⑴ 氨氮超標的原因及處理方法
氨氮超標的原因有污水來源、外部影響、硬體設備以及反應時間等。
污水中過量的氨氮不僅會引起藻類水華,而且會導致黑水和污水,甚至對人類和生物產生有害影響。環保局對氨氮指標有明確的標准,若氨氮超標未經處理,污水處理廠將面臨限期整改。
水中的氨氮可以在一定條件下轉化成亞硝酸鹽,如果長期飲用,水中的亞硝酸鹽將和蛋白質結合形成亞硝胺,對人體健康極為不利。氨氮可導致水富營養化現象產生,是水體中的主要耗氧污染物,對魚類及某些水生生物有毒害。
氨氮超標的處理方法:
吹脫工藝是通過調節pH值,將廢水中的離子態銨(NH4+)轉化為分子態氨,然後用空氣或蒸汽吹出。氨蒸餾工藝將焦化過程中的化學分離廢水和殘余氨水蒸餾出來,經過氨蒸餾處理後,可降低nh3—n含量,為下一步生化處理提供必要的預處理。
生物法在反硝化細菌的作用下,將水中的有機氮轉化為銨態氮,進而轉化為硝態氮和氮素。工藝處理後,氨氮濃度一般在100ppm左右,可在工藝後端加入氨氮去除劑,進行氨氮降解到達標。
⑵ 污水氨氮高了怎麼處理
氨氮(NH3-N)是總氮其中一種的存在形式,是硝化細菌的降解主要底物之一。
方法一:
硝化細菌和亞硝化細菌的硝化反應,所以硝化細菌利用自身分泌的酶進行硝化反應,是降解氨氮的成本較低的一種方法。就是把氨氮降解成為亞硝態氮和硝態氮。但是該方法不能把去除總氮,所以是治標不治本。
方法二:
厭氧氨氧化,該方法是利用亞硝態氮和氨氮開展氨氧化反應,從而形成氮氣到空氣中。該方法成本更低,主要因為不需要曝氣,剩餘污泥產生量少。缺點是菌種適應條件苛刻,同時氨氮和亞硝態氮必須形成一定的比例,或者說都存在的情況下才能反應,污水系統中亞硝態氮是一個中間環節,所以難以控制。
所以這么考慮的話,你的系統中菌種出現了問題,需要把系統中的硝化菌群更換改善下,這樣才能徹底解決問題,就想中醫治病一樣,要去根的話,還能把菌種更換成優勢菌種。
針對上述的問題,新爾特生物從全程硝化反硝化,到短程硝化反硝化,再到氨氧化去除總氮,形成了菌種的封閉鏈條降解,所以,去除總氮還需要從微生物核心反應機理上進行處理,新爾特生物很好的解決了這個問題,有興趣的話可以聯系看看,他們給做實驗,並且一直是用數據說話,所以行不行拿出實驗數據就知道了。
⑶ 醫院醫療廢水如何處理氨氮超標
醫院醫療廢水中含氨氮、COD、重金屬、 消毒劑、病原體、酸、鹼、有機溶劑等放射性有害物質,因此其排放標准較高,管理較嚴。
關鍵詞:醫院醫療廢水;氨氮超標;反硝化細菌
通過案例,分享關於醫院醫療廢水氨氮超標如何處理。
項目地址: 河南省盧氏縣
項目情況:
1.進水含有大量懸浮物,其中大多數為可溶性懸浮物,其來源主要來自化糞池。
2.通過檢測進出水氨氮濃度均在100mg/L左右,則好氧池無硝化作用。
3.進水氨氮濃度較高,好氧池設計停留時間較短。
項目分析:
1.由於化糞池大量的懸浮物進入生化系統中,人糞通過氨化作用而導致進水氨氮高於平常醫院廢水中氨氮濃度。其次,污水站並未做污水的分類收集,如手術台下來的污水含血紅蛋白高,也是影響氨氮濃度上升的原因之一。
2.經過使用在線監測儀測出,進出水氨氮濃度基本一致,氨氮無降解作用,則說明好氧池內無硝化菌或硝化作用小。
工程師 解決建議:
