㈠ Alloy D 205材料什麼特性蒸氨廢水有什麼特性
一. 磁性材料的基本特性
1. 磁性材料的磁化曲線
磁性材料是由鐵磁性物質或亞鐵磁性物質組成的,在外加磁場H 作用下,必有相應的磁化強度M 或磁感應強度B,它們隨磁場強度H 的變化曲線稱為磁化曲線(M~H或B~H曲線)。磁化曲線一般來說是非線性的,具有2個特點:磁飽和現象及磁滯現象。即當磁場強度H足夠大時,磁化強度M達到一個確定的飽和值Ms,繼續增大H,Ms保持不變;以及當材料的M值達到飽和後,外磁場H降低為零時,M並不恢復為零,而是沿MsMr曲線變化。材料的工作狀態相當於M~H曲線或B~H曲線上的某一點,該點常稱為工作點。
2. 軟磁材料的常用磁性能參數
飽和磁感應強度Bs:其大小取決於材料的成分,它所對應的物理狀態是材料內部的磁化矢量整齊排列。
剩餘磁感應強度Br:是磁滯回線上的特徵參數,H回到0時的B值。
矩形比:Br∕Bs
矯頑力Hc:是表示材料磁化難易程度的量,取決於材料的成分及缺陷(雜質、應力等)。
磁導率μ:是磁滯回線上任何點所對應的B與H的比值,與器件工作狀態密切相關。
初始磁導率μi、最大磁導率μm、微分磁導率μd、振幅磁導率μa、有效磁導率μe、脈沖磁導率μp。
居里溫度Tc:鐵磁物質的磁化強度隨溫度升高而下降,達到某一溫度時,自發磁化消失,轉變為順磁性,該臨界溫度為居里溫度。它確定了磁性器件工作的上限溫度。
損耗P:磁滯損耗Ph及渦流損耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,
磁滯損耗Ph的方法是降低矯頑力Hc;降低渦流損耗Pe 的方法是減薄磁性材料的厚度t 及提高材料的電阻率ρ。在自由靜止空氣中磁芯的損耗與磁芯的溫升關系為:
總功率耗散(mW)/表面積(cm2)
3. 軟磁材料的磁性參數與器件的電氣參數之間的轉換
在設計軟磁器件時,首先要根據電路的要求確定器件的電壓~電流特性。器件的電壓~電流特性與磁芯的幾何形狀及磁化狀態密切相關。設計者必須熟悉材料的磁化過程並拿握材料的磁性參數與器件電氣參數的轉換關系。設計軟磁器件通常包括三個步驟:正確選用磁性材料;合理確定磁芯的幾何形狀及尺寸;根據磁性參數要求,模擬磁芯的工作狀態得到相應的電氣參數。
二、軟磁材料的發展及種類
1. 軟磁材料的發展
軟磁材料在工業中的應用始於19世紀末。隨著電力工及電訊技術的興起,開始使用低碳鋼製造電機和變壓器,在電話線路中的電感線圈的磁芯中使用了細小的鐵粉、氧化鐵、細鐵絲等。到20世紀初,研製出了硅鋼片代替低碳鋼,提高了變壓器的效率,降低了損耗。直至現在硅鋼片在電力工業用軟磁材料中仍居首位。到20年代,無線電技術的興起,促進了高導磁材料的發展,出現了坡莫合金及坡莫合金磁粉芯等。從40年代到60年代,是科學技術飛速發展的時期,雷達、電視廣播、集成電路的發明等,對軟磁材料的要求也更高,生產出了軟磁合金薄帶及軟磁鐵氧體材料。進入70年代,隨著電訊、自動控制、計算機等行業的發展,研製出了磁頭用軟磁合金,除了傳統的晶態軟磁合金外,又興起了另一類材料—非晶態軟磁合金。
2. 常用軟磁磁芯的種類
鐵、鈷、鎳三種鐵磁性元素是構成磁性材料的基本組元。
按(主要成分、磁性特點、結構特點)製品形態分類:
(1) 粉芯類: 磁粉芯,包括:鐵粉芯、鐵硅鋁粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、鐵氧體磁芯
(2) 帶繞鐵芯:硅鋼片、坡莫合金、非晶及納米晶合金
三 常用軟磁磁芯的特點及應用
(一) 粉芯類
1. 磁粉芯
磁粉芯是由鐵磁性粉粒與絕緣介質混合壓制而成的一種軟磁材料。由於鐵磁性顆粒很小(高頻下使用的為0.5~5 微米),又被非磁性電絕緣膜物質隔開,因此,一方面可以隔絕渦流,材料適用於較高頻率;另一方面由於顆粒之間的間隙效應,導致材料具有低導磁率及恆導磁特性;又由於顆粒尺寸小,基本上不發生集膚現象,磁導率隨頻率的變化也就較為穩定。主要用於高頻電感。磁粉芯的磁電性能主要取決於粉粒材料的導磁率、粉粒的大小和形狀、它們的填充系數、絕緣介質的含量、成型壓力及熱處理工藝等。
常用的磁粉芯有鐵粉芯、坡莫合金粉芯及鐵硅鋁粉芯三種。
磁芯的有效磁導率μe及電感的計算公式為: μe = DL/4N2S × 109
其中:D 為磁芯平均直徑(cm),L為電感量(享),N 為繞線匝數,S為磁芯有效截面積(cm2)。
(1) 鐵粉芯
常用鐵粉芯是由碳基鐵磁粉及樹脂碳基鐵磁粉構成。在粉芯中價格最低。飽和磁感應強度值在1.4T左右;磁導率范圍從22~100;初始磁導率μi隨頻率的變化穩定性好;直流電流疊加性能好;但高頻下損耗高。
鐵粉芯初始磁導率隨直流磁場強度的變化
鐵粉芯初始磁導率隨頻率的變化
(2). 坡莫合金粉芯
坡莫合金粉芯主要有鉬坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。
MPP 是由81%Ni、2%Mo及Fe粉構成。主要特點是:飽和磁感應強度值在7500Gs左右;磁導率范圍大,從14~550;在粉末磁芯中具有最低的損耗;溫度穩定性極佳,廣泛用於太空設備、露天設備等;磁致伸縮系數接近零,在不同的頻率下工作時無雜訊產生。主要應用於300kHz以下的高品質因素Q濾波器、感應負載線圈、諧振電路、在對溫度穩定性要求高的LC電路上常用、輸出電感、功率因素補償電路等, 在AC電路中常用, 粉芯中價格最貴。
高磁通粉芯HF是由50%Ni、50%Fe粉構成。主要特點是:飽和磁感應強度值在15000Gs 左右;磁導率范圍從14~160;在粉末磁芯中具有最高的磁感應強度,最高的直流偏壓能力;磁芯體積小。主要應用於線路濾波器、交流電感、輸出電感、功率因素校正電路等, 在DC 電路中常用,高DC 偏壓、高直流電和低交流電上用得多。價格低於MPP。
(3) 鐵硅鋁粉芯(Kool Mμ Cores)
鐵硅鋁粉芯由9%Al、5%Si, 85%Fe粉構成。主要是替代鐵粉芯,損耗比鐵粉芯低80%,可在8kHz以上頻率下使用;飽和磁感在1.05T 左右;導磁率從26~125;磁致伸縮系數接近0,在不同的頻率下工作時無雜訊產生;比MPP有更高的DC偏壓能力;具有最佳的性能價格比。主要應用於交流電感、輸出電感、線路濾波器、功率因素校正電路等。有時也替代有氣隙鐵氧體作變壓器鐵芯使用。
2. 軟磁鐵氧體(Ferrites)
