%左右。

3.礦井排水及利用

(1)礦井排水:分為焦東礦區和焦西礦區兩部分。

焦東礦區的演馬庄礦、九里山礦井排水量居各礦之首,多年來礦井排水量一直超過1.0m3/s。相比之下,中馬村礦、小馬村礦、馮營公司、方庄礦等礦井,礦井水文地質條件相對簡單,礦井排水量小。1994年焦東礦區內的7個礦井,年平均排水量總計為3.3778m3/s,與1993年以前相比,略有下降。焦東礦區礦井排水總量季節變化不明顯,相對穩定。

1994年焦東礦區內的演馬庄礦礦井排水量仍居各礦之首,為1.0847m3/s,該礦近年來發生2次惡性煤層底板突水災害,礦井排水量比較穩定。九里山礦井排水量平均為0.7903m3/s,該礦由於對煤層底板突水點進行了注漿堵水和工作面煤層底板注漿改造,因此自5月份起礦井排水量有所減小。其他礦如韓王公司、馮營公司、小馬村礦、中馬村礦等礦井,排水量比較穩定,多年變化不明顯。1994年韓王公司礦井平均排水量為0.3840m3/s,馮營公司為0.3098m3/s,小馬村礦為0.1248m3/s,中馬村礦為0.6535m3/s,位村礦為0.0307m3/s。

焦西礦區的王封公司由於礦井關閉停產,礦井排水量呈下降並逐步穩定趨勢,平均排水量1989年為1.50m3/s,1990年為1.26m3/s,1991年為1.02m3/s,1994年為1.0915m3/s。王封公司礦井排水量年內變化比較明顯,月最高排水量1.1605m3/s,月最低排水量1.0182m3/s。焦東公司礦井排水量因礦井報廢,礦井排水量呈下降至逐步穩定趨勢。1991年為0.38m3/s,1992年為0.35m3/s,1994年則降為0.3033m3/s。朱村礦礦井排水量相對較大,並呈逐年增加趨勢。1990年為0.80m3/s,1991年增至0.84m3/s,1994年則增至0.9013m3/s。1994年焦西公司礦井排水量是0.5970m3/s,與1993年相比,略有增加。焦西礦區的焦東公司、王封公司已經關閉停止採煤,沒有開采新的工作面,整個礦區礦井排水量呈逐年減少並趨於穩定的狀況,原煤層底板突水點已經作為供水井水源。1989年平均排水量3.25m3/s,1990年減至3.09m3/s、1991年進一步減至2.85m3/s,1994年略有增加,達2.8931m3/s。

(2)礦井水利用情況:目前,焦作市地下水開採的主要方式是礦井排水及農業灌溉利用,礦井排水量6.2707m3/s,綜合利用礦井排水是開發利用地下水的有效途徑。焦作市礦井水的利用有3個方面:

一是焦作市自來水公司利用礦井水情況。焦作市自來水公司所屬的第五、第六水廠全部以礦井水做供水水源,第二、第三水廠部分利用的礦井水做供水水源。1994年,焦作市自來水公司四座水廠累計用礦井水3363.04×104m3,占焦作市自來水公司總供水量的61.8%。

第二水廠位於焦作市東北部,以焦東公司井排水做供水水源,1993年供水量1456×104m3,1994年供水量1571.66×104m3,較1993年略有增加。由於焦東公司已經關閉,礦井水的利用量一定會受到限制,目前,第二水廠正在建設新的水源地。

第三水廠位於解放西路,主要利用焦西公司礦井排水,1993年供水量1821×104m3,1994年為1288.50×104m3,較1993年相比減少了532.5×104m3

第五水廠位於焦作市馬村區,利用中馬村礦礦井水作為供水水源供給馬村區居民生活用水。1993年供水量239×104m3,1994年為297.68×104m3,比1993年增加了24.55%。

第六水廠位於焦作市中站區,利用李封公司礦井排水向焦作市中站區供水,1993年總供水131×104m3,1994年為196.2×104m3,較1993年增加了49.79%。

1994年焦作市自來水公司各水廠利用礦井總計達3363.04×104m3,全年平均1.0664m3/s。1993年礦井利用量3570×104m3,1994年較1993年減少了206.96×104m3