1.加大清理化糞池頻次,一季度清理一次。
2.二沉池污泥沉澱後,每隔2天由提升泵進入污泥池儲存,提升泵每次運行15分鍾。儲存污泥池的污泥每隔15天由提升泵提升至罐車或吸污泥車運至具有相應處理資質的單位或部門進行最終處理。
3.好氧池投加硝化菌種以增加硝化作用:在O1池投加50公斤硝化細菌,在O2池投加20公斤硝化細菌。
4.好氧池投加懸浮球填料,增加好氧池內生物量,以解決或減緩好氧池停留時間短的問題,投加懸浮球填料的量為40立方。
註:以上為簡易解決方案,具體實施,將溝通清楚決定的解決思路後,詳細擬定。降解氨氮使用硝化細菌,用於好氧池(曝氣池)。
甘度 | 做好菌種 做好服務
⑷ 污水廠出水氨氮超標怎麼辦
1、污水廠出水氨氮超標是因為PH過低影響硝化菌的活性,可以暫停進水,過半小時後再進水,觀察PH值,是否有回升的跡象;
2、污水廠出水氨氮超標是因為硝化反應出問題,水解酸化後,有機氮氨化後,氨氮濃度升高,曝氣池硝化作用有限氮含量,可以增加一個硝化和反硝化反應器作為應急設施;
3、污水廠出水氨氮超標是因為曝氣過量,硝化菌大量將有機物轉化為含氮有機物,導致污水廠出水氨氮超標。可以相對減少曝氣量,降低污水廠出水氨氮的濃度。
⑸ 氨氮超標有什麼處理方法
01折點氯化法
該方法是將氯氣或次氯酸鈉通入廢水中的NH3-N氧化成N2的化學脫氮工藝。在處理氨氮廢水過程中,所需的氯氣量取決於溫度、PH值和氨氮的濃度。
氧化每克氨氮需要9~10mg氯氣,PH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。
特點:氯化法處理率高,效果穩定,不受溫度影響。
02MAP沉澱法
在氨氮廢水中投加磷鹽和鎂鹽使廢水中污染物生成溶解度很小的沉澱物或聚合物,達到去除氨氮的效果。
特點:廢水中氨氮能作為肥料得以回收,若廢水中磷酸根較高,只需投加鎂鹽,少量投加或不投加磷鹽,即可達到脫氮除磷作用,但三者之間的比例需要控製得當。
03化學葯劑法
投加化學葯劑-氨氮去除劑,葯劑中的有效成分使之與氨氮反應,變成無害氣體揮發,達到去除氨氮的效果。
特點:5分鍾,去除率可達到96%以上,無二次污染,使用簡單、方便,反應後的廢水可直接排放(目前大多數企業都有在使用這方法,用於彌補生化工藝上的不足)
⑹ 氨氮超標的處理方法快速去除氨氮
氨氮超標的處理方法如下:
1、吹脫法
吹脫法是在鹼性條件下,將氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離,吹脫的效率和溫度、PH、氣液比有關聯。
2、沸石脫氮法
沸石脫氮法是將沸石中的陽離子與廢水中的NH4+交換,沸石通常在處理低濃度含氨廢水或含微量重金屬的廢水時應用。
3、膜分離技術
膜分離技術是運用膜的選擇透過性以達到氨氮脫除的效果,這種操作方法簡單方便,氨氮的回收率高,沒有二次污染。
4、MAP沉澱法
MAP沉澱法是向有高濃度氨氮的廢水中投入磷鹽和鎂鹽。
5、化學氧化法
化學氧化法是使用強氧化劑將氨氮直接氧化成氮氣。
⑺ 污水中氨氮超標怎麼辦
你可以先檢查進水集水井的ph,ph過低會影響硝化菌的活性,從而造成氨氮超標,解決方法就是暫回停進水,答過半小時後再進水,觀察ph值,是否有回升的跡象。
