導航:首頁 > 污水知識 > 鉻廢水電解

鉻廢水電解

發布時間:2023-03-19 14:50:34

『壹』 為什麼用電解法處理酸性的含鉻廢水

效果穩定可靠。用電解念春法處理酸性的含鉻廢水是因為效果穩定可靠。電解還原法是鐵陽極段槐在直流電作用下,不斷溶解產生亞鐵離子,在酸性條件下,將Cr6+還原為握高友Cr3+。

『貳』 含鉻廢液的處理

含鉻廢液的處理方法如下:
1、電解法。電解還原處理含鉻廢水是利用鐵板作陽極,在電解過程中鐵溶解生成亞鐵離子,在酸性條件下,亞鐵離子將六價鉻離子還原成三價鉻離子。同時由於陰極上析出氫氣,使廢水pH逐漸上升,最後呈中性,此時Cr3+、Fe3+都以氫氧化物沉澱析出,達到廢水凈化的目的。
2、硫酸亞鐵還原法。硫酸亞鐵還原法處理含鉻廢水是一種成熟的較老的處理方法。由於葯劑來源容易,若使用鋼鐵酸洗廢液的硫酸亞鐵時,成本較低,除鉻效果也很好。硫酸亞鐵中主要是亞鐵離子起還原作用,在酸性條件下(pH=2~3),用硫酸亞鐵還原六價鉻,最終廢水中同時含有Cr3+和Fe3+,所以中和沉澱時Cr3+和Fe3+一起沉澱,所得到的污泥是鉻與鐵氫氧化物的混合污泥,產生的污泥量大,且沒有回收價值,這是本法的最大缺點。

『叄』 工業含鉻廢水的處理方法 工業含鉻廢水如何處理

1、硫酸亞鐵還原法

我們可以使用硫酸亞鐵還原法來處理含鉻廢水,葯劑配製方便,成本較低,硫酸亞鐵中主要是亞鐵離子還原六價鉻,還原後廢水中含有Cr3+和Fe3,沉澱後所得污泥是鉻與鐵氫氧化物的混合污泥,但是此方法產生的污泥量大,沒有回收價值。

2、電解法

電解法可以使廢水中的鉻通過電解過程在陰陽極發生氧化還原反應,使有害物質轉化為無害物質。電解法除鉻是用鐵來做陰陽極,在酸性條件下,亞鐵離子將六價鉻離子還原成三價鉻離子,陰極產生氫氣,達到廢水凈化的目的。電解法佔地面積小,方便控制管理,唯一不足就是鐵板消耗量較多,污泥利用價值低。

3、離子交換

離子交換法來處理含鉻廢水主要是利用離子交換樹脂來對廢水中的六價鉻進行選擇性吸附,六價鉻和水分離,再使用試劑將六價鉻洗脫襲來,進行凈化。此方法投資費用大,操作管理負責,一般我們都不使用此方法。

『肆』 廢水電解處理法的化學反應原理

電解槽內裝有極板,一般用普通鋼板製成。極板取適當間距,以保證電能消耗較少而又便於安裝、運行和維修。電解槽按極板聯接電源方式分單極性和雙極性兩種。雙極性電極電解槽的特點是中間電極靠靜電感應產生雙極性。這種電解槽較單極性電極電解槽的電極連接簡單,運行安全,耗電量顯著減少。陽極與整流器陽極相聯接,陰極與整流器陰極相聯接。通電後,在外電場作用下,陽極失去電子發生氧化反應,陰極獲得電子發生還原反應。廢水流經電解槽,作 為電解液,在陽極和陰極分別發生氧化和還原反應,有害物質被去除。這種直接在電極上的氧化或還原反應稱為初級反應。以含氰廢水為例,它在陽極表面上的電化學氧化過程為:
CN-+2OH--2e─→CNO-+H2O
2CNO-+4OH--6e─→2CO2↑+N2↑+2H2O氰被轉化為無毒而穩定的無機物。
電解處理廢水也可採用間接氧化和間接還原方式,即利用電極氧化和還原產物與廢水中的有害物質發生化學反應,生成不溶於水的沉澱物,以分離除去有害物質。電鍍含鉻廢水的電解處理過程是:
鐵陽極溶解:
Fe-2e─→Fe2+
6Fe2++Cr2O崼+14H+─→6Fe3++2Cr3++7H2O
CrO厈+3Fe2++8H+─→Cr3++3Fe3++4H2O
在上述電解過程中,廢水中大量氫離子被消耗,氫氧根離子濃度增加,廢水從酸性過渡到鹼性,進而生成氫氧化鉻和氫氧化鐵等物質沉澱下來:
Cr3++3OH-─→Cr(OH)3↓
Fe3++3OH-─→Fe(OH)3↓
把沉澱物質同水分離,達到去除鉻離子,凈化廢水的目的。以上反應式中除鐵陽極發生陽極溶解是初級反應外,其他為次級反應。
在上述電解過程中,除初級反應和次級反應的處理廢水作用外,還因電解水的作用,分別在陰極和陽極產生氫氣和氧氣,這兩種初生態【H】和【O】能對廢水中污染物起化學還原和氧化作用,並能產生細小的氣泡,使絮凝物或油分附在氣泡上浮升至液面以利於排除。這種方法稱為電浮選。此外,由於鐵或鋁制金屬陽極溶解的離子進一步水解,可以成為氫氧化亞鐵或氫氧化鋁等不溶於水的金屬氫氧化物活性混凝劑。這種物質呈多孔性凝膠結構,具有表面電荷作用和較強的吸附作用,能對廢水中的有機或無機污染物起抱合凝聚作用,使污染物相互凝聚而從廢水中分離出來。這種方法稱為電絮凝處理。
由此可見,廢水電解處理包括電極表面上電化學作用、間接氧化和間接還原、電浮選和電絮凝等過程,分別以不同的作用去除廢水中的污染物。