二是焦作煤業集團公司各礦自用礦井水量。焦作煤業集團公司的朱村礦、九里山礦和演馬庄礦,生產及生活用水全部或部分依賴礦井水做水源,據1994年調查,各礦利用礦井水量為0.282m3/s。

三是焦作市農業灌溉引用礦井排水。礦井排水除部分被焦作市自來水公司及焦作煤業集團公司各礦及焦作電廠、焦作市化工三廠等廠礦利用外,剩餘部分經河渠排出礦外。流出礦外的礦井排水部分做為區內農田灌溉的水源,剩餘部分則流出礦區。據河南省焦作市水利局資料,1994年焦東灌區和焦西灌區共利用礦井水1971.0×104m3,平均0.625m3/s。經過綜合計算,礦井水利用總量平均為1.973m3/s,占礦井排水總量的31.47%。因而,礦井水資源利用程度較低。

4.焦作市農業開采地下水量

焦作市現有耕地面積16.7萬畝,其中井灌面積6.7萬畝,據河南省焦作市水利局資料,1994年農作物灌溉7次,灌水定額一般為75m3/畝次,由此算得1994年焦作市區各鄉農業開采孔隙水3517.5×104m3,平均1.1154m3/s。加上焦作市修武縣境內方庄鄉、周庄鄉、李萬鄉和五里源鄉孔隙水農灌開采量0.7746m3/s,全區農業共開采淺層地下水平均1.89m3/s。

5.焦作市全區地下水開采總量

綜合上述各項,1994年全區工農業生產及生活共開采地下水14379.73×104m3,平均4.56m3/s,其中開采喀斯特水6480.07×104m3,平均2.055m3/s,開采淺層孔隙水7899.66×104m3,平均2.505m3/s,焦作市自來水公司開采喀斯特水2071.68×104m3,平均0.6569m3/s,自備井開采地下水總計6347.86×104m3,平均2.013m3/s,農業灌溉開采淺層孔隙水5960.30×104m3,平均1.89m3/s(表3-18)。

表3-18 1993、1994年地下水排泄量 (單位:1000m3

二、影響焦作地區地下水資源的主要因素

1.地下水補給量減小和排泄量增大

焦作地區除礦井排水和地下水污染嚴重影響著地下水資源外,地下水主要接受大氣降水入滲和河流滲漏補給。因此,降水量和河流流量的大小是影響地下水資源的直接因素。

降水量的大小直接影響著地下水資源量,降水入滲是焦作地區地下水的主要補給源。自新中國成立以來,隨著工農業的快速發展,地下水的開采量愈來愈大,地下水位愈來愈低,地表水資源枯竭,河流斷流等,破壞水循環系統比較嚴重,大氣降水量趨於下降趨勢。1952~1964年平均降水量為826.1mm,1965~1977年平均降水量為681.56mm,1978~1982年平均降水量為662.55mm,1982~1988年平均降水量為642.4mm,1989年以來降水量一直偏低,影響了地下水資源的補給比較嚴重。

焦作市地下水位下降表現為4個階梯,1952~1964年為第一階梯,地下水位105m,1965~1977年為第二階梯,地下水位91~98m,1978~1988年為第三階梯,地下水位85~92m,1982年以來為第四階梯,地下水位72~89m。主要原因為由於降水量的減小和開采量的增大,其地下水位與降水量和開采量關系見圖3-36。

圖3-36 地下水位與降水量和開采量關系圖

丹河、西石河、山門河、紙坊溝、新河和翁澗河均為流經焦作礦區的河流,由於地表喀斯特發育,河流滲漏量比較大。例如,1994年對丹河480電廠至後陳庄段,取3個斷面分枯水期、豐水期兩次實測丹河流量,480電廠至後陳庄段河流漏失量平均為1.7338m3/s。近十幾年來除丹河滲漏補給地下水外,盡管丹河流量也在逐年減小,新河和翁澗河為排污河,其他河流均已斷流,因此,總的來說河流滲漏量也在減小。