還有一種可能就是曝氣過量,硝化菌大量將有機物轉化為含氮有機物,導致氨氮超標。解決方法是相對減少曝氣量。
僅供參考,不妥之處請諒解
⑻ 快速處理氨氮超標方法
氨氮超標的處理方法有很多種,具體如下:
1、加強生化處理
2、次氯酸鈉氧化處理
3、磷酸銨鎂化學沉澱處理
4、吹脫法處理
5、蒸氨法處理
6、電氧化分解法處理
在以上處理氨氮超標的方法中,氨氮超標的處理方法快速去除氨氮的是次氯酸鈉氧化法,這種方法快速徹底簡單,在一噸污水中添加次氯酸鈉1公斤左右,攪拌混合大約1個小時,污水中的氨氮可以降低到0.1ppm。
當然,對於高濃度氨氮可以採用磷酸銨鎂法和次氯酸鈉聯合處理。
⑼ 氨氮總氮超標有什麼處理方法
氨氮超標處理方法常分為兩類:化學法處理和生物法處理
方法一:
硝化細菌和亞硝化細菌的硝化反應,所以硝化細菌利用自身分泌的酶進行硝化反應,是降解氨氮的成本較低的一種方法。就是把氨氮降解成為亞硝態氮和硝態氮。但是該方法不能把去除總氮,所以是治標不治本。
方法二:
厭氧氨氧化,該方法是利用亞硝態氮和氨氮開展氨氧化反應,從而形成氮氣到空氣中。該方法成本更低,主要因為不需要曝氣,剩餘污泥產生量少。缺點是菌種適應條件苛刻,同時氨氮和亞硝態氮必須形成一定的比例,或者說都存在的情況下才能反應,污水系統中亞硝態氮是一個中間環節,所以難以控制。
⑽ 氨氮高了,高氨氮廢水有哪些處理方法
隨著我國經濟的高速發展,產生了大量高濃度氨氮廢水。氨氮廢水的大量排放,導致水體中氨氮大量富集,引起水體的富營養化與惡化,對水環境造成巨大危害,不僅嚴重影響了人們的正常生活,甚至危害了人們的身體健康,社會影響巨大。因此,國家在氨氮廢水的排放要求方面也制定了越來越嚴格的法規與排放標准。目前,除了合成氨、肉類加工、鋼鐵等12個行業執行相應的國家行業標准(通常一級標准為25mg/L)外,其他均需遵守國家標准GB8978-1996«污水綜合排放標准»。該標准明確1998年後新建單位氨氮最高允許排放濃度為15mg/L。
氨氮廢水的處理方法和工藝有很多種,主要有物化法和生物法。物化法包括吹脫法、離子交換法、折點氯化法、化學沉澱法、膜分離法、高級氧化法、電解法、土壤灌溉法等。生物法包括硝化—反硝化、同步硝化反硝化、短程硝化反硝化、厭氧氨氧化、A/O、A2/O、SBR、氧化溝等。
1、物化法
1.1 吹脫法
在廢水中氨氮多以銨離子(NH+4)和游離氨(NH3)的狀態存在,兩者保持平衡,平衡關系為:NH3+H2O→NH+4+OH-。這個平衡受pH值影響。當廢水pH值升高時,OH-離子增多,該平衡反應向左移動,有利於NH+4生成游離態的NH3,從而使得游離氨所佔比例增大,游離氨易於從水中逸出。當廢水的pH值升高到11左右時,廢水中的氨氮幾乎全部以NH3的形式存在,再加上曝氣吹脫的物理作用,則可促使NH3更容易從水中逸出,向大氣轉移。此外,該反應為放熱反應,溫度升高,反應方程向左移動,也有利於NH3從水中逸出。依據此原理,可以採用吹脫法來去除廢水中氨氮,吹脫法一般分為空氣吹脫法、水蒸汽吹脫法(汽提法)和超重力吹脫法。
1.1.1 空氣吹脫法