『伍』 廢水含鉻量的活性成分

鉻元素被美國環保署(USEPA)列為最具毒性的污染物之一,含鉻廢水中的鉻主要來源於電鍍、製革、化工、顏料、冶金、耐火材料等行業,它以三價和六價化合物的形式存在。由於六價鉻的高溶解性,它比三價鉻更具有生物毒性。研究表明,六價鉻化合物能夠干擾重要的酶體系,經口、呼吸道或皮膚接觸吸收後能引起「三致」作用。因此,含鉻廢水必須嚴格控制六價鉻的質量濃度,達標後才能允許排放。

處理含鉻廢水的關鍵在於降低六價鉻的含量,一般可以通過兩種途徑實現:(1)通過化學反應使六價鉻轉變為低毒易沉澱的三價鉻,再進一步去除三價鉻;(2)將六價鉻化合物與水分離。現有的處理技術都是通過這兩種途徑達到去除鉻的目的,具體處理方法如下。

1理化處理技術1.1反滲透法反滲透法通過給水體加壓使水分子通過半透膜,實現鉻化合物的濃縮,達到水與鉻分離的目的。

由於其不涉及化學反應和酸鹼的生成,因此,反滲透技術在控制二次污染方面具有一定的優越性。由於要給處理水體加壓,電能的消耗是需要考慮的問題,所以它適合處理鉻質量濃度高的廢水。鉻質量濃度低的廢水採用反滲透技術電能消耗較大,經濟上不合算。

范帥等先採用離子交換法、芬頓氧化、混凝沉澱、電凝聚等技術對含鎳、含鉻、含銅、含氰、前處理、混排等的廢水進行預處理,再用超濾及反滲透膜處理含重金屬、含氰及前處理廢水後回用。王維平分析了反滲透技術在電鍍廢水回用中遇到的問題及對應解決思路。

1.2離子交換法離子交換法利用離子交換劑中的離子和水中的離子進行交換,進而達到去除水中特定離子的目的。

六價鉻在廢水中以鉻酸根形式存在,因此,經常用陰離子交換樹脂進行鉻酸根的吸附交換(式(1)和式(2))去除水中的六價鉻,樹脂可用再生劑進行再生。

2ROH+CrO2-4=R2CrO4+2OH-(1)

2ROH+Cr2O2-7=R2Cr2O7+2OH-(2)

唐樹和等用201×7強鹼性陰離子交換樹脂處理含Cr(Ⅵ)廢水,在實際廢水Cr(Ⅵ)初始質量濃度為1540mg/L時,出水Cr(Ⅵ)質量濃度小於0.5mg/L,達到國家排放標准,且經再生處理後樹脂再生率大於95%。徐靈等分別用pH值靜態試驗和流量動態試驗對201×7強鹼性苯乙烯陰樹脂吸附Cr(Ⅵ)的能力做了研究,在高Cr(Ⅵ)質量濃度的條件下,設定pH值為3、樹脂管流量為3BV/h,在樹脂穿透點之前,鉻的去除率在99.5%以上,加之模擬廢水Cr(Ⅵ)質量濃度遠遠高於工業廢水Cr(Ⅵ)質量濃度,說明離子交換法完全可以使廢水達標排放。考慮到Cr(Ⅲ)的回收再利用,CavacoSA等研究了DiaionCR11和AmberliteIRC86兩種離子交換樹脂對Cr(Ⅲ)的吸附交換特性,研究結果表明,兩種樹脂在去除Cr(Ⅲ)能力上均很有效,DiaionCR11顯示了相對的去除優勢。