軟磁鐵氧體是以Fe2O3為主成分的亞鐵磁性氧化物,採用粉末冶金方法生產。有Mn-Zn、Cu-Zn、Ni-Zn等幾類,其中Mn-Zn鐵氧體的產量和用量最大,Mn-Zn鐵氧體的電阻率低,為1~10 歐姆-米,一般在100kHZ 以下的頻率使用。Cu-Zn、Ni-Zn鐵氧體的電阻率為102~104 歐姆-米,在100kHz~10 兆赫的無線電頻段的損耗小,多用在無線電用天線線圈、無線電中頻變壓器。磁芯形狀種類豐富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圓形等。在應用上很方便。由於軟磁鐵氧體不使用鎳等稀缺材料也能得到高磁導率,粉末冶金方法又適宜於大批量生產,因此成本低,又因為是燒結物硬度大、對應力不敏感,在應用上很方便。而且磁導率隨頻率的變化特性穩定,在150kHz以下基本保持不變。隨著軟磁鐵氧體的出現,磁粉芯的生產大大減少了,很多原來使用磁粉芯的地方均被軟磁鐵氧體所代替。
國內外鐵氧體的生產廠家很多,在此僅以美國的Magnetics公司生產的Mn-Zn鐵氧體為例介紹其應用狀況。分為三類基本材料:電信用基本材料、寬頻及EMI材料、功率型材料。
電信用鐵氧體的磁導率從750~2300, 具有低損耗因子、高品質因素Q、穩定的磁導率隨溫度/時間關系, 是磁導率在工作中下降最慢的一種,約每10年下降3%~4%。廣泛應用於高Q濾波器、調諧濾波器、負載線圈、阻抗匹配變壓器、接近感測器。寬頻鐵氧體也就是常說的高導磁率鐵氧體,磁導率分別有5000、10000、15000。其特性為具有低損耗因子、高磁導率、高阻抗/頻率特性。廣泛應用於共模濾波器、飽和電感、電流互感器、漏電保護器、絕緣變壓器、信號及脈沖變壓器,在寬頻變壓器和EMI上多用。功率鐵氧體具有高的飽和磁感應強度,為4000~5000Gs。另外具有低損耗/頻率關系和低損耗/溫度關系。也就是說,隨頻率增大、損耗上升不大;隨溫度提高、損耗變化不大。廣泛應用於功率扼流圈、並列式濾波器、開關電源變壓器、開關電源電感、功率因素校正電路。
(二) 帶繞鐵芯
1. 硅鋼片鐵芯
硅鋼片是一種合金,在純鐵中加入少量的硅(一般在4.5%以下)形成的鐵硅系合金稱為硅鋼。該類鐵芯具有最高的飽和磁感應強度值為20000Gs;由於它們具有較好的磁電性能,又易於大批生產,價格便宜,機械應力影響小等優點,在電力電子行業中獲得極為廣泛的應用,如電力變壓器、配電變壓器、電流互感器等鐵芯。是軟磁材料中產量和使用量最大的材料。也是電源變壓器用磁性材料中用量最大的材料。特別是在低頻、大功率下最為適用。常用的有冷軋硅鋼薄板DG3、冷軋無取向電工鋼帶DW、冷軋取向電工鋼帶DQ,適用於各類電子系統、家用電器中的中、小功率低頻變壓器和扼流圈、電抗器、電感器鐵芯,這類合金韌性好,可以沖片、切割等加工,鐵芯有疊片式及卷繞式。但高頻下損耗急劇增加,一般使用頻率不超過400Hz。從應用角度看,對硅鋼的選擇要考慮兩方面的因素:磁性和成本。對小型電機、電抗器和繼電器,可選純鐵或低硅鋼片;對於大型電機,可選高硅熱軋硅鋼片、單取向或無取向冷軋硅鋼片;對變壓器常選用單取向冷軋硅鋼片。在工頻下使用時,常用帶材的厚度為0.2~0.35毫米;在400Hz下使用時,常選0.1毫米厚度為宜。厚度越薄,價格越高。
2. 坡莫合金
坡莫合金常指鐵鎳系合金,鎳含量在30~90%范圍內。是應用非常廣泛的軟磁合金。通過適當的工藝,可以有效地控制磁性能,比如超過105的初始磁導率、超過106的最大磁導率、低到2‰奧斯特的矯頑力、接近1或接近0的矩形系數,具有面心立方晶體結構的坡莫合金具有很好的塑性,可以加工成1μm的超薄帶及各種使用形態。常用的合金有1J50、1J79、1J85等。1J50 的飽和磁感應強度比硅鋼稍低一些,但磁導率比硅鋼高幾十倍,鐵損也比硅鋼低2~3倍。做成較高頻率(400~8000Hz)的變壓器,空載電流小,適合製作100W以下小型較高頻率變壓器。1J79 具有好的綜合性能,適用於高頻低電壓變壓器,漏電保護開關鐵芯、共模電感鐵芯及電流互感器鐵芯。1J85 的初始磁導率可達十萬105以上,適合於作弱信號的低頻或高頻輸入輸出變壓器、共模電感及高精度電流互感器等。
3. 非晶及納米晶軟磁合金(Amorphous and Nanocrystalline alloys)
硅鋼和坡莫合金軟磁材料都是晶態材料,原子在三維空間做規則排列,形成周期性的點陣結構,存在著晶粒、晶界、位錯、間隙原子、磁晶各向異性等缺陷,對軟磁性能不利。從磁性物理學上來說,原子不規則排列、不存在周期性和晶粒晶界的非晶態結構對獲得優異軟磁性能是十分理想的。非晶態金屬與合金是70年代問世的一個新型材料領域。它的制備技術完全不同於傳統的方法,而是採用了冷卻速度大約為每秒一百萬度的超急冷凝固技術,從鋼液到薄帶成品一次成型,比一般冷軋金屬薄帶製造工藝減少了許多中間工序,這種新工藝被人們稱之為對傳統冶金工藝的一項革命。由於超急冷凝固,合金凝固時原子來不及有序排列結晶,得到的固態合金是長程無序結構,沒有晶態合金的晶粒、晶界存在,稱之為非晶合金,被稱為是冶金材料學的一項革命。這種非晶合金具有許多獨特的性能,如優異的磁性、耐蝕性、耐磨性、高的強度、硬度和韌性,高的電阻率和機電耦合性能等。由於它的性能優異、工藝簡單,從80年代開始成為國內外材料科學界的研究開發重點。目前美、日、德國已具有完善的生產規模,並且大量的非晶合金產品逐漸取代硅鋼和坡莫合金及鐵氧體湧向市場。
我國自從70年代開始了非晶態合金的研究及開發工作,經過「六五」、「七五」、「八五」期間的重大科技攻關項目的完成,共取得科研成果134項,國家發明獎2項,獲專利16項,已有近百個合金品種。鋼鐵研究總院現具有4條非晶合金帶材生產線、一條非晶合金元器件鐵芯生產線。生產各種定型的鐵基、鐵鎳基、鈷基和納米晶帶材及鐵芯,適用於逆變電源、開關電源、電源變壓器、漏電保護器、電感器的鐵芯元件,年產值近2000萬元。「九五」正在建立千噸級鐵基非晶生產線,進入國際先進水平行列。
目前,非晶軟磁合金所達到的最好單項性能水平為:
初始磁導率 μo = 14 × 104
鈷基非晶最大磁導率 μm= 220 × 104
鈷基非晶矯頑力 Hc = 0.001 Oe
鈷基非晶矩形比 Br/Bs = 0.995
鈷基非晶飽和磁化強度 4πMs = 18300Gs
鐵基非晶電阻率 ρ= 270μΩ/cm
常用的非晶合金的種類有:鐵基、鐵鎳基、鈷基非晶合金以及鐵基納米晶合金。其國家牌號及性能特點見表及圖所示,為便於對比,也列出晶態合金硅鋼片、坡莫合金1J79 及鐵氧體的相應性能。這幾類材料各有不同的特點,在不同的方面得到應用。
牌號基本成分和特徵:
1K101 Fe-Si-B 系快淬軟磁鐵基合金
1K102 Fe-Si-B-C 系快淬軟磁鐵基合金
1K103 Fe-Si-B-Ni 系快淬軟磁鐵基合金
1K104 Fe-Si-B-Ni Mo 系快淬軟磁鐵基合金
1K105 Fe-Si-B-Cr(及其他元素)系快淬軟磁鐵基合金
1K106 高頻低損耗Fe-Si-B 系快淬軟磁鐵基合金