空氣吹脫法去除氨氮的原理是:在鹼性條件下,通過外力將空氣鼓入需要脫氨處理的廢水中,同時在廢水中使鼓入的空氣和廢水充分接觸,廢水中溶解的游離態氨將穿過廢水界面,向外界空氣轉移,從而達到去除氨氮的目的。
目前,空氣吹脫法在高濃度氨氮廢水處理中的應用較多,吹脫速率高,處理費用相對較低,但隨著氨氮濃度的降低,特別是當氨氮質量濃度低於1g/L以下時,吹脫速率顯著降低。氣液比、pH值、氣體流速、溫度、初始濃度等是影響吹脫法處理效果的主要因素。
現有吹脫裝置主要有吹脫池和吹脫塔,由於前者效率低,易受外界環境影響,因此多採用吹脫塔裝置。通常採用逆流操作,塔內裝有一定高度的填料以增加氣—液傳質面積,從而有利於氨氣從廢水中解吸。常用填料有拉西環、聚丙烯鮑爾環、聚丙烯多面空心球等。
空氣吹脫法的優點是:具有穩定的氨氮去除率,工藝操作簡單,氨氮容積負荷大等。缺點是:吹脫過程中易使填料層結垢,使廢水流通不暢,從而影響設備的正常運行;同時,吹脫工藝需要調節廢水pH值,需投加大量鹼,從而使廢水處理成本增高;另外,經空氣吹脫處理後,廢水中還含有少量氨氮,處理後的廢水時常不能達到國家排放標准。因此,吹脫法通常與其他方法聯合使用。
1.1.2 水蒸汽吹脫法(汽提法)
汽提法去除氨氮的原理是:大量蒸汽與廢水接觸,將廢水中游離氨蒸餾出來,以達到去除氨氮的目的。當向廢水中通入水蒸汽時,兩液相在填料表面上逆流接觸進行熱和物質交換,當水溶液的蒸汽壓超過外界的壓力時,廢水就開始沸騰,氨就加速轉為氣相。此外,氣泡表面之間形成自由表面,廢水中的氨不斷向氣泡內蒸發擴散,當氣泡上升到液面上破裂釋放出其中的氨,大量的氣泡擴大了蒸發表面,強化了傳質過程,通入的蒸汽升高了廢水的溫度,從而也提高了一定pH值時被吹脫的分子氨的比率。
汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與空氣吹脫法類似,氨氮去除率高,但汽提法工藝處理成本高,操作條件難控制,消耗動力高等。
1.1.3 超重力吹脫法
空氣吹脫法和水蒸汽吹脫法一般採用填料塔作為吹脫設備,而超重力吹脫法是利用超重力設備———超重機取代傳統的填料塔作為吹脫設備,以空氣為氣提劑,將水中的游離氨解吸到氣相中的氨氮廢水治理方法。
氨氮廢水加鹼調節pH值為10~11後進入超重機處理。廢水經超重機分布器均勻噴灑在填料內緣,在超重力作用下,液體被填料粉碎成液滴,沿填料徑向甩出,經筒壁匯集後從超重機底部流出。同時,空氣經超重機進氣口進入超重機殼體,在一定風壓下,由超重機轉子外腔沿徑向進入內腔。在填料層內,氣液兩相在大的氣液接觸面積的情況下完成氣液接觸,將水中的游離氨吹出。氣體送至除霧器,將夾帶的少量液體分離後,至吸收裝置,脫氨後排空。利用超重機的水力學特性與傳遞特性,可獲得良好的吹脫效果並減少設備投資與運行費用。
與工業上傳統僅使用塔設備的吹脫法相比,超重力法吹脫法具有以下幾點優勢:
(1)設備體積質量小,設備及基建費用少,過程放大容易,啟動、停車迅速,運行更穩定;
(2)擺脫了重力場的影響,對物料粘度適應性廣,操作彈性大;
(3)氣相動力消耗小,物料停留時間短,傳質系數大;
(4)去除氨氮效率高,有利於氣相中氨的回收利用:
(5)能夠增加水中的溶解氧,為可能的後續生化處理提供充足氧源。但是目前超重力法吹脫氨氮技術的大規模工業應用較少,主要是因為該技術不夠成熟。特別是大型的結構,仍需要根據具體的物系進行合理設計和試驗。
1.2 離子交換法
離子交換法是一種特殊的吸附過程即交換吸附。其主要機理是:利用離子間的濃度差和交換劑上的功能基對離子的親和力作為推動力達到吸附特定離子的目的。吸附過程是可逆的,吸附飽和的交換劑通過添加特定的解吸液可對交換劑上吸附的離子進行解吸,從而實現交換劑的循環使用。常見的交換劑有沸石等天然交換劑和人工合成的離子交換樹脂兩大類,而後者還可根據樹脂上功能團的不同分為陽離子交換樹脂和陰離子交換樹脂。
天然沸石(主要是斜發沸石)對NH+4具有強的選擇吸附能力,並且天然沸石的價格低於人工合成的離子交換樹脂。因此,工程上常用沸石對NH+4的強選擇性,將NH+4截留於沸石表面,從而去除廢水中的氨氮。pH值=4~8是沸石離子交換的最佳范圍。當pH值<4時,H+與NH+4發生競爭;pH值>8時,NH+4變為NH3,從而失去離子交換性能。但是沸石交換容量容易飽和,吸附容量低,更換頻繁,飽和後的沸石需再生才能再次使用。
離子交換樹脂主要是利用特定陽離子交換樹脂與水中的NH+4進行交換,交換後的樹脂再通過解吸而還原。與沸石相比,強酸型陽離子交換樹脂吸附容量大,處理效果穩定,但目前對強酸型陽離子交換樹脂的研究多處於實驗室階段。
離子交換法的優點是去除率高,適用於處理中低濃度的氨氮廢水。處理含氨氮10mg/L~20mg/L的城市污水,出水濃度可達1mg/L以下。但對於高濃度的氨氮廢水,會造成短時間交換劑飽和,從而再生頻繁,使處理成本增大,且再生液仍為高濃度氨氮廢水,仍需進一步處理。在實際工程應用中,離子交換法常結合其它污水處理工藝來處理高濃度氨氮廢水,先用其它方法作預處理,使經預處理後的廢水濃度在100mg/L左右,然後再用離子交換法處理剩餘氨氮廢水。
1.3 折點氯化法
折點氯化法是將氯氣通入氨氮廢水中達到某一點,在該點時水中游離氯含量最低,而氨氮的濃度降為零。當通入的氯氣量超過該點時,水中的游離氯就會增多,該點稱為折點,該狀態下的氯化稱為折點氯化,折點氯化法的原理就是氯氣與氨反應生成了無害的氮氣。加氯量對反應有很大影響,當氯的投加量與氨的摩爾比為1∶1時,化合余氯增加,主要為氯氨。當該比例為1.5∶1時余氯下降至最低點即「折點」,反應方程式為:NH+4+1.5HClO→0.5N2+1.5H2O+2.5H++1.5Cl-。pH值也是主要影響因素,pH值高時產生NO-3,低時產生NCl3。為了保證完全反應,通常pH值控制在6~8,一般加9mg~10mg的氯氣可氧化1mg氨氮。
折點加氯法的優點是氨氮去除率高(可達90%~100%),不受水溫影響,處理效果穩定,反應迅速完全,設備投資少,並有消毒作用。缺點是由於在處理氨氮廢水中要調節pH值,處理成本較高。同時液氯使用安全要求高且貯存時要求的環境條件高。另外,折點加氯法處理氨氮廢水後會產生副產物氯代有機物和氯胺,會給環境帶來二次污染。因此,折點氯化法多用於較低濃度氨氮廢水,適用於廢水的深度處理,工業上一般用於給水處理,對於大水量高濃度氨氮廢水不適合。
1.4 化學沉澱法