焦作礦區所採煤層為石炭系、二疊系煤層,其直接充水水源主要為石炭系薄層灰岩,底部奧陶系灰岩喀斯特水間接充水水源,該層富水性好,補給水量大,嚴重威脅著煤炭的安全生產。為此對石炭系薄層灰岩進行疏水降壓排水,對O2灰岩採取斷層防水煤柱,實施「立足礦井、以防為主、疏堵結合、分類治理」的防治水方針。隨著開采深度的增加,石炭系薄層灰岩煤層底板突水頻率增高,O2灰岩水參與發生惡性煤層底板突水,排水量也越來越大,從用水角度來看,O2灰岩水開采量也與日俱增。例如,1952~1964年O2灰岩水開采量為1.501m3/s,1965~1977年O2灰岩水開采量4.964m3/s,1978~1982年O2灰岩水開采量5.5m3/s,1983以來O2灰岩水開采量8.463m3/s。據不完全統計,歷年來煤層底板突水達1000餘次,最大煤層底板突水量達320m3/min。因此,煤層底板突水是造成地下水資源枯竭的另一因素。

2.地下水污染狀況

焦作地區河流中,丹河、西石河、山門河和紙坊溝水質好,符合飲用水標准。翁澗河水化學類型

型,總硬度、氯化物超標;新河河水礦化度2782.99mg/L,總硬度1669.63mg/L,Cl-含量149.21mg/L,均已超過標准。因而,翁澗河和新河有不同程度的污染。據河南省焦作市監測站資料,翁澗河非離子氨、高錳酸鉀指數、生物耗氧量、化學耗氧量、六價鉻均超標。翁澗河和新河均已成為嚴重污染的河流,成為地下水污染的源頭。

孔隙水污染主要表現在焦作市區以南孔隙水的徑流和排泄區,該區岩性細,滲透性差,水位埋深淺,長期蒸發濃縮作用,水中的離子含量特別是Cl-、K++Na+升高,礦化度增加。更為嚴重的,該區農業採用礦井水及工業生活污水灌溉,致使孔隙水水質惡化。焦作市區南部東王褚至恩村一帶及焦作市區東南部仇化庄至焦作市修武楊樓、大高村一帶的孔隙水水質類型為

型、

Mg2+型和

型,水質最差,本區所檢測的18種項目中,超過飲用水標準的項目有總硬度、礦化度、氯化物、硫化物、硝酸鹽、氟化物,各污染組分的超標率見表3-19。

表3-19 孔隙水水質狀況統計表

根據近幾年的監測與研究,喀斯特水水質正在逐漸惡化,且惡化速度也愈來愈快。主要表現在離子Cl-增加,水質變咸,個別水井水已失去飲用價值。據前人研究,本區喀斯特水Cl-背景值為26.69mg/L,到1998年喀斯特水Cl-已達到40~75mg/L,最高為128.73mg/L,2000年至少有三口喀斯特水源井Cl-含量超過國家飲用水標准(≤250mg/L),最高達1191.22mg/L。焦作地區內某單位喀斯特水自備井1999年Cl-含量為141.1mg/L,2000年為517.61mg/L,2001年為1258.6mg/L,2002年4月上升至2135mg/L,是國家飲用水標準的8.54倍。喀斯特水Cl-超標的水源井雖然是個別的,但由於整個焦作地區的喀斯特地下水同屬於一個喀斯特水系統,水質如按目前速度繼續惡化,整個焦作礦區喀斯特水未來都有被嚴重污染的危險。造成喀斯特水Cl-污染的原因為:喀斯特水補給區地表污水的滲漏;孔隙水、礦井排水通過O2灰岩「天窗」污染喀斯特水;受污染的河水滲漏補給喀斯特水[21]

三、地下水保護與利用對策

1.防治水污染,污水資源化

對於沒有處理能力的廠、礦、企業,應交納污水處理費,由城市有關部門統一處理。按照國家產業結構調整政策和淘汰落後生產工藝、技術和裝備,重點進行冶金、化工、水泥、電力、采選等重污染行業的結構調整。污水可以被認為「待生資源」,對於污水治理,應本著誰排放誰治理的原則,企業自建小型污水處理廠,處理達標的水可重復利用,以節約水資源。焦作市是以能源、化工為主的重工業城市,污水排放量相當大,並已對地下水造成不同程度的污染,使可利用的水資源量減少。實行污染物排放總量控制制度,從嚴掌握建設項目的審批,執行限期治理制度,堅持實行「關、停、禁、改、轉」的方針。