1.3電滲析法電滲析法指在直流電的作用下,使陰、陽離子選擇性地透過陰、陽離子膜,形成一個個的濃、稀空間,既達到了鉻水分離的目的,又實現了鉻的濃縮,為鉻的回收再利用提供便利。但值得注意的是高質量濃度的含鉻廢水則不適宜採用電滲析法處理,因為質量濃度越高,消耗電能越大。鄧永光等研究了電滲析法對鉻鈍化清洗廢水的處理效果,結果表明:在其建立的電滲析小試裝置的條件下,進水濃度對淡水水質影響不大;採用濃水循環工藝,淡水產率可提高至約80%,濃室總鉻、錳離子質量濃度超過4000mg/L,為濃水的後續處理處置創造了條件。

1.4吸附法吸附法利用吸附劑與被吸附物質之間的吸附力,使被吸附物質吸附在吸附劑上,達到水體凈化的目的。吸附力可以是分子間引力,也可以是通過相互反應生成化學鍵引起的吸附。前者為物理吸附,後者為化學吸附。在污水處理中,多數情況下,往往是多種吸附的綜合結果。

理化吸附法處理含鉻廢水常用的吸附劑有活性炭、磺化煤、活化煤、沸石和硅藻土等。這些吸附劑在含鉻廢水處理中顯示了較好的吸附性能,鉻去除率均在70%以上,最高可達99%。

唯一的不足之處在於經濟投入問題,有一定花費,尋找低投入高回報的吸附劑成為考慮的主要問題,而以廢治廢成為較佳的方案。作為電廠廢物的粉煤灰和作為煤礦廢物的煤矸石由於顆粒本身的特殊結構和性能,表現出良好的吸附性能和化學穩定性。

秦巧燕等進行了活化煤矸石處理模擬含鉻廢水的試驗,在最優條件下,鉻的去除率在90%以上。白汀汀等通過試驗對比了粉煤灰吸附法和鐵氧體法對Cr6+的去除率,結果表明:在最佳條件下,用粉煤灰處理廢水的最佳除鉻率比鐵氧體法除鉻率高,除鉻效果更好。陳小萍等研究了活性炭纖維對六價鉻的吸附作用,研究結果表明:利用活性炭纖維去除水中的Cr(Ⅵ),其適宜條件為pH值為1~3,吸附時間為1.5h;通過電化學改性可以提高吸附率,並可實現活性炭纖維的現場再生。具體聯系污水寶或參見http://www.dowater.com更多相關技術文檔。

2化學處理技術2.1化學還原沉澱法該方法是通過化學反應使Cr(Ⅵ)變為Cr(Ⅲ),Cr(Ⅲ)在鹼性條件下生成Cr(OH)3,排出上清液,以實現鉻的去除。因此選擇還原性化學物質將Cr(Ⅵ)還原成容易沉澱的Cr(Ⅲ)是整個技術的關鍵,選擇高效價廉的還原劑是最佳選擇。目前常用的還原劑主要有氣態的SO2、液態的水合肼以及固態的亞硫酸鈉、硫代硫酸鈉、硫酸亞鐵等。此方法常常產生大量污泥,可從污水源頭分流、污泥分類回收等途徑解決污泥帶來的後續處理問題。

蔣小友等研究了用水合肼回收電沉積鉻廢液中鉻的工藝條件,試驗結果表明,在30℃下於25mL含鉻廢液中加入1.6mLH2SO4和0.8mL水合肼,8min可使Cr(Ⅵ)還原為Cr(Ⅲ)。顏家保等用硫酸亞鐵作為還原劑處理Cr(Ⅵ)廢水,處理後出水六價鉻和總鉻的質量濃度分別在0.55及1.5mg/L以下,達到了國家排放標准;而且通過研究pH值對整個工藝的影響,得出Cr(Ⅵ)還原階段pH值應控制為2~3,Cr(Ⅲ)沉澱階段應控制為8~9。用亞硫酸鈉作還原劑與用硫酸亞鐵工藝條件相似,處理出水同樣能達到排放標准。石俊仙等用礦山鐵的硫化物礦物處理皮革廠含鉻廢水,在試驗得到的最佳條件下,直接用礦山鐵的硫化物礦物處理高質量濃度含鉻廢水,去除率達到73%。李秋菊等研究利用晶鍾誘導沉積不銹鋼酸洗廢液中鐵、鉻及鎳的有價金屬,以達到廢酸液進行資源化利用的目的,結果顯示溫度越低,廢酸HF越高,越有利於金屬沉積,且晶鍾添加量對金屬沉積影響不大。