1K107 高頻低損耗Fe-Nb-Cu-Si-B 系快淬軟磁鐵基納米晶合金
1K201 高脈沖磁導率快淬軟磁鈷基合金
1K202 高剩磁比快淬軟磁鈷基合金
1K203 高磁感低損耗快淬軟磁鈷基合金
1K204 高頻低損耗快淬軟磁鈷基合金
1K205 高起始磁導率快淬軟磁鈷基合金
1K206 淬態高磁導率軟磁鈷基合金
1K501 Fe-Ni-P-B 系快淬軟磁鐵鎳基合金
1K502 Fe-Ni-V-Si-B 系快淬軟磁鐵鎳基合金
400Hz: 硅鋼鐵芯 非晶鐵芯
功率(W) 45 45
鐵芯損耗(W) 2.4 1.3
激磁功率(VA) 6.1 1.3
總重量(g) 295 276
(1)鐵基非晶合金(Fe-based amorphous alloys)
鐵基非晶合金是由80%Fe及20%Si,B類金屬元素所構成,它具有高飽和磁感應強度(1.54T),鐵基非晶合金與硅鋼的損耗比較
磁導率、激磁電流和鐵損等各方面都優於硅鋼片的特點,特別是鐵損低(為取向硅鋼片的1/3-1/5),代替硅鋼做配電變壓器可節能60-70%。鐵基非晶合金的帶材厚度為0.03mm左右,廣泛應用於配電變壓器、大功率開關電源、脈沖變壓器、磁放大器、中頻變壓器及逆變器鐵芯, 適合於10kHz 以下頻率使
2)鐵鎳基、鈷基非晶合金(Fe-Ni based-amorphous alloy)
鐵鎳基非晶合金是由40%Ni、40%Fe及20%類金屬元素所構成,它具有中等飽和磁感應強度〔0.8T〕、較高的初始磁導率和很高的最大磁導率以及高的機械強度和優良的韌性。在中、低頻率下具有低的鐵損。空氣中熱處理不發生氧化,經磁場退火後可得到很好的矩形回線。價格比1J79便宜30-50%。鐵鎳基非晶合金的應用范圍與中鎳坡莫合金相對應, 但鐵損和高的機械強度遠比晶態合金優越;代替1J79,廣泛用於漏電開關、精密電流互感器鐵芯、磁屏蔽等。鐵鎳基非晶合金是國內開發最早,也是目前國內非晶合金中應用量最大的非晶品種,年產量近200噸左右.空氣中熱處理不發生氧化鐵鎳基非晶合金( 1K503) 獲得國家發明專利和美國專利權。
(4) 鐵基納米晶合金(Nanocrystalline alloy)
鐵基納米晶合金是由鐵元素為主,加入少量的Nb、Cu、Si、B元素所構成的合金經快速凝固工藝所形成的一種非晶態材料,這種非晶態材料經熱處理後可獲得直徑為10-20 nm的微晶,彌散分布在非晶態的基體上,被稱為微晶、納米晶材料或納米晶材料。納米晶材料具有優異的綜合磁性能:高飽和磁感(1.2T)、高初始磁導率(8×104)、低Hc(0.32A/M), 高磁感下的高頻損耗低(P0.5T/20kHz=30W/kg),電阻率為80μΩ/cm,比坡莫合金(50-60μΩ/cm)高, 經縱向或橫向磁場處理,可得到高Br(0.9)或低Br 值(1000Gs)。是目前市場上綜合性能最好的材料;適用頻率范圍:50Hz-100kHz,最佳頻率范圍:20kHz-50kHz。廣泛應用於大功率開關電源、逆變電源、磁放大器、高頻變壓器、高頻變換器、高頻扼流圈鐵芯、電流互感器鐵芯、漏電保護開關、共模電感鐵芯。
(三)常用軟磁磁芯的特點比較
1. 磁粉芯、鐵氧體的特點比較:
MPP 磁芯:使用安匝數< 200,50Hz~1kHz, μe :125 ~ 500 ; 1 ~ 10kHz; μe :125 ~ 200; > 100kHz:μe: 10 ~ 125
HF 磁芯:使用安匝數< 500,能使用在較大的電源上,在較大的磁場下不易被飽和,能保證電感的最小直流漂移,μe :20 ~ 125
鐵粉芯:使用安匝數>800, 能在高的磁化場下不被飽和, 能保證電感值最好的交直流疊加穩定性。在200kHz以內頻率特性穩定;但高頻損耗大,適合於10kHz以下使用。
FeSiAlF磁芯:代替鐵粉芯使用,使用頻率可大於8kHz。DC偏壓能力介於MPP與HF之間。
鐵氧體:飽和磁密低(5000Gs),DC偏壓能力最小
3. 硅鋼、坡莫合金、非晶合金的特點比較:
硅鋼和FeSiAl 材料具有高的飽和磁感應值Bs,但其有效磁導率值低,特別是在高頻范圍內;
坡莫合金具有高初始磁導率、低矯頑力和損耗,磁性能穩定,但Bs 不夠高,頻率大於20kHz時,損耗和有效磁導率不理想,價格較貴,加工和熱處理復雜;
鈷基非晶合金具有高的磁導率、低Hc、在寬的頻率范圍內有低損耗,接近於零的飽和磁致伸縮系數,對應力不敏感,但是Bs 值低,價格昂貴;
鐵基非晶合金具有高Bs值、價格不高,但有效磁導率值較低。
納米晶合金的磁導率、Hc值接近晶態高坡莫合金及鈷基非晶,且飽和磁感Bs與中鎳坡莫合金相當,熱處理工藝簡單,是一種理想的廉價高性能軟磁材料;雖然納米晶合金的Bs值低於鐵基非晶和硅鋼,但其在高磁感下的高頻損耗遠低於它們,並具有更好的耐蝕性和磁穩定性。納米晶合金與鐵氧體相比,在低於50kHz時,在具有更低損耗的基礎上具有高2至3倍的工作磁感,磁芯體積可小一倍以上。
四、幾種常用磁性器件中磁芯的選用及設計
開關電源中使用的磁性器件較多,其中常用的軟磁器件有:作為開關電源核心器件的主變壓器(高頻功率變壓器)、共模扼流圈、高頻磁放大器、濾波阻流圈、尖峰信號抑制器等。不同的器件對材料的性能要求各不相同,如表所示為各種不同器件對磁性材料的性能要求。
(一)、高頻功率變壓器
變壓器鐵芯的大小取決於輸出功率和溫升等。變壓器的設計公式如下:
P=KfNBSI×10-6T=hcPc+hWPW
其中,P為電功率;K為與波形有關的系數;f為頻率;N為匝數;S為鐵芯面積;B為工作磁感;I為電流;T為溫升;Pc為鐵損;PW為銅損;hc和hW為由實驗確定的系數。
由以上公式可以看出:高的工作磁感B可以得到大的輸出功率或減少體積重量。但B值的增加受到材料的Bs值的限制。而頻率f可以提高幾個數量級,從而有可能使體積重量顯著減小。而低的鐵芯損耗可以降低溫升,溫升反過來又影響使用頻率和工作磁感的選取。一般來說,開關電源對材料的主要要求是:盡量低的高頻損耗、足夠高的飽和磁感、高的磁導率、足夠高的居里溫度和好的溫度穩定性,有些用途要求較高的矩形比,對應力等不敏感、穩定性好,價格低。單端式變壓器因為鐵芯工作在磁滯回線的第一象限,對材料磁性的要求有別於前述主變壓器。它實際上是一隻單端脈沖變壓器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大; 同時要求高的脈沖磁導率。特別是對於單端反激式開關主變壓器,或稱儲能變壓器,要考慮儲能要求。
線圈儲能的多少取決於兩個因素: 一個是材料的工作磁感Bm值或電感量L, 另一個是工作磁場Hm或工作電流I,儲能W=1/2LI2。這就要求材料有足夠高的Bs值和合適的磁導率,常為寬恆導磁材料。對於工作在±Bm之間的變壓器來說,要求其磁滯回線的面積,特別是在高頻下的回線面積要小,同時為降低空載損耗、減小勵磁電流,應有高磁導率,最合適的為封閉式環形鐵芯,其磁滯回線見圖所示,這種鐵芯用於雙端或全橋式工作狀態的器件中。