2.排供環保三位一體

武強教授認為,採用排供環保結合優化管理,不僅考慮了排水系統的疏降效果和安全運營,而且供水系統的供水需求和環境系統的質量保護也同樣是優化模型設計的重要約束指標,同時還要充分利用礦井排水,以及將排出的礦井水經過一定水質處理後,全部或部分用來代替礦區正在運行中的不同目的的供水水源[27,9,26]。焦作礦區為了安全生產,大量疏排地下水,礦井排水量為6.2707m3/s,占總開采量10.8134m3/s的58%。而且礦井排水的利用率僅為31.47%。

排供環保三位一體的優化模型除涉及地下水水力技術方面的管理外,同時也牽涉經濟評價和環境保護以及產業結構規劃等的管理。排供環保三位一體,就是在保證環境質量和礦井安全的前提下,提供給礦井和其周圍地區一定數量的水資源,可用於生活、工業和農業等方面的供水。排供環保三位一體結合模型,不僅實現了將保證環境質量的礦井排水和地面抽水用於供水目的,而且通過選擇多種供水用戶所產生的經濟效益最大的目標函數和適當的約束條件,完成了利用一個模型,同時綜合制訂排水、供水、環保三位一體的具體水資源優化管理方案。該模型已應用於焦作礦區九里山礦[27]

3.加強水利價費改革

按照國家發改委改革水價促進節約用水指導意見通知的要求,進行水價調整,否則浪費水的問題不可能根本解決。逐步提高工程水價(自來水價、水利工程供水水價),水資源費(資源水價),水污染處理費(環境水價)。以水為主要的生產原料和生產手段,應制定較高的水價。水利工程水價要逐步到位,水資源費要適時調整。按照不同的行業實行不同的基本水價和不同的階梯式水價標准,生活用水應有最低保障數量。工業用水要參照國內外先進用水定額定出適應不同地區、不同行業、不同工業產品的用水定額,超定額用水要加價,並責令限期改造設備,降低用水定額。農業水資源費的徵收將會使最有潛力的用水大戶提高節水意識,促進井灌節水,以水養水[33]。利用經濟杠桿調整用水需求,促進節水工作。調整水價和水資源費,這是節約用水最重要的手段。

4.節約用水

提高重復利用率,節約水源,逐步實現「零」排放。加快工業節水新技術、新工藝和廢水資源化的開發研究以及城市節水設施的研究製造;制定行業節水規劃和用水標準定額,不斷降低耗水量和排水量,提高水的利用率;搞好廢水綜合利用,實現廢水資源化是提高水資源重復利用率的重要措施;通過產品結構、產業結構、企業組織結構和工業布局的調整實現節約用水,達到水資源的供需平衡,也是水污染防治的重點。這是城鎮工業節水應該考慮的幾個重要方面。

大面積發展適合精耕細作特點的高效節水形式,重點發展噴灌。要因地制宜採用管灌、渠灌、滴灌、噴灌等多種節水措施。搞好地面水灌渠的綜合節水措施,發展井渠雙灌。推廣秸稈還田、覆膜栽培、集雨保水等農藝節水措施。無論是旱作農業,還是灌溉農業都必須採用農藝節水措施,以提高水資源的利用率。農業節水的農藝措施、工程措施要和科學管理結合起來。

節約用水是一項長期的根本措施,關繫到社會的可持續發展。以發展農業節水灌溉和工業節水為重點,採取行政、經濟、法制、管理等多項措施,千方百計地提高水的利用率和效益。

四、礦井水的水質處理技術

煤礦巷道是煤炭開採的主要場所。巷道中污染物質主要包括廢機油、廢酸液、煤塵、岩屑顆粒和病源菌以及井下的人工廢棄物、糞便等。如果一些老窯積水與巷道相連通時,礦井水易被酸化。如果礦井接受地表水的補給,它們可能還會受到各種農葯液和工業廢水的污染,工業廢水大都含有有機磷、酚、醛等有毒物質。大量湧入巷道的地下水必然會受到這個採煤環境的不同程度的污染。

