導航:首頁 > 污水知識 > 如何評價廢水污染程度

如何評價廢水污染程度

發布時間:2021-03-22 13:42:31

A. 談談水污染的感受

由於人們對工業高度發達的負面影響預料不夠,預防不利,導致了全球性的三大危機:資源短缺、環境污染、生態破壞.人類不斷的向環境排放污染物質。但由於大氣、水、土壤等的擴散、稀釋、氧化還原、生物降解等的作用。污染物質的濃度和毒性會自然降低,這種現象叫做環境自凈。如果排放的物質超過了環境的自凈能力,環境質量就會發生不良變化,危害人類健康和生存,這就發生了環境污染。

環境污染有各種分類:
按環境要素分:大氣污染、水體污染、土壤污染。
按人類活動分:工業環境污染、城市環境污染、農業環境污染。
按造成環境污染的性質、來源分:化學污染、生物污染、物理污染(雜訊污染、放射性、電磁波)固體廢物污染、能源污染。

環境污染會給生態系統造成直接的破壞和影響,如沙漠化、森林破壞、也會給生態系統和人類社會造成間接的危害,有時這種間接的環境效應的危害比當時造成的直接危害更大,也更難消除。例如,溫室效應、酸雨、和臭氧層破壞就是由大氣污染衍生出的環境效應。這 種由環境污染衍生的環境效應具有滯後性,往往在污染發生的當時不易被察覺或預料到,然而一旦發生就表示環境污染已經發展到相當嚴重的地步。當然,環境污染的最直接、最容易被人所感受的後果是使人類環境的質量下降,影響人類的生活質量、身體健康和生產活動。例如城市的空氣污染造成空氣污濁,人們的發病率上升等等;水污染使水環境質量惡化,飲用水源的質量普遍下降,威脅人的身體健康,引起胎兒早產或畸形等等。嚴重的污染事件不僅帶來健康問題,也造成社會問題。隨著污染的加劇和人們環境意識的提高,由於污染引起 的人群糾紛和沖突逐年增加。
目前在全球范圍內都不同程度地出現了環境污染問題,具有全球影響的方面有大氣環境污染、海洋污染、城市環境問題等。隨著經濟和貿易的全球化,環境污染也日益呈現國際化趨勢,近年來出現的危險廢物越境轉移問題就是這方面的突出表現。

迄今為止,人類還未在地球以外的其他星球上發現水。水是生命之源,是人類生活上不可缺乏之物質、人體組織中水份占人體重量的百分之六十到七十,其他動物或植物其體內的水份也佔百分之五以上,可見水是維持生命不可缺少的物質。

而近年來,水污染卻非常嚴重,人們大量用水,或排放廢水等,都會造成嚴重的水污染。
一般所稱的水污染,主要是指由於人為因素直接或間接的將污染物質介入於水體後,變更其物理、化學或生物特性的改變,以致影響水的正常用途或危害國民健康及生活環境。
水污染來源包括天然的污染源及人為的污染源,人為的污染源有生活用水和工業廢水的排放、農葯、肥料等物質,經由地表水或地下水的滲透與流動而進入水體,使得水體環境受到污染、森林之採伐、耕作、土木工程等人為因素所造成水體中浮游物與溶解物的增加等。

不僅河流、湖泊受到污染,海洋也同樣污染嚴重。污染的江河會繼續污染海洋,而且海上溢油污染事件的頻繁出現,也是污染海洋的重要原因。海洋遭受污染後所產生的一種災害性海洋現象就是赤潮,由於海水過於營養化,某些浮游生物在水中爆發性繁殖,這種生長量特別巨大的浮游生物是粉紅色或紅褐色的,因此染紅了海水,導致了赤潮。赤潮不僅給海洋環境、海洋漁業和海水養殖業造成嚴重危害,而且對人類健康甚至生命都有影響。一方面,赤潮引起海洋異變,局部中斷海洋食物鏈,使海域一度成為死海;另一方面,有些赤潮生物分泌毒素,這些毒素被食物鏈中的某些生物攝入,如果人類再食用這些生物,則會導致中毒甚至死亡。