2.2鐵氧體法鐵氧體法同樣是用硫酸亞鐵作為還原劑,與還原沉澱法的區別在於鐵氧體法不是通過生成Cr(OH)3沉澱去除Cr(Ⅲ),而是通過形成有磁性的鐵氧體達到同時去除鐵和鉻的目的。具體操作為:硫酸亞鐵在一定酸度下還原Cr(Ⅵ)為Cr(Ⅲ);然後調節溶液pH值,使Fe3+、Cr3+以及Fe2+共沉澱;加熱,通入壓縮空氣,使剩餘Fe2+被氧化為三價,當Fe2+與Fe3+質量濃度比達到2︰1時,便形成鐵氧體。反應見式(3)~式(9)。

Cr6++3Fe2+→Cr3++3Fe3+(3)

Cr3++3OH-→Cr(OH)3↓(4)

Fe3++3OH-→Fe(OH)3↓(5)

Fe2++2OH-→Fe(OH)2↓(6)

Fe(OH)3→FeOOH+H2O(7)

FeOOH+Fe(OH)2→FeOOH·Fe(OH)2(8)

FeOOH·Fe(OH)2+FeOOH→FeO·Fe2O3↓+2H2O(9)

由於Cr3+與Fe3+具有相同的離子電荷和相近的離子半徑,在鐵氧體形成的過程中,Cr3+取代Fe3+成為鐵氧體的組成部分,從而達到去除Cr(Ⅵ)

的目的。反應見式(10)和式(11)。

2Cr3++Fe2++8OH-→FeO·Cr2O3↓+4H2O(10)

6Fe3++3Fe2++24OH-→3FeO·Fe2O3↓+12H2O(11)

魏振樞分別從FeSO4·7H2O的投加量、反應的酸鹼度控制和加熱與曝氣幾個方面對鐵氧體法處理含鉻廢水的工藝條件進行了探討。來風習等為了克服鐵氧體法的缺陷,用一種復合方法超聲波-鐵氧體法處理含鉻廢水,結果Cr6+去除率達到99.9%以上,這就從節能和經濟的角度讓傳統鐵氧體法得以優化。

2.3電解法電解法使廢水中的有害物質通過電解過程在陽、陰兩極發生氧化和還原反應,或利用電極氧化和還原的產物與廢水中的有害物質發生化學反應,使有害物質轉化為無害物質或生成不溶於水的物質,從水中除去。電解法除鉻用鐵作陰極和陽極,陽極溶解產生的Fe2+將Cr(Ⅵ)還原為Cr(Ⅲ),陰極附近由於H+不斷還原為H2,溶液逐漸顯鹼性,Fe3+和Cr(Ⅲ)生成Cr(OH)3沉澱,從而除去廢水中的Cr(Ⅵ)。發生的化學反應見式(12)~式(17)。

陽極反應:Fe-2e-→Fe2+(12)

Cr6++3Fe2+→Cr3++3Fe3+(13)

陰極反應:2H2O+2e-→H2+2OH-(14)

沉澱反應:Cr3++3OH-→Cr(OH)3↓(15)

Fe3++3OH-→Fe(OH)3↓(16)

Fe2++2OH-→Fe(OH)2↓(17)

趙麗等分別從廢液濃度、pH值、反應時間和換極周期4個因素考慮,利用正交試驗對電解法處理含鉻廢水進行了研究,認為在工業廢水Cr(Ⅵ)初始質量濃度較高(不小於300mg/L)時,單純依靠普通的鐵板陽極溶解的Fe2+還不能夠充分還原Cr(Ⅵ),需加一定的還原劑,當廢水初始質量濃度不高於600mg/L、pH值為3、反應時間為40min和換極周期為10min時,且根據前期正交試驗(Fe2+與Cr2O7質量濃度比為1∶1)確定加入的FeSO4量的反應條件下,去除率可達94%以上。電解法由於有沉澱和絮體的生成,需要過濾工藝,且陰極附近氫氣的生成會影響它們的沉降,GaoP等為了解決這一問題,設計了電絮凝-電浮選聯合工藝,省去了過濾步驟,利用電解-電浮選產生的氣泡有效地使絮體浮出水面,從而達到去除的目的。