通常,金屬晶態材料要降低高頻下的鐵損是不容易的,而對於非晶合金來說,它們由於不存在磁晶各向異性、金屬夾雜物和晶界等,此外它不存在長程有序的原子排列,其電阻率比一般的晶態合金高2-3倍,加之快冷方法一次形成厚度15-30微米的非晶薄帶,特別適用於高頻功率輸出變壓器。已廣泛應用於逆變弧焊電源、單端脈沖變壓器、高頻加熱電源、不停電電源、功率變壓器、通訊電源、開關電源變壓器和高能加速器等鐵芯,在頻率20-50kHz、功率50kW以下,是變壓器最佳磁芯材料。
近年來發展起來的新型逆變弧焊電源單端脈沖變壓器,具有高頻大功率的特點,因此要求變壓器鐵芯材料具有低的高頻損耗、高的飽和磁感Bs和低的Br以獲得大的工作磁感B,使焊機體積和重量減小。常用的用於高頻弧焊電源的鐵芯材料為鐵氧體,雖然由於其電阻率高而具有低的高頻損耗, 但其溫度穩定性較差,工作磁感較低,變壓器體積和重量較大,已不能滿足新型弧焊機的要求。採用納米晶環形鐵芯後,由於其具有高的Bs 值(Bs>1.2T),高的ΔB 值(ΔB>0.7T),很高的脈沖磁導率和低的損耗,頻率可達100kHz. 可使鐵芯的體積和重量大為減小。近年來逆變焊機已應用納米晶鐵芯達幾萬只,用戶反映用納米晶變壓器鐵芯再配以非晶高頻電感製成的焊機,不僅體積小、重量輕、便於攜帶,而且電弧穩定、飛濺小、動態特性好、效率高及可靠性高。這種環形納米晶鐵芯還可用於中高頻加熱電源、脈沖變壓器、不停電電源、功率變壓器、開關電源變壓器和高能加速器等裝置中。可根據開關電源的頻率選用磁芯材料。
環形納米晶鐵芯具有很多優點,但它也有繞線困難的不利因素。為了在匝數較多時繞線方便,可選用高頻大功率C 型非晶納米晶鐵芯。採用低應力粘結劑固化及新的切割工藝製成的非晶納米晶合金C 型鐵芯的性能明顯優於硅鋼C 型鐵芯。目前這種鐵芯已批量用於逆變焊機和切割機等。逆變焊機主變壓器鐵芯和電抗器鐵芯系列有: 120A、160A、200A、250A、315A、400A、500A、630A 系列。
(二)、脈沖變壓器鐵芯
脈沖變壓器是用來傳輸脈沖的變壓器。當一系列脈沖持續時間為td (μs)、脈沖幅值電壓
為Um (V)的單極性脈沖電壓加到匝數為N 的脈沖變壓器繞組上時,在每一個脈沖結束時,鐵芯中的磁感應強度增量ΔB (T)為: ΔB = Um td / NSc × 10-2 其中Sc為鐵芯的有效截面積(cm2)。即磁感應強度增量ΔB 與脈沖電壓的面積(伏秒乘積)成正比。對輸出單向脈沖時,ΔB=Bm-Br , 如果在脈沖變壓器鐵芯上加去磁繞組時,ΔB = Bm + Br 。在脈沖狀態下,由動態脈沖磁滯回線的ΔB 與相應的ΔHp 之比為脈沖磁導率μp。理想的脈沖波形是指矩形脈沖波,由於電路的參數影響,實際的脈沖波形與矩形脈沖有所差異,經常會發生畸變。比如脈沖前沿的上升時間tr 與脈沖變壓器的漏電感Ls、繞組和結構零件導致的分布電容Cs 成比例,脈沖頂降λ 與勵磁電感Lm成反比,另外渦流損耗因素也會影響輸出的脈沖波形。
脈沖變壓器的漏電感 Ls = 4βπN21 lm / h
脈沖變壓器的初級勵磁電感 Lm = 4μπp Sc N2 / l ×10-9
渦流損耗 Pe = Um d2td lF / 12 N21 Scρ
β為與繞組結構型式有關的系數,lm為繞組線圈的平均匝長,h 為繞組線圈的寬度,N1為初級繞組匝數,l為鐵芯的平均磁路長度,Sc為鐵芯的截面積,μp為鐵芯的脈沖磁導率,ρ 為鐵芯材料的電阻率,d為鐵芯材料的厚度,F為脈沖重復頻率。
從以上公式可以看出,在給定的匝數和鐵芯截面積時,脈沖寬度愈大,要求鐵芯材料的磁感應強度的變化量ΔB 也越大;在脈沖寬度給定時,提高鐵芯材料的磁感應強度變化量ΔB,可以大大減少脈沖變壓器鐵芯的截面積和磁化繞組的匝數,即可縮小脈沖變壓器的體積。要減小脈沖波形前沿的失真,應盡量減小脈沖變壓器的漏電感和分布電容,為此需使脈沖變壓器的繞組匝數盡可能的少,這就要求使用具有較高脈沖磁導率的材料。為減小頂降,要盡可能的提高初級勵磁電感量Lm,這就要求鐵芯材料具有較高的脈沖磁導率μp。為減小渦流損耗,應選用電阻率高、厚度盡量薄的軟磁帶材作為鐵芯材料,尤其是對重復頻率高、脈沖寬度大的脈沖變壓器更是如此。
脈沖變壓器對鐵芯材料的要求為:
① 高飽和磁感應強度Bs 值;
② 高的脈沖磁導率,能用較小的鐵芯尺寸獲得足夠大的勵磁電感;
③ 大功率單極性脈沖變壓器要求鐵芯具有大的磁感應強度增量ΔB,使用低剩磁感應材料;當採用附加直流偏磁時,要求鐵芯具有高矩形比,小矯頑力Hc。
④ 小功率脈沖變壓器要求鐵芯的起始脈沖磁導率高;
⑤ 損耗小。
鐵氧體磁芯的電阻率高、頻率范圍寬、成本低,在小功率脈沖變壓器中應用較多,但其ΔB
和μp 均較低,溫度穩定性差,一般用於對頂降和後沿要求不高的場合。
(三). 電感器磁芯
鐵芯電感器是一種基本元件,在電路中電感器對於電流的變化具有阻抗的作用, 在電子設備中應用極為廣泛。對電感器的主要要求有以下幾點:
① 在一定溫度下長期工作時,電感器的電感量隨時間的變化率應保持最小;
② 在給定工作溫度變化范圍內,電感量的溫度系數應保持在容許限度之內;
③ 電感器的電損耗和磁損耗低;
④ 非線性歧變小;
⑤ 價格低,體積小。
電感元件與電感量L、品質因素Q、鐵芯重量W、繞線的直流電阻R 有著密切的關系。
電感L 抗拒交流電流的能力用感抗值ZL來表示: ZL = 2πfL , 頻率f 越高,感抗值ZL 越大?/ca> 這也是我參考別人的
㈡ 含氟廢水用什麼材質不銹鋼
2304(UNS S32304)不銹鋼是由23%鉻、4%鎳、不含鉬的雙相不銹鋼。2304雙相不銹鋼的抗腐蝕特性與316L相似,屈服強度是304L/316L奧氏體不銹鋼的兩倍。這個特性使設計者在設計產品,尤其是設計壓力容器時,可以減輕產品的重量。與304 和316 奧氏體不銹鋼相比,由於2304雙相不銹鋼的抗應力腐蝕能力更強。
2304(UNS S32304)雙相不銹鋼的化學成分:
平均值 (重量 %)
C:0.020
Cr:23.00
Ni:4.00
Mo:0.20
N:0.10
PREN (Cr%) + 3.3 (Mo%) = 16 (N%) ≥ 24
2304(UNS S32304)雙相不銹鋼的應用領域:
⒈304 和316 所用的大部分領域;
⒉紙漿和造紙業(晶元、碎片儲存罐、黑色或白色液體罐、分類器);
⒊苛性鹼溶液、有機酸(抗SCC);
⒋食品工業;
⒌壓力容器(減輕重量);
⒍采礦業(磨蝕/腐蝕)。
㈢ 急急急急急急急急!!!!!!!!!!!!!!!!!!!!