而水污染又是造成水嚴重缺乏的主要原因之一。據統計,全世界有100多個國家存在不同程度的缺水問題,其中有28個國家被列為缺水國或嚴重缺水國。目前正在世界許多地區出現的水資源供應危機。
水資源的缺乏和污染給人們的生活帶來一系列問題。據調查,利比亞和印度目前的水資源開采量分別是其合理利用量的4倍和兩倍,這將直接影響到它們今後的農業生產。泰國首都曼谷由於長期超量開采地下水,致使城市地面出現下沉的危險……隨著城市化進程的加快,到2030年,發展中國家的城市人口將比現在增加3倍。如果不採取有效措施,面對城市人口激增與十分有限的水資源,人們將束手無策。目前,全世界有14億人生活在缺乏潔凈飲用水的地區,全球每年有700萬人因缺水或飲用不衛生的水而致病死亡。並且居民所患的疾病中,大約80%直接或間接與飲用水不合格有關。

我國水環境的前景也令人擔憂。
我國是一個水資源短缺、水災害頻繁的國家,水資源總量居世界第六位,人均佔有量只有2500立方米,約為世界人均水量的1/4,在世界排第110位,已被聯合國列為13個貧水國家之一。
多年來,我國水資源質量不斷下降,水環境持續惡化,由於污染所導致的缺水和事故不斷發生,不僅使工廠停產、農業減產甚至絕收,而且造成了不良的社會影響和較大的經濟損失,嚴重地威脅了社會的可持續發展,威脅了人類的生存。我國七大水系的污染程度以污染程度大小進行排序,其結果為:遼河、海河、淮河、黃河、松花江、長江,其中,遼河、海河、淮河污染最重。綜合考慮我國地表水資源質量現狀,符合《地面水環境質量標准》的Ⅰ、Ⅱ類標准只佔32.2%(河段統計),符合Ⅲ類標準的佔28.9%,屬於Ⅳ、Ⅴ類標準的佔38.9%,如果將Ⅲ類標准也作為污染統計,則我國河流長度有67.8%被污染,約占監測河流長度的2/3,可見我國地表水資源污染非常嚴重

我國地表水資源污染嚴重,地下水資源污染也不容樂觀?
我國北方五省區和海河流域地下水資源,無論是農村(包括牧區)還是城市,淺層水或深層水均遭到不同程度的污染,局部地區(主要是城市周圍、排污河兩側及污水灌區)和部分城市的地下水污染比較嚴重,污染呈上升趨勢(金傳良等,1996)。
具體而言,根據北方五省區(新疆、甘肅、青海、寧夏、內蒙古)1995眼地下水監測井點的水質資料,按照《地下水質量標准》(GB/T14848-93)進行評價,結果表明,在69個城市中,Ⅰ類水質的城市不存在,Ⅱ類水質的城市只有10個,只佔14.5%,Ⅲ類水質城市有22個,佔31.9%,Ⅳ、Ⅵ類水質的城市有37個,占評價城市總數的53.6%,即1/2以上城市的城市地下水污染嚴重。至於海河流域,地下水污染更是令人觸目驚心,2 015眼地下水監測井點的水質監測資料表明,符合Ⅰ-Ⅲ類水質標准僅有443眼,占評價總數的22.0%,符合Ⅳ和Ⅵ類水質標准有880和629眼,分別占評價總井數的43.7%和34.3%,即有78%的地下水遭到污染;如果用飲用水衛生標准進行評價,在評價的總井數中,僅有328眼井水質符合生活標准,只佔評價總數的31.2%,另外2/3以上到監測的井水質不符合生活飲用衛生標准。

為了推動對水資源進行綜合性統籌規劃和管理,加強水資源保護,解決日益嚴峻的缺水問題,開展廣泛的宣傳教育以提高公眾對開發和保護水資源的認識,1993年1月18日,第47屆聯合國大會確定自1993年起,將每年的3月22日定為世界水日。

面對嚴峻的缺水、水污染問題,我們應積極行動起來,珍惜每一滴水,採取節水技術、防治水污染、植樹造林等多種措施,合理利用和保護水資源。

迄今為止,人類還未在地球以外的其他星球上發現水。水是生命之源,是人類生活上不可缺乏之物質、人體組織中水份占人體重量的百分之六十到七十,其他動物或植物其體內的水份也佔百分之五以上,可見水是維持生命不可缺少的物質。

而近年來,水污染卻非常嚴重,人們大量用水,或排放廢水等,都會造成嚴重的水污染。
一般所稱的水污染,主要是指由於人為因素直接或間接的將污染物質介入於水體後,變更其物理、化學或生物特性的改變,以致影響水的正常用途或危害國民健康及生活環境。
水污染來源包括天然的污染源及人為的污染源,人為的污染源有生活用水和工業廢水的排放、農葯、肥料等物質,經由地表水或地下水的滲透與流動而進入水體,使得水體環境受到污染、森林之採伐、耕作、土木工程等人為因素所造成水體中浮游物與溶解物的增加等。