化學沉澱法去除廢水中氨氮的原理是:向氨氮廢水中投加磷酸鹽和鎂鹽,使廢水中的氨氮與磷酸鹽和鎂鹽生成一種難溶性的磷酸氨鎂沉澱(MgNH4PO4•6H2O),從而達到去除廢水中氨氮的目的。
磷酸銨鎂(MAP)又稱鳥糞石,可溶於熱水和稀酸,不溶於醇類、磷酸氨以及磷酸鈉的水溶液,遇鹼易分解、在空氣中不穩定,升溫至100℃時便會失水變為無機鹽,繼續加熱至融化(約600℃)則會分解成焦磷酸鎂。MAP可以用作飼料和肥料的添加劑,是一種很好的長效復合肥;也可用於塗料生產、氨基甲酸酯、軟泡阻燃劑製造和醫葯行業。因此,磷酸銨鎂脫氮除磷技術既可以去除廢水中的氨氮,又可回收較有經濟價值的MAP,達到變廢為寶的目的。
化學沉澱法的優點是工藝簡單、效率高,經處理後產生的沉澱物MAP經進一步加工處理後,能成為性能優良的農家復合肥料。缺點是處理成本高。在處理氨氮廢水過程中需加入大量價格昂貴的混凝劑。此外,去除1gNH+4-N可產生8.35gNaCl,由此帶來的高鹽度將會影響後續生物處理的微生物活性。因此,該方法一直停留在實驗室規模未在工程上運用,較少用於實際氨氮廢水處理。
1.5 膜分離法
膜分離法包括反滲透法、液膜法、電滲析法等。
1.5.1 反滲透法
反滲透就是藉助外界的壓力使膜內部的壓力大於膜外的壓力,使小於膜孔徑的分子(水)透過,大於膜孔徑的分子截留在膜內,這種作用現象稱作反滲透。其作用機理關鍵在於半透膜的選擇透過性,半透膜上有好多細小的微孔,像水分子這樣的小分子可以自由的透過,而大於半透膜上微孔的NH+4則不能通過。當溶液進入膜系統後,在外加壓力的作用下半透膜就會選擇性的讓某些小分子物質透過,大分子物質NH+4則會留在半透膜內側通過管道另外的出口排出。
反滲透裝置處理廢水需要對原水進行預處理,不然會損壞裝置內的膜件,並且該裝置需要高質量的膜。
1.5.2 液膜法
液膜法又稱氣態膜法,目前已應用於水溶液中揮發性物質的脫除、回收富集和純化,如NH3、CO2、SO2、Cl2、Br2等。液膜法去除氨氮的機理是:採用疏水性中空纖維微孔膜,膜一側是待處理的氨氮廢水,另一側是酸性吸收液,疏水的微孔結構在兩液相間提供一層很薄的氣膜結構。廢水中NH3在廢水側通過濃度邊界層擴散至疏水微孔膜表面,隨後在膜兩側NH3分壓差的推動下,NH3在廢水和微孔膜界面處氣化進入膜孔,然後擴散進入吸收液發生快速不可逆反應,從而達到脫除氨氮的目的。
液膜法具有比表面積大,傳質推動力高,操作彈性大,氨氮脫除率高,無二次污染等優勢,適合處理含鹽量較高、油性污染物含量低的高氨氮廢水。氨氮或含鹽量較高時,能有效抑制水的滲透蒸餾通量,減弱對吸收液的稀釋作用;但當廢水中含有油性污染物時,會造成膜的污染,使膜的傳質系數不能得到完全恢復。由於廢水的復雜性、膜材料的研發更新換代、可逆吸收劑的研發以及後續副產品的生產應用等多種原因,氣態膜法脫氨工業化進程很慢,國內生產應用實例較少。不過對於高鹽高濃度氨氮廢水,氣態膜處理成本較低,其應用前景廣闊。
1.5.3 電滲析法
電滲析法的原理是:當進水通過多組陰陽離子滲透膜時,NH+4在施加的電壓影響下,透過膜到達膜另一側濃水中並集聚,從而從進水中分離出來,實現溶液的淡化、濃縮、精製和提純。國內外專家在電滲析法處理氨氮廢水方面作了大量研究,並取得了一定成績。但由於高選擇性的防污膜仍在發展中,且對廢水預處理的要求很高,電滲析法用於工業尚需時日。