生產工藝流程具體介紹如下:
固定:將單晶硅棒固定在加工台上。
切片:將單晶硅棒切成具有精確幾何尺寸的薄矽片。此過程中產生的硅粉採用水淋,產生廢水和硅渣。
退火:雙工位熱氧化爐經氮氣吹掃後,用紅外加熱至300~500℃,矽片表面和氧氣發生反應,使矽片表面形成二氧化硅保護層。
倒角:將退火的矽片進行修整成圓弧形,防止矽片邊緣破裂及晶格缺陷產生,增加磊晶層及光阻層的平坦度。此過程中產生的硅粉採用水淋,產生廢水和硅渣。
分檔檢測:為保證矽片的規格和質量,對其進行檢測。此處會產生廢品。
研磨:用磨片劑除去切片和輪磨所造的鋸痕及表面損傷層,有效改善單晶矽片的曲度、平坦度與平行度,達到一個拋光過程可以處理的規格。此過程產生廢磨片劑。
清洗:通過有機溶劑的溶解作用,結合超聲波清洗技術去除矽片表面的有機雜質。此工序產生有機廢氣和廢有機溶劑。
RCA清洗:通過多道清洗去除矽片表面的顆粒物質和金屬離子。具體工藝流程如下:
SPM清洗:用H2SO4溶液和H2O2溶液按比例配成SPM溶液,SPM溶液具有很強的氧化能力,可將金屬氧化後溶於清洗液,並將有機污染物氧化成CO2和H2O。用SPM清洗矽片可去除矽片表面的有機污物和部分金屬。此工序會產生硫酸霧和廢硫酸。
DHF清洗:用一定濃度的氫氟酸去除矽片表面的自然氧化膜,而附著在自然氧化膜上的金屬也被溶解到清洗液中,同時DHF抑制了氧化膜的形成。此過程產生氟化氫和廢氫氟酸。
APM清洗: APM溶液由一定比例的NH4OH溶液、H2O2溶液組成,矽片表面由於H2O2氧化作用生成氧化膜(約6nm呈親水性),該氧化膜又被NH4OH腐蝕,腐蝕後立即又發生氧化,氧化和腐蝕反復進行,因此附著在矽片表面的顆粒和金屬也隨腐蝕層而落入清洗液內。此處產生氨氣和廢氨水。
HPM清洗:由HCl溶液和H2O2溶液按一定比例組成的HPM,用於去除硅表面的鈉、鐵、鎂和鋅等金屬污染物。此工序產生氯化氫和廢鹽酸。
DHF清洗:去除上一道工序在硅表面產生的氧化膜。
磨片檢測:檢測經過研磨、RCA清洗後的矽片的質量,不符合要求的則從新進行研磨和RCA清洗。
腐蝕A/B:經切片及研磨等機械加工後,晶片表面受加工應力而形成的損傷層,通常採用化學腐蝕去除。腐蝕A是酸性腐蝕,用混酸溶液去除損傷層,產生氟化氫、NOX和廢混酸;腐蝕B是鹼性腐蝕,用氫氧化鈉溶液去除損傷層,產生廢鹼液。本項目一部分矽片採用腐蝕A,一部分採用腐蝕B。
分檔監測:對矽片進行損傷檢測,存在損傷的矽片重新進行腐蝕。
粗拋光:使用一次研磨劑去除損傷層,一般去除量在10~20um。此處產生粗拋廢液。
精拋光:使用精磨劑改善矽片表面的微粗糙程度,一般去除量1 um以下,從而的到高平坦度矽片。產生精拋廢液。
檢測:檢查矽片是否符合要求,如不符合則從新進行拋光或RCA清洗。
檢測:查看矽片表面是否清潔,表面如不清潔則從新刷洗,直至清潔。
包裝:將單晶硅拋光片進行包裝。
㈣ 實際的電纜生產過程中都有哪些廢氣、廢水、固體廢物出來啊都是在什麼環節啊多謝了
電線電纜的主要工藝:
電線電纜是通過:拉制、絞制、包覆三種工藝來製作完成的,型號規格越復雜,重復性越高。
1.拉制
在金屬壓力加工中.在外力作用下使金屬強行通過模具(壓輪),金屬橫截面積被壓縮,並獲得所要求的橫截面積形狀和尺寸的技術加工方法稱為金屬拉制。
拉制工藝分:單絲拉制和絞制拉制。
2.絞制
為了提高電線電纜的柔軟度、整體度,讓2根以上的單線,按著規定的方向交織在一起稱為絞制。
絞制工藝分:導體絞制、成纜、編織、鋼絲裝鎧和纏繞。
3.包覆
根據對電線電纜不同的性能要求,採用專用的設備在導體的外麵包覆不同的材料。包覆工藝分:
A.擠包:橡膠、塑料、鉛、鋁等材料。
B.縱包:橡皮、皺紋鋁帶材料。
C.繞包:帶狀的紙帶、雲母帶、無鹼玻璃纖維帶、無紡布、塑料帶等,線狀的棉紗、絲等纖維材料。
D. 浸塗:絕緣漆、瀝青等
塑料電線電纜製造的基本工藝流程:
1.銅、鋁單絲拉制
電線電纜常用的銅、鋁桿材,在常溫下,利用拉絲機通過一道或數道拉伸模具的模孔,使其截面減小、長度增加、強度提高。拉絲是各電線電纜公司的首道工序,拉絲的主要工藝參數是配模技術。
2.單絲退火
銅、鋁單絲在加熱到一定的溫度下,以再結晶的方式來提高單絲的韌性、降低單絲的強度,以符合電線電纜對導電線芯的要求。退火工序關鍵是杜絕銅絲的氧化.