3生物處理技術生物法處理廢水一直是水處理領域研究的熱點,因為它具有資源豐富、效率高、投資低、選擇性強以及不產生二次污染等優點。生物法處理含鉻廢水主要包括氧化還原、離子交換、形成配位化合物和靜電吸引等機理,主要以投加生物吸附劑和生物絮凝劑的方式來完成。

3.1生物吸附法大量研究證實,具有生物活性的生物體及非活性的生物質均具有較強的生物吸附性能。應用死的微生物細胞吸附去除污染物具有一定的優越性,它不會受到廢水中毒性物質的影響,不需要持續不斷地提供養分,且可以再生再利用。近幾年國內外對含鉻廢水的處理焦點多集中在生物吸附法上,通過尋找合適的廢生物質材料吸附鉻等重金屬,這些生物質材料包括木屑、玉米芯、板栗殼、咖啡渣、橄欖渣、椰子皮、苔蘚、核桃殼及其改性產品等。

ElNemrA等從反應體系的pH值水平、污染物含量、吸附劑用量及吸附時間幾個方面研究了雞毛菜(海洋紅藻)及其生物質活性炭對廢水中鉻去除效果的影響,結果表明,在溶液pH值為1時吸附量最大,兩者最大的吸附能力為12和66mg/g。

LiuC等利用咖啡渣作為生物吸附劑還原吸附電鍍廢水中的Cr(Ⅵ),在試驗條件下Cr(Ⅵ)被完全還原和吸附,還原生成的少量Cr(Ⅲ)在後續混凝沉澱單元被完全去除,為咖啡渣的廢物利用提供了思路。DehghaniMH等利用經處理後的舊書、舊報紙吸附去除Cr(Ⅵ),研究表明,隨著Cr(Ⅵ)質量濃度和反應溶液pH值的降低以及吸附劑含量的提高,Cr(Ⅵ)去除率增大;在初始Cr(Ⅵ)質量濃度為5~70mg/L、pH值為3、接觸時間為60min及吸附劑投加量為3.0g/L的條件下,Cr(Ⅵ)最大吸附能力可達到59.88mg/g[41]。VieiraMGA等研究用馬尾藻做填料的填料柱對Cr(Ⅵ)的吸附作用,運用因子設計方法研究了運行條件對吸附能力的影響,如進水Cr(Ⅵ)質量濃度、填料柱進液流量和吸附劑量,結果顯示進水Cr(Ⅵ)質量濃度對填料柱吸附能力的影響最大,填料柱進液流量次之;在最佳運行條件下得到的吸附能力為19.06mg/g。木屑作為建築和傢具等行業的固體廢物,主要由質量分數為45%~50%的纖維素和質量分數為23%~30%的木質素組成,這些成分由於結構上含有羥基、羧基和酚基等基團,使它具有綁定金屬的能力,因此,大量的試驗和實際工程研究應用木屑、改性木屑吸附去除廢水中的鉻,且去除效果明顯。

3.2生物絮凝劑法生物絮凝劑是利用生物技術通過生物發酵、抽提、精製而得到的一種具有生物分解性和安全性的新型、高效、無毒、廉價的水處理劑。與傳統絮凝劑相比,生物絮凝劑具有高效、無毒、易降解且不產生二次污染的特點。

馬軍等通過試驗分析得出了微生物絮凝法處理含鉻工業廢水的最佳工藝條件為:pH值為7.5~8.0,水溫在10℃以上,最高進水Cr(Ⅵ)質量濃度為100mg/L,活性菌體積分數為0.8‰~1.2‰,反應時間為13~16min[48]。楊思敏等用微生物絮凝劑處理Cr(Ⅵ)溶液時,結果顯示黑麴黴分泌微生物絮凝劑對低質量濃度Cr(Ⅵ)還原效果較好,在pH值為1~5時,還原能力均較高,對質量濃度為20mg/L的Cr(Ⅵ)的還原率均大於99%。

4技術展望由於相關工業的快速發展,含鉻廢水排放仍將保持濃度高、排放量大的特徵,為了保護環境,強化含鉻廢水治理,今後治理技術進一步開發與應用應從以下幾個方面加以考慮。