因此,礦井排水的綜合利用必須首先解決水質問題,它是排供環保結合的一個很重要環節。解決這個問題既要在井下巷道的輸水過程中,既要根據不同污染類型礦井水和綜合利用的不同供水對象,在地面實施礦井水的水質預處理,以便為各供水用戶提供符合其具體水質要求的礦井排水資源,又要注意清濁水分流,盡量減輕礦井水的污染程度。礦井水的實用性處理技術和方法主要有以下幾類:

1.礦井渾濁水的凈化處理

礦井水中所含雜質大致可以劃分為3類,即懸浮物、膠體物和溶解物[5]。礦井渾濁水凈化處理的主要去除對象則是懸浮物和膠體物兩類,它們是造成礦井水濁度的主要因素。渾濁水的一般常用凈化處理流程為:

(1)澄清:澄清是指去除引起水渾濁的懸浮物和膠體物等雜質的過程,一般可劃分為3個驟步,即混凝、沉澱和過濾。

(2)消毒:礦井渾濁水經過混凝、沉澱和過濾作用之後,便可著手對其進行消毒處理(消毒處理也可在過濾之前進行)。

礦井渾濁水一般的凈化處理流程,如圖3-37為其流程示意圖。對於某些特殊類型的礦井渾濁水或特殊要求的供水用戶,可根據其具體情況分別予以靈活處理,不必完全照搬以上的全部凈化處理流程。

圖3-37 礦井渾濁水凈化處理流程示意圖

例如,如果礦井排水的渾濁度較低,又無藻類繁殖時,渾濁度經常在100度以下,投放混凝葯劑後可不經過混凝和沉澱作用,直接採用一次性過濾處理,將過濾後的礦井水加氯氣消毒,隨之經泵站送入供水管網。

再如,如果礦井排水的渾濁度較高,既要設法達到預期的凈化目的,又要節約混凝葯劑的投放量。可以在混凝、沉澱前採用自然沉澱方法,將原高渾濁度的礦井水中的粒徑較大的泥沙顆粒預先沉澱掉一部分,所用構築物可以是預沉澱池,也可以是沉砂池。最後,再進行混凝,沉澱、過濾和消毒處理。

2.礦井高硬度水的軟化處理

水的硬度主要是指溶解於其中的Ca2+、Mg2+離子含量,溶解於水中的Fe2+、Mn2+、Sr2+離子也是影響水硬度的一個因素。下面介紹3種常用的軟化方法:

(1)微生物方法:該種方法包括硫酸鹽還原菌去硫法和鐵細菌去鐵法。

(2)化學方法:化學軟化處理包括石灰、石灰乳中和法和石灰、蘇打軟化法。

(3)物理方法:該種軟化處理方法包括蒸餾法、電滲析法和沖淡法3種。

3.礦井酸性水的中和處理

在煤層或其頂、底板中常含有硫化礦物,它們在氧化條件下形成硫酸化合物。礦井水中一旦溶解了這些硫酸化合物,便導致其

離子含量增高,成為酸性礦井水。

礦區酸性水的形成,對於大多數具有較強破壞性的酸性水,是隨著煤礦開采時間的延長而逐漸形成的。而有的酸性水是在煤礦開采之前,即在硫化礦床氧化帶處就已經富集了酸性水。

酸性水的危害是十分嚴重的。在俄羅斯布利亞礦區勘探中,由於酸性水的腐蝕作用,在8h內鑽桿直徑減少1mm,套管局部被腐蝕,在強酸性水分布地段,經12晝夜,套管壁就被腐蝕穿孔。礦井與儲集酸性水的老窯、老空區溝通,酸性水便可沿通道進入礦井,因而酸性水就會污染井下生產環境。

對於已經形成的酸性水和受其污染的礦井,應採用石灰石中和法或微生物法加以治理。對於酸性的老窯積水,應設立防水煤柱等工程,使其與礦井系統完全隔離;對於含硫礦層要設法消滅充水充氧的環境,使其封閉並失去形成酸性水的環境。消除酸性礦井水的污染,預防和治理應同步進行。