3.導體的絞制
為了提高電線電纜的柔軟度,以便於敷設安裝,導電線芯採取多根單絲絞合而成。從導電線芯的絞合形式上,可分為規則絞合和非規則絞合。非規則絞合又分為束絞、同心復絞、特殊絞合等。
為了減少導線的佔用面積、縮小電纜的幾何尺寸,在絞合導體的同時採用緊壓形式,使普通圓形變異為半圓、扇形、瓦形和緊壓的圓形。此種導體主要應用在電力電纜上。
4.絕緣擠出
塑料電線電纜主要採用擠包實心型絕緣層,塑料絕緣擠出的主要技術要求:
4.1.偏心度:擠出的絕緣厚度的偏差值是體現擠出工藝水平的重要標志,大多數的產品結構尺寸及其偏差值在標准中均有明確的規定。
4.2.光滑度:擠出的絕緣層表面要求光滑,不得出現表面粗糙、燒焦、雜質的不良質量問題
4.3.緻密度:擠出絕緣層的橫斷面要緻密結實、不準有肉眼可見的針孔,杜絕有氣泡的存在。
5.成纜
對於多芯的電纜為了保證成型度、減小電纜的外形,一般都需要將其絞合為圓形。絞合的機理與導體絞制相仿,由於絞制節徑較大,大多採用無退扭方式。成纜的技術要求:一是杜絕異型絕緣線芯翻身而導致電纜的扭彎;二是防止絕緣層被劃傷。
大部分電纜在成纜的同時伴隨另外兩個工序的完成:一個是填充,保證成纜後電纜的圓整和穩定;一個是綁扎,保證纜芯不鬆散。
6.內護層
為了保護絕緣線芯不被鎧裝所疙傷,需要對絕緣層進行適當的保護,內護層分:擠包內護層(隔離套)和繞包內護層(墊層)。繞包墊層代替綁扎帶與成纜工序同步進行。
7.裝鎧
敷設在地下電纜,工作中可能承受一定的正壓力作用,可選擇內鋼帶鎧裝結構。電纜敷設在既有正壓力作用又有拉力作用的場合(如水中、垂直豎井或落差較大的土壤中),應選用具有內鋼絲鎧裝的結構型。
8.外護套
外護套是保護電線電纜的絕緣層防止環境因素侵蝕的結構部分。外護套的主要作用是提高電線電纜的機械強度、防化學腐蝕、防潮、防水浸人、阻止電纜燃燒等能力。根據對電纜的不同要求利用擠塑機直接擠包塑料護套。
㈤ 想請教您一些漆包線行業的問題,謝謝!!
蒸汽發生器的作用,在漆包線或拉絲退火爐爐管當中,大部分選用蒸汽進行保護,防止銅線在退火過程中被氧化,當然,也有使用N2作為保護氣體的。
拉絲油兌水是為了集約使用資源,拉絲油的作用於原理你可以像你的拉絲油供方所要資料說明。大部分拉線油都是一種乳化劑,在遇到水的時候產生乳化液,乳化你要網路一下,很多資料。油水在有乳化劑的情況下,一般都會很好的混合。乳化劑的分子中油兩性成分,一極是呈電陽性,一極是呈電陰性,一極溶於水,一極溶於油,實現油水混合。
退火液與拉絲液可以使用硫酸分解,氫氧化鈉中和的辦法處理,當然也可以找一個廢液處理公司幫你處理。
㈥ 怎樣分辨別污水處埋中好氧池中的甲烷汽泡和氮氣泡
退火爐中有氧氣怎樣通過甲烷和氮氣去除
(1)二氧化碳通過澄清石灰水會生成碳酸鈣沉澱,而本題混合氣通過澄清石灰水沒有現象,所以混合氣中沒有二氧化碳,故答案為:二氧化碳,(2)無水硫酸銅遇水變藍色,說明點燃後生成了水,根據質量守恆定律可知,原混合氣中含有氫元素,故答案為:甲烷,(3)根據(2)的推斷,可知混合氣中含有甲烷,假如也有一氧化碳,經過點燃後,甲烷和一氧化碳都轉化成了水和二氧化碳,而氫氧化鈉可以吸收二氧化碳,濃硫酸可以吸收水,最後只剩氮氣了,故答案為:氮氣,(4)根據表中的數據可知,生成了水1.8克,二氧化碳2.2克, H:2 18 ×1.8=0.2克 C:12 44 ×2.2=0.6克碳氫原子個數比=0.6 12 :0.2 1 =1:4 所以該氣體為甲烷.可以確定經過點燃的是甲烷,故答案為:甲烷、氮氣.
㈦ 工業排熱廢水管用什麼金屬材料
將鋼加熱到一定溫度並保溫一段時間,然後使它慢慢冷卻,稱為退火。鋼的退火是將鋼加熱到發生相變或部分相變的溫度,經過保溫後緩慢冷卻的熱處理方法。退火的目的,是為了消除組織缺陷,改善組織使成分均勻化以及細化晶粒,提高鋼的力學性能,減少殘余應力;同時可降低硬度,提高塑性和韌性,改善切削加工性能。所以退火既為了消除和改善前道工序遺留的組織缺陷和內應力,又為後續工序作好准備,故退火是屬於半成品熱處理,又稱預先熱處理。正火:將鋼加熱到臨界溫度以上,使鋼全部轉變為均勻的奧氏體,然後在空氣中自然冷卻的熱處理方法。它能消除過共析鋼的網狀滲碳體,對於亞共析鋼正火可細化晶格,提高綜合力學性能,對要求不高的零件用正火代替退火工藝是比較經濟的。淬火:將鋼加熱到臨界溫度以上,保溫一段時間,然後很快放入淬火劑中,使其溫度驟然降低,以大於臨界冷卻速度的速度急速冷卻,而獲得以馬氏體為主的不平衡組織的熱處理方法。淬火能增加鋼的強度和硬度,但要減少其塑性。淬火中常用的淬火劑有:水、油、鹼水和鹽類溶液等。將已經淬火的鋼重新加熱到一定溫度,再用一定方法冷卻稱為回火。其目的是消除淬火產生的內應力,降低硬度和脆性,以取得預期的力學性能。回火分高溫回火、中溫回火和低溫回火三類。回火多與淬火配合使用。淬火後高溫回火的熱處理方法稱為調質處理。高溫回火是指在500-650℃之間進行回火。調質可以使鋼的性能,材質得到很大程度的調整,其強度、塑性和韌性都較好,具有良好的綜合機械性能。時效處理:為了消除精密量具或模具、零件在長期使用中尺寸、形狀發生變化,常在低溫回火後(低溫回火溫度150-250℃)精加工前,把工件重新加熱到100-150℃,保持5-20小時,這種為穩定精密製件質量的處理,稱為時效。表面處理:表面淬火:將鋼件的表面通過高頻快速加熱到臨界溫度以上,但熱量還未來得及傳到心部之前迅速冷卻,這樣就可以把表面層被淬在馬氏體組織,而心部沒有發生相變,這就實現了表面淬硬而心部不變的目的。適用於中碳鋼。化學熱處理:是指將化學元素的原子,藉助高溫時原子擴散的能力,把它滲入到工件的表面層去,來改變工件表面層的化學成分和結構,從而達到使鋼的表面層具有特定要求的組織和性能的一種熱處理工藝。按照滲入元素的種類不同,化學熱處理可分為滲碳、滲氮、氰化和滲金屬法等四種。滲碳:滲碳是指使碳原子滲入到鋼表面層的過程。也是使低碳鋼的工件具有高碳鋼的表面層,再經過淬火和低溫回火,使工件的表面層具有高硬度和耐磨性,而工件的中心部分仍然保持著低碳鋼的韌性和塑性。滲氮:又稱氮化,是指向鋼的表面層滲入氮原子的過程。其目的是提高表面層的硬度與耐磨性以及提高疲勞強度、抗腐蝕性等。氰化:又稱碳氮共滲,是指在鋼中同時滲入碳原子與氮原子的過程。它使鋼表面具有滲碳與滲氮的特性。滲金屬:是指以金屬原子滲入鋼的表面層的過程。它是使鋼的表面層合金化,以使工件表面具有某些合金鋼、特殊鋼的特性,如耐熱、耐磨、抗氧化、耐腐蝕等。