(1)廢物減排和再利用是治理環境污染的一種重要方式,以循環經濟思路為指導,加強以廢治廢的技術開發,充分利用廢棄物資源如煤矸石、粉煤灰及農業廢棄物等,這樣既減少了廢物排放,又治理了其他類型的污染,可以首先從當地可利用資源考慮。

(2)前文中含鉻廢水治理方法各有優缺點,並各有其應用前提條件和最佳條件,應在綜合分析的基礎上建立聯合處理或復合處理技術體系,以使處理方案兼顧社會、經濟和環境綜合效應,達到最佳效果。

(3)文中所述大部分相關研究是在實驗室進行的,條件易於掌控,而實際處理工程則十分復雜,影響因素更為復雜,且有時難於准確控制,應加強中試以使各種方法更符合實際工程需求。

(4)由於化學法將產生大量的污泥,污泥鉻含量很高,應合理進行污泥的處置。

(5)生物處理法的出水含有大量的生物,出水不易進行回收利用,因此,生物處理工藝應考慮後接消毒處理。

『陸』 含鉻酸性廢水電解方程式怎麼寫

含鉻酸性廢水電解方程式怎麼寫:電解水化學方程式:2H2O===2H2↑+O2↑(通電並鎮橋)。表示水通電後絕猛生成氫氣和旅碧氧氣

『柒』 含鉻廢水處理有哪些好的處理方法

含鉻廢水處理常用方法
葯劑還原沉澱法
還原沉澱法是目前應用較為廣泛的含鉻廢水處理方法。基本原理是在酸性條件下向廢水中加入還原劑,將Cr6+還原成Cr3+,然後再加入石灰或氫氧化鈉,使其在鹼性條件下生成氫氧化鉻沉澱,從而去除鉻離子。可作為還原劑的有:SO2、FeSO4 、Na2SO3、NaHSO3、Fe等。還原沉澱法具有一次性投資小、運行費用低、處理效果好、操作管理簡便的優點,因而得到廣泛應用,但在採用此方法時,還原劑的選擇是至關重要的一個問題。
SO2還原法
二氧化硫還原法設備簡單、效果較好,處理後六價鉻含量可達到0.l mg/L 。但二氧化硫是有害氣體,對操作人員有影響,處理池需用通風沒備,另外對設備腐蝕性較大,不能直接回收鉻酸。煙道氣中的二氧化硫處理含鉻(VI)廢水,充分利用資源,以廢治廢,節約了處理成本,但也同樣存在以上的問題。
鐵氧體法
鐵氧體法實際上是硫酸亞鐵法的發展,向含鉻廢水中投加廢鐵粉或硫酸亞鐵時,Cr6+ 可被還原成Cr3+。再加熱、加鹼、通過空氣攪拌,便成為鐵氧體的組成部分,Cr3+轉化成類似尖晶石結構的鐵氧體晶體而沉澱。鐵氧體是指具有鐵離子、氧離子及其他金屬離子所組成的氧化物。
鐵氧體法不僅具有還原法的一般優點,還有其特點,即鉻污泥可製作磁體和半導體,這樣不但使鉻得以回收利用,又減少了二次污染的發生,出水水質好,能達到排放標准。但是,鐵氧體法也有試劑投量大,能耗較高,不能單獨回收有用金屬,處理成本較高的缺點。
鐵屑鐵粉處理法
鐵屑鐵粉由於原料易得,價格便宜,處理含鉻(VI)等重金屬廢水效果較好,但該法要消耗較多的酸(電鍍廠可用車間生產的廢酸),同時污泥量較大,鐵屑處理含鉻廢水有多種作用:(1)還原作用,由於鐵屑中含有雜質,它們與鐵的電位不同,鐵作為陽極溶解,給出電子成為二價鐵離子,電子轉移到陰極被Cr2O72-和H+接受成為Cr3+和H2 ,陰極生成的二價鐵離子叉將Cr2O72-還原;(2)置換作用,廢水中電位比鐵正的金屬離子與金屬鐵屑粉末發生置換作用;(3)凝聚作用,反應生成的氫氧化鐵本身就是一種凝聚劑,有利於最後氫氧化鉻等的沉降;(4)中和作用,由於反應中要消耗太量的酸,隨著反應進行PH值不斷升高,使Fe呈氫氧化鐵析出;(5)吸附作用,經X射線微量分析,在鐵粉表面可見到吸附的金屬,因此認為鐵粉具有吸附作用。
鋇鹽法
利用溶解積原理,向含鉻廢水中投加溶度積比鉻酸鋇大的鋇鹽或鋇的易溶化合物,使鉻酸根與鋇離子形成溶度積很小的鉻酸鋇沉澱而將鉻酸根除去。廢水中殘余Ba2+再通過石膏過濾,形成硫酸鋇沉澱,再利用微孔過濾器分離沉澱物。
鋇鹽法優點是工藝簡單,效果好,處理後的水可用於電鍍車間水洗工序,還可回收鉻酸,復生BaCO3;其缺點是過濾用的微孔塑料管加工比較復雜,容易阻塞,清洗不便,處理工藝流程較為復雜。
電解還原法
電解還原法是鐵陽極在直流電作用下,不斷溶解產生亞鐵離子,在酸性條件下,將Cr6+還原為Cr3+。
用電解法處理含鉻廢水,優點是效果穩定可靠,操作管理簡單,設備佔地面積小,廢水中的重金屬離子也能通過電解有所降低。缺點是耗電量較大,消耗鋼板,運行費用較高,沉渣綜合利用等問題有待進一步解決。
離子交換法
離子交換法是藉助於離子交換劑上的離子和水中的離子進行交換反應除去水中有害離子。目前在水處理中廣泛使用的是離子交換樹脂。對含鉻廢水先調pH值,沉澱一部分Cr3+後再行處理。將廢水通過H型陽離子交換樹脂層,使廢水中的陽離子交換成H+而變成相應的酸,然後再通過OH型陰離子交換成OH-,與留下的H+結合生成水。吸附飽和後的離子交換樹脂,用NaOH進行再生。
離子交換法的優點是處理效果好,廢水可回用,並可回收鉻酸。尤其適用於處理污染物濃度低、水量小、出水要求高的廢水。缺點是工藝較為復雜,且使用的樹脂不同,工藝也不同;一次投資較大,佔地面積大,運行費用高,材料成本高,因此對於水量很大的工業廢水,該法在經濟上不適用。