1.6 高級氧化法
高級氧化法是通過化學、物理化學方法將廢水中污染物直接氧化成無機物,或將其轉化為低毒、易降解的中間產物。應用於脫除廢水中氨氮的高級氧化法主要有濕式催化氧化法和光催化氧化法。
1.6.1 濕式催化氧化法
濕式催化氧化法是20世紀80年代國際上發展起來的一種治理廢水的新技術,其原理是:在特定的溫度、壓力下,通過催化劑作用,經空氣氧化可使污水中的有機物和氨氮分別氧化分解成CO2、N2和H2O等無害物質,達到凈化的目的。
濕式催化氧化法技術優點是:氨氮負荷高,工藝流程簡單,氨氮去除率高,佔地面積少等。缺點是:在處理氨氮廢水中會使用大量催化劑,造成催化劑的流失和增加對設備的腐蝕,使氨氮廢水處理成本增大。
濕式催化氧化法從處理效果上來說適合高濃度氨氮廢水的處理,但這種方法對溫度、壓力、催化劑等條件要求非常嚴格,反應設備須抗酸抗鹼耐高壓,一次性投資巨大,而且處理水量較大時費用很高,經濟上不劃算,目前在國內還鮮有工程應用的實例。
1.6.2 光催化氧化法
光催化氧化法是最近發展起來的一種處理廢水的高級氧化技術,它可以使廢水中的有機物在特定氧化劑的作用下完全分解為簡單的無機物CO2和H2O,達到降解污染物的目的,處理方法簡單高效,沒有二次污染。但由於反應過程中需要的催化劑難以分離回收,使該方法在實際工程中一定程度上受到了限制。
1.7 電解法
電解法利用陽極氧化性可直接或間接地將NH+4氧化,具有較高的氨氮去除率,該方法操作簡便,自動化程度高,其缺點是耗電量大,因此並不適用於大規模含氨氮廢水的處理。
1.8 土壤灌溉法
土壤灌溉法是把低濃度的氨氮廢水(50mg/L)作為農作物的肥料來使用,該法既為污灌區農業提供了穩定的水源,又避免了水體富營養化,提高了水資源利用率。土壤灌溉法只適合處理低濃度氨氮廢水,當廢水中的氨氮濃度低於50mg/L左右時,廢水中的氨氮在土壤表層發生硝化作用,在土壤深度30cm左右達到峰值,隨後由於脫氮等作用,在100cm處減小到10mg/L左右,在400cm以下土壤中未測出NH+4,直接污染到地下水的可能性幾乎為零。
2、生物法
生物脫氨氮的原理:首先通過硝化作用將氨氮氧化成亞硝酸氮(NO-2-N),再通過硝化作用將亞硝酸氮進一步氧化為硝酸氮(NO3-N),最後通過反硝化作用將硝酸氮還原成氮氣(N2)從水中逸出。
生物法的優點是:可去除多種含氮化合物,對氨氮可以徹底降解,總氨氮去除率可達95%以上,二次污染小且運行費用低。然而生物法對水質有嚴格的要求,高濃度的氨氮對微生物活性有抑製作用,會降低生化系統對有機污染物的降解效率,從而導致出水難於達標排放。
因此,生物法主要用來處理低濃度的氨氮廢水,且沒有或少有毒害物質存在,主要在處理生活污水以及垃圾滲濾液等方面應用較廣泛。常見的氨氮廢水生物處理工藝有傳統硝化反硝化、同步硝化反硝化、短程硝化反硝化、厭氧氨氧化、A/O、A2/O、氧化溝和SBR。
3、方法比較
根據廢水中氨氮濃度不同可將廢水分為三類:
(1)低濃度氨氮廢水:氨氮濃度小於50mg/L;
(2)中濃度氨氮廢水:氨氮濃度為50mg/L~500mg/L;
(3)高濃度氨氮廢水:氨氮濃度大於500mg/L。