㈧ 污水處理制劑注冊商標屬於哪一類
污水處理制劑屬於商標分類第1類0104群組;
經路標網統計,注冊污水處理制劑的商標達1件。
注冊時怎樣選擇其他小項類:
1.選擇注冊(工業用化學品,尤其是用於生產溶劑、稀釋劑的、工業清潔和擦洗制劑、表面保護用防腐劑以及潤滑劑和冷卻潤滑劑的基體材料、原材料、輔助材料和活性物質,群組號:0101)類別的商標有1件,注冊佔比率達100%
2.選擇注冊(工業用化學品,尤其是用於生產溶劑、稀釋劑的、工業清潔和擦洗制劑、表面保護用防腐劑以及潤滑劑和冷卻潤滑劑的基體材料、原材料、輔助材料和活性物質,群組號:0102)類別的商標有1件,注冊佔比率達100%
3.選擇注冊(工業用化學品,尤其是用於生產溶劑、稀釋劑的、工業清潔和擦洗制劑、表面保護用防腐劑以及潤滑劑和冷卻潤滑劑的基體材料、原材料、輔助材料和活性物質,群組號:0103)類別的商標有1件,注冊佔比率達100%
4.選擇注冊(凈水用化學品,群組號:0104)類別的商標有1件,注冊佔比率達100%
5.選擇注冊(工業用化學品,尤其是用於生產溶劑、稀釋劑的、工業清潔和擦洗制劑、表面保護用防腐劑以及潤滑劑和冷卻潤滑劑的基體材料、原材料、輔助材料和活性物質,群組號:0104)類別的商標有1件,注冊佔比率達100%
6.選擇注冊(油凈化劑,尤其是凝結劑,隔離劑,中和劑,發泡劑,凝聚劑,群組號:0104)類別的商標有1件,注冊佔比率達100%
7.選擇注冊(用於油類的化學添加劑,群組號:0104)類別的商標有1件,注冊佔比率達100%
8.選擇注冊(表面保護用化學防腐劑,尤其是用於鋼鐵部件和車輛表面,群組號:0104)類別的商標有1件,注冊佔比率達100%
9.選擇注冊(金屬腐蝕劑,群組號:0104)類別的商標有1件,注冊佔比率達100%
10.選擇注冊(金屬退火劑,群組號:0111)類別的商標有1件,注冊佔比率達100%
㈨ 退火可以提高剛的耐磨性嗎
不銹鋼303和304那個更耐磨
303不銹鋼機械性能退火去應力後,抗拉515MPa,屈服205MPa,延伸率40%。不銹鋼303的標准硬度HRB 90-100, HRC 20-25,註:HRB100 = HRC22.9。303是分別含有硫和硒的易切削不銹鋼,用於主要要求易切削和表面光潔度高的場合。303不銹鋼提高切削性能和抗高溫粘結性能。最適用於自動車床,螺栓和螺母。304不銹鋼是應用最為廣泛的一種鉻-鎳不銹鋼,作為一種用途廣泛的鋼,具有良好的耐蝕性、耐熱性,低溫強度和機械特性;沖壓、彎曲等熱加工性好,無熱處理硬化現象(使用溫度-196℃~800℃)。在大氣中耐腐蝕, 如果是工業性氣氛或重污染地區,則需要及時清潔以避免腐蝕。適合用於食品的加工、儲存和運輸。 具有良好的加工性能和可焊性。 板式換熱器、波紋管、家庭用品(1、2類餐具、櫥櫃、室內管線、熱水器、鍋爐、浴缸),汽車配件(風擋雨刷、消聲器、模製品),醫療器具,建材,化學,食品工業,農業,船舶部件、等。
那種不銹鋼最耐磨
用不銹鋼材料製作研磨棒?為什麼要使用不銹鋼材料來製作研磨棒而不使用鑄鐵材料來製作研磨棒呢?鑄鐵材料的最大特點就是耐磨,所以一般的研磨平台,研磨棒,機床的導軌,都是使用的鑄鐵材料製作的。鑄鐵材料本身有空隙,可以容研磨膏在裡面,提高研磨的效率。鑄鐵本身也很耐磨,不容易走形。即使一定要使用不銹鋼材料來製作研磨棒的話,也要使用本身比較軟的不銹鋼材料來製作研磨棒。比如304奧氏體不銹鋼,或者405鐵素體不銹鋼,本身不能通過淬火來增加硬度,所以硬度是不高的,這樣研磨膏、粉才可以鑲嵌在材料表面,提高研磨的效率。
黃銅與不銹鋼哪個更耐磨?
要看你用到什麼地方了,做為軸套,肯定是黃銅了,但要潤滑油潤滑,這是因為黃銅質比較軟,能夠吸收軸對套一定的沖擊力,但做為平面摩擦 ,不銹鋼肯定比黃銅要硬。
不銹鋼和碳鋼的耐磨性哪個好
不能簡單比較。和具體的材料的合金成分及工藝處理後的金相組織狀態有關。如優質不銹鋼OCr18NI9固溶後的正常供貨狀態肯定比不了淬火態的高碳鋼。金屬化合物或碳化物對耐磨性影響也很大。如OCr18NI9就缺少Cr的碳化物,對耐磨性是很大的損失。極端例子是激冷白口鑄鐵做成的犁頭,因為大量的碳化鐵的存在,就具有其他材料無以比擬的耐磨性能。
不銹鋼怎麼樣耐磨
改善不銹鋼耐磨性的表面處理技術及其研究現狀, 分析了這些表面處理技術的優勢和局限性,
指出綜合應用塗鍍技術和新興的表面改性技術將成為提高不銹鋼耐磨性的發展方向。
1、引言
不銹鋼閥門網。不銹鋼由於具有良好的耐蝕性能,
在石油、化工、宇航、醫葯、造紙、原子能、海洋工程和裝飾工程領域得到了廣泛的應用。但是通常不銹鋼的硬度較低(通常情況下為200~250Hv), 耐磨性較差,
表面易出現發花現象, 這不僅會影響裝飾性產品的美觀, 而且表面出現微劃痕時會形成腐蝕微電池, 從而降低產品的耐腐蝕性能,
導致產品過早報廢。以不銹鋼為基體的傳動軸、嚙合件或動配合件經常會因為不銹鋼質軟不耐磨、表面強度低、摩擦系數大等因素發生咬合或粘滯現象。為了提高不銹鋼的耐磨性,
許多學者在不銹鋼表面進行了各種處理和強化研究, 如利用化學鍍在不銹鋼表面沉積耐磨鍍層,
能提高產品表面硬度,並保證產品的耐腐蝕性能。本文就塗鍍技術和表面改性處理在提高不銹鋼表面耐磨性時的工藝局限性和優勢作了簡要綜述,
並展望了改善不銹鋼耐磨性的發展方向。
2、不銹鋼表面塗鍍技術
2.1、化學鍍
化學鍍是 1947年由A.Brenner和G.Riddell提出的沉積非粉末狀鎳的鍍膜方法,
該方法是一種沉積金屬的、可控制的、無外加電源的氧化還原反應過程。相對於電鍍, 化學鍍有如下優點:能在形狀復雜的零件表面沉積均勻一致的鍍層;自潤滑性好;
鍍層較厚; 空隙少; 設備簡單, 操作容易; 鍍層具有特殊的機械、物理和化學性能等。其缺點是: 鍍液壽命短, 廢水多, 鍍速慢,成本高。