4.礦井高鐵高錳水的處理

當日處理100m3高鐵、高錳水時,濾池可採用鋼制圓形雙級壓力濾池,將濾池分成上、下兩室,上、下室均採用錳砂作濾料。為了達到充分曝氣,盡可能驅散水中游離CO2,且提高pH值,可採用葉輪式表面曝氣裝置,曝氣池可做成矩形,水在曝氣池停留時間約為20分鍾。表面曝氣雙級濾池過濾除鐵、錳工藝是一項比較經濟且效果良好的技術方法。

除鐵方法主要有兩種,其一是蓮蓬頭曝氣、石英砂過濾除鐵,或者用河砂、卵石、木炭卵石層過濾除鐵,其二是用天然錳砂接觸氧化除鐵,該方法簡單經濟,效果良好,已被廣泛推廣利用,這些工藝都能達到預期除鐵的目的,使水中鐵的含量達到符合國家生活飲用水標准。

20世紀70年代末發展了一種兩級過濾處理系統的處理方法,該方法經過曝氣、兩級過濾,一般水中鐵、錳含量均可被控制在國家生活飲用水標准之下。可同時消除水中的鐵、錳離子含量,其工藝過程是首先將水充分曝氣,然後經第一級濾池除鐵,再經第二級濾池除錳。在除錳技術方面,最初採用的是接觸氧化法除錳工藝,效果也良好。

⑽ 酸性礦山廢水為什麼用石灰石進行治理的效果不理想

石灰中和及其衍生方法是處理礦山酸性廢水最常用的方法,但該法對 廢水中微量版有害重金屬元素的去除權作用通常不被了解.該文用石灰石、石灰中和處理某硫鐵礦露天采場的酸性廢水,考察了廢水中微量有害重金屬元素的沉澱去除效 果.結果表明:對大多數重金屬離子而言,pH值越高,重金屬離子的去除效果越好,但若重金屬離子生成兩性化合物沉澱,則存在一個最適宜的pH值.石灰石中 和法對在酸性條件下生成沉澱的重金屬離子去除效果及沉渣的沉降性能較好,但最高pH值為6,對其他的重金屬離子的去除效果有限;石灰法的pH值有較大的調 節范圍,處理效果明顯優於石灰石;石灰石-石灰二段中和法的處理效果在總體上與石灰法相當,在達到與石灰相同的處理效果時,能夠降低約1/3的石灰投加量 和沉渣的產生量,沉渣的含水率相比石灰法更低,沉降性能更好.廢水中微量有害重金屬元素的中和沉澱去除效果與pH值密切相關,因此在工藝的選擇之外,中和 劑的投加量和投加方式,處理設施更為精準的掌控和運作非常關鍵,研究可為確立石灰石-石灰法處理礦山酸性廢水的最佳工藝和過程式控制制條件提供依據.

閱讀全文

與煤礦酸性廢水形成相關的資料

熱點內容
廣饒草西污水處理廠 瀏覽:980
英山縣污水改造 瀏覽:375
礦泉水廠廢水 瀏覽:244
化糞池前污水管直徑多少 瀏覽:846
低溫潤滑油蒸餾過濾 瀏覽:112
英非尼迪空調濾芯在哪裡 瀏覽:730
雲浮生活污水多少錢 瀏覽:557
清洗華帝熱水器水垢視頻 瀏覽:631
檸檬酸鈉除水垢的劑量 瀏覽:266
河源污水監測有哪些 瀏覽:72
污水處理葡萄糖投加 瀏覽:137
樂美的飲水機怎麼拆卸 瀏覽:500
污水處理中的經典參數 瀏覽:7
生產污水 瀏覽:525
一隻怪獸喝污水的游戲 瀏覽:698
小米2用刷機精靈能刷回v5嗎 瀏覽:894
去離子表面活性劑怎麼清洗 瀏覽:402
高爾夫空氣濾芯怎麼拆 瀏覽:562
常減壓蒸餾裝置中的控制迴路 瀏覽:804
燒純凈水哪個水垢少 瀏覽:386