『捌』 電鍍含鉻廢水處理具體的工藝流程是怎樣的

電鍍含鉻廢水首先經過格柵去除較大顆粒的懸浮物後自流至調節池,均衡水量水質,然後由泵內提升至電解槽電容解,在電解過程中陽極鐵板溶解成亞鐵離子,在酸性條件下亞鐵離子將六價鉻離子還原成三價鉻離子,同時由於陰極板上析出氫氣,使廢水
pH
值逐步上升,最後呈中性。此時
Cr3+、Fe3+都以氫氧化物沉澱析出,電解後的出水首先經過初沉池,然後連續通過(廢水自上而下)兩級沉澱過濾池。一級過濾池內有填料:木炭、焦炭、爐渣;二級過濾池內有填料:無煙煤、石英砂。污水中沉澱物由過濾池填料過濾、吸附,出水流入排水檢查井。而後通過泵進入循環水池作為冷卻用水。過濾用的木炭、焦炭、無煙煤、爐渣定期收集在鍋爐房摻燒。

『玖』 電解法電解含鉻廢水的陽極電極反應式是什麼

電解法處理酸性含鉻廢水(主要含有Cr2O72-)時,以鐵板作陰、陽極,處理過程中存在反應Cr2O72—+6Fe2+ +14H+2Cr3++6Fe3++7H2O,最後Cr3+以Cr(OH)3形式除去,

『拾』 六價鉻廢水的凈化處理有哪些方法

六價鉻廢水的凈化處理方法

1.硫酸亞鐵法

廢水在反應池中用硫酸調至酸性(可省略),投加FeSO4溶液,使六價鉻還原為三價鉻,然後投加石灰乳,調節PH值至8-9,進入沉澱池沉澱分離,上清液達到排放標准後可排出回用,處理反應如下:

6FeSO4+H2Cr2O7+6H2SO4

3Fe2(SO4)3+Cr2(SO4)3+7H2O

Cr2(SO4)3+Fe2(SO4)3+6Ca(OH)2

2Cr(OH)3 +2Fe(SO4)3 +6CaSO4

硫酸亞鐵的投葯量應按六價鉻離子與七水合硫酸亞鐵的重量比計算確定。
其重量比為:
(1)當廢水中六價鉻離子含量小於25mg/L時,為1:40-1:50。
(2)當廢水中六價鉻離子含量為25mg/L-50mg/L時,為1:35-1:40。
(3)當廢水中六價鉻離子含量為50mg/L-100Mg/L時,為1:35。
(4)當廢水中六價鉻離子含量大於100mg/L時,為1:30。
石灰的實際投葯比為:
Ca(OH)2:Cr6+=8-15:1(重量比)