不銹鋼閥門網。化學鍍提高不銹鋼表面耐磨性的途徑主要是鍍鎳及其合金鍍層。鍍鎳前需要進行特殊的預處理, 以除去不銹鋼表面的鈍化膜,
提高不銹鋼與鍍層的結合力。不銹鋼化學鍍鎳包括單層化學鍍鎳、雙層化學鍍鎳、有氧化皮不銹鋼單層化學鍍鎳等。
高岩等在316L不銹鋼基體上獲得了結合力良好的化學鍍 Ni2PPNi2W2P 合金鍍層, 在保證產品原有光澤度的前提下,
鍍層硬度較原不銹鋼基體有了較大幅度的提高, 從而為不銹鋼產品的耐磨抗劃傷性能的改善提供了有效的解決途徑。Yi2Ying Tsai , Fan2Bean Wu
等採用化學鍍的方式也在420不銹鋼基體上成功沉積了Ni2PPNi2W2P合金鍍層, 並進行了適當的熱處理, 發現Ni2W2P 較Ni2P
合金鍍層具有更高的顯微硬度和化學穩定性; 劃痕實驗則表明, 合金鍍層的抗磨損性能較不銹鋼基體均有明顯改善。
2.2、物理氣相沉積
物理氣相沉積技術是利用蒸發或濺射等物理形式把材料從靶源移走,
然後通過真空或半真空空間使這些攜帶能量的粒子沉積到基片或零件的表面以形成膜層。物理氣相沉積有真空蒸鍍(VE)、濺射鍍膜(SIP)、離子鍍
(IP))等。按加熱蒸發源分類, 真空蒸鍍包括電阻加熱蒸鍍、電子束加熱蒸鍍、感應加熱蒸鍍等;
濺射鍍膜包括磁控濺射沉積、離子束濺射鍍等。其中真空蒸鍍是比較早的鍍膜技術, 膜的結合力較低, 目前已不多用。而陰極濺射和離子鍍所得膜結合力較高,
應用范圍正在擴大。物理氣相沉積鍍膜的實用領域有: 裝飾膜、裝飾耐磨膜、耐磨超硬膜、減摩潤滑膜等。
韓修訓等採用磁過濾沉積裝置( FCAP) 在1Cr18Ni9Ti不銹鋼表面沉積得到的TiN塗層具有高的硬度和膜基結合力, 在載荷1N 和3N
下都表現出較低的摩擦系數和良好的耐磨性能。
2.3、化學氣相沉積
化學氣相沉積(CVD) 技術是指在較高溫度下, 混合氣體與基體的表面相互作用, 使混合氣體中的某些成分發生分解,
並在基體上形成一種金屬或化合物的固態膜或薄膜鍍層。其特點如下:
(1) 鍍層緻密均勻, 可以較好控制鍍層的密度、純度、結構和晶粒度;
(2) 因沉積溫度高,鍍層與基體結合強度高;
(3) 可以在大氣壓或者低於大氣壓下進行沉積;
(4) 通常沉積層具有柱狀晶結構, 不耐彎曲。
謝飛, 何家文等對1Cr18Ni9Ti奧氏體不銹鋼進行離子滲氮-等離子增強化學氣相沉積(PECVD) TiN 復合處理,
研究了復合處理層的組織與性能。結果表明: 復合處理層具有優良的膜基結合強度, 較之不銹鋼基體, 耐磨性顯著提高; N. Yamauchi 等在AISI304
奧氏體不銹鋼表面沉積了菱形碳薄膜, 該過程採用了無線電頻率(13156 MHz) 等離子增強化學氣相沉積工藝,
腐蝕環境下的對比實驗表明薄膜樣品和基體的摩擦系數分別約為0.1和0.5, 同時前者的磨損體積明顯低於後者。
2.4、熱噴塗
熱噴塗是利用某些熱源將塗層材料加熱到熔融或半熔融狀態, 同時藉助於焰流和高速氣體將其霧化, 並推動這些霧化後的粒子噴射到基體表面,
沉積成具有某種功能的塗層。熱噴塗能為工件表面提供耐磨、耐蝕、耐高溫的塗層。塗層材料與基體之間通常存在三種結合方式:
機械結合、物理結合和冶金結合。隨著低壓等離子噴塗, 高能、高速等離子噴塗, 高速火焰噴塗技術的出現, 塗層的性能得到進一步提高: 孔隙率可以降至0.5%~1%;
塗層與基體的結合強度可以達到70~140MPa。
潘繼崗等利用超音速火焰噴塗(HVOF)技術和等離子噴塗(ASP)技術, 分別在0Cr13Ni5Mo不銹鋼基體上制備了鐵基非晶合金塗層和鐵基非晶納米晶塗層,
研究了兩種塗層在室溫下的摩擦磨損特性, 結果表明兩種噴塗工藝制備的鐵基塗層均具有較高的顯微硬度和較小的孔隙率, 組織緻密, 呈典型的層狀結構,
提高了塗層的耐磨性能。
2.5、電鍍
為了彌補不銹鋼質軟不耐磨、摩擦系數大的弱點, 常用電鍍的方法提高不銹鋼傳動軸等配合件的表面硬度和自潤滑性能。不銹鋼是一種表面極易鈍化的金屬,
在電鍍前必須除去表面鈍化膜, 不銹鋼經去油、浸漬、活化、預鍍鎳和電鍍等工序, 可得到鉻、鋅、銅、錫、貴金屬等鍍層。
飈等在不銹鋼水輪機母材上, 用周期反相電鍍稀土鉻, 鍍層厚度約0.3mm , 鍍層由金屬基相和稀土鹽顆粒第二相組成,
硬度可達到900~1000Hv,鍍層的抗磨蝕性為母材的25~28倍,產品工作壽命比原不銹鋼件高2~6倍。
3、不銹鋼表面改性處理
3.1、離子注入
離子注入是利用經過加速和分離的高能量離子束作用於材料表面, 使之產生一定厚度的注入層, 從而改變材料的表面特性。具體方法是: 把工件(金屬、合金、陶瓷等)
放在離子注入機的真空靶室中, 在幾十至幾百千伏的電壓下,
把所需元素的離子加速、聚焦、注入到工件表面。用離子注入的方法可獲得過飽和固溶體、亞穩相、非晶態、和平衡態合金等不同組織的結構, 大大改善工件的使用性能。
其優點是:
(1) 可注入任何元素, 不受固溶度和擴散系數的影響;
(2) 元素注入量可以精確控制, 可實現大面積和局部的表面改性;
(3) 真空下進行, 工件表面不會氧化;
(4) 可得到兩層及兩層以上性能不同的復合鍍層, 對工件尺寸影響小;
(5) 藉助磁分析器,可以獲得純的離子束流;
(6) 離子注入的直進性, 橫向擴展小, 適合微細加工要求;
(7) 高速離子可通過薄膜注入到金屬基體, 在薄膜和基體界面處形成合金層,
增強薄膜與基體的結合力,實現輻射增強合金化與離子束輔助增強粘合。
㈩ 冷軋硅鋼鹼性廢水難以絮凝是什麼原因
有影響的。
(1)冷軋硅鋼片的磁飽和點高,磁通密度在1.9T(19000Gs)時開始飽內和容;熱軋硅鋼片的飽和點約為1.6T(16000Gs)。
(2)在磁通密度及頻率相同的情況下,冷軋硅鋼片比熱軋硅鋼片的單位損耗低。
(3)冷軋硅鋼片有無取向和取向兩種。取向冷軋硅鋼片有明顯的方向性,即沿著軋制的方向的磁性能好,飽和磁通密度高,單位損耗和單位勵磁容量小。現在變壓器上均採用冷軋取向硅鋼片。熱軋硅鋼片都無取向。
(4)採用剪切或沖壓對硅鋼片進行加工時,對冷軋硅鋼片性能影響特別明顯,對熱軋硅鋼片影響較小,因此小容量變壓器採用冷軋硅鋼片時,可採取退火措施,退火後一般可使空載損耗下降8%左右。