為使廢水與葯劑充分混合,一般設有壓縮空氣攪拌裝置,壓縮空氣量可採用0.1-0.2m3/min.m3(廢水),壓力可採用80kPa-120kPa。

硫酸亞鐵-石灰法處理含鉻廢水效果較好,葯劑供應普遍,但沉渣較多。

2.亞硫酸氫鈉法

亞硫酸氫鈉法處理含鉻廢水,可以在單獨設置的廢水處理池中進行,也可以採用設在鉻化槽後的槽內進行,處理反應如下:

Cr2O7-2+3HSO3-+5H+ →2Cr3++3SO4-2+4H2O
廢水應先進行酸化,調整PH值至2.5-3。
亞硫酸氫鈉的投葯量一般可按六價鉻離子與亞硫酸氫鈉的重量比為1:3.5-1:5投加。亞硫酸氫鈉與廢水混合反應均勻後,加調整PH至6.7-7.0生成氫氧化鉻沉澱。
W=dCoFTM/CR
在槽內處理含鉻廢水時,鉻化槽後的清洗槽的有效容積除應符合工件對槽尺寸的要求外,可按下式計算:
式中 W—化學清洗槽有效容積(L);
d—單位面積槽液帶出量(L/dm2);
Co—回收槽溶液中六價鉻離子含量(g/L);
F—單位時間清洗鍍件面積(dm2/h);
T—使用周期,當採用亞硫酸氫鈉為還原劑時,不宜超過72小時;
M—還原1g六價鉻離子所需的亞硫酸鈉為3.0g-3.5g;
GR—化學清洗液中的還原劑含量。

3.鐵粉或鐵屑法

投加鐵粉或鐵屑於酸性含鉻廢水中,鐵粉或鐵屑溶解生成二價鐵離子,利用其還原作用,使六價鉻還原為三價鉻,用鹼中和,使之生成氫氧化鉻和氫氧化鐵沉澱。鐵粉或鐵屑需在酸性介質中發生氧化還原反應,電鍍廢水處理前須先酸化。

應用化學還原法處理含鉻廢水,不論廢水量多少,含鉻濃度高低,都能進行比較完全的處理,操作管理也比較簡單方便,應用較為廣泛,鹼化時一般用石灰,但渣多,用氫氧化鈉或碳酸鈉,污泥較少,價格銷貴。生成的氫氧化鉻具有膠凝性質,過濾分離較困難,一般用污泥干化法或壓濾機、離心機脫水。

化學還原法中的酸化、氧化還原、鹼化、出渣等工序手工操作勞動強度大、葯劑投入量不易控制。全自動化學法處理含鉻廢水設備採用微機控制,自動充水、自動投葯、自動排水等控制系統,能自動監測處理過程中廢水的pH和ORP(氧化還原),它不僅減輕操作勞動強度、節省化工原料消耗,且處理效果可靠,具有明顯的環境、經濟效益。

4.防鉻機處理法
含鉻廢水在直流電解作用下,鐵電極溶解產生二價鐵離子,在酸性條件下Fe2+將Cr6+還原成Cr3+,用鹼中和,Cr3+在鹼性條件下生氫氧化物沉澱,沉澱經過濾後去除。

閱讀全文

與鉻廢水電解相關的資料

熱點內容
活性樹脂補牙 瀏覽:486
安吉爾凈水器推薦哪個 瀏覽:611
B樹脂的作用 瀏覽:692
華為凈化器怎麼打開後蓋 瀏覽:583
磁化水機和純水機有什麼區別 瀏覽:171
沁園凈水桶mra1怎麼樣 瀏覽:761
為何選擇反滲透凈水器 瀏覽:481
小米凈化器為什麼燈不亮 瀏覽:741
小米凈化器的價格多少 瀏覽:962
廢水站投訴管理 瀏覽:130
飲水機水反復燒開有什麼壞處 瀏覽:494
超濾膜氣密性試驗壓力 瀏覽:799
用半透膜把分子或離子從膠體 瀏覽:927
全國出名的污水處理廠家有哪些 瀏覽:864
污水處理站運行紀錄單 瀏覽:409
提標改造污水 瀏覽:857
工業污水膜處理原理 瀏覽:635
青島污水排水處理方案設計 瀏覽:766
什麼叫飲水機抑菌 瀏覽:438
水果皮除水垢 瀏覽:932