不僅河流、湖泊受到污染,海洋也同樣污染嚴重。污染的江河會繼續污染海洋,而且海上溢油污染事件的頻繁出現,也是污染海洋的重要原因。海洋遭受污染後所產生的一種災害性海洋現象就是赤潮,由於海水過於營養化,某些浮游生物在水中爆發性繁殖,這種生長量特別巨大的浮游生物是粉紅色或紅褐色的,因此染紅了海水,導致了赤潮。赤潮不僅給海洋環境、海洋漁業和海水養殖業造成嚴重危害,而且對人類健康甚至生命都有影響。一方面,赤潮引起海洋異變,局部中斷海洋食物鏈,使海域一度成為死海;另一方面,有些赤潮生物分泌毒素,這些毒素被食物鏈中的某些生物攝入,如果人類再食用這些生物,則會導致中毒甚至死亡。

而水污染又是造成水嚴重缺乏的主要原因之一。據統計,全世界有100多個國家存在不同程度的缺水問題,其中有28個國家被列為缺水國或嚴重缺水國。目前正在世界許多地區出現的水資源供應危機。
水資源的缺乏和污染給人們的生活帶來一系列問題。據調查,利比亞和印度目前的水資源開采量分別是其合理利用量的4倍和兩倍,這將直接影響到它們今後的農業生產。泰國首都曼谷由於長期超量開采地下水,致使城市地面出現下沉的危險……隨著城市化進程的加快,到2030年,發展中國家的城市人口將比現在增加3倍。如果不採取有效措施,面對城市人口激增與十分有限的水資源,人們將束手無策。目前,全世界有14億人生活在缺乏潔凈飲用水的地區,全球每年有700萬人因缺水或飲用不衛生的水而致病死亡。並且居民所患的疾病中,大約80%直接或間接與飲用水不合格有關。

我國水環境的前景也令人擔憂。
我國是一個水資源短缺、水災害頻繁的國家,水資源總量居世界第六位,人均佔有量只有2500立方米,約為世界人均水量的1/4,在世界排第110位,已被聯合國列為13個貧水國家之一。
多年來,我國水資源質量不斷下降,水環境持續惡化,由於污染所導致的缺水和事故不斷發生,不僅使工廠停產、農業減產甚至絕收,而且造成了不良的社會影響和較大的經濟損失,嚴重地威脅了社會的可持續發展,威脅了人類的生存。我國七大水系的污染程度以污染程度大小進行排序,其結果為:遼河、海河、淮河、黃河、松花江、長江,其中,遼河、海河、淮河污染最重。綜合考慮我國地表水資源質量現狀,符合《地面水環境質量標准》的Ⅰ、Ⅱ類標准只佔32.2%(河段統計),符合Ⅲ類標準的佔28.9%,屬於Ⅳ、Ⅴ類標準的佔38.9%,如果將Ⅲ類標准也作為污染統計,則我國河流長度有67.8%被污染,約占監測河流長度的2/3,可見我國地表水資源污染非常嚴重

我國地表水資源污染嚴重,地下水資源污染也不容樂觀?
我國北方五省區和海河流域地下水資源,無論是農村(包括牧區)還是城市,淺層水或深層水均遭到不同程度的污染,局部地區(主要是城市周圍、排污河兩側及污水灌區)和部分城市的地下水污染比較嚴重,污染呈上升趨勢(金傳良等,1996)。
具體而言,根據北方五省區(新疆、甘肅、青海、寧夏、內蒙古)1995眼地下水監測井點的水質資料,按照《地下水質量標准》(GB/T14848-93)進行評價,結果表明,在69個城市中,Ⅰ類水質的城市不存在,Ⅱ類水質的城市只有10個,只佔14.5%,Ⅲ類水質城市有22個,佔31.9%,Ⅳ、Ⅵ類水質的城市有37個,占評價城市總數的53.6%,即1/2以上城市的城市地下水污染嚴重。至於海河流域,地下水污染更是令人觸目驚心,2 015眼地下水監測井點的水質監測資料表明,符合Ⅰ-Ⅲ類水質標准僅有443眼,占評價總數的22.0%,符合Ⅳ和Ⅵ類水質標准有880和629眼,分別占評價總井數的43.7%和34.3%,即有78%的地下水遭到污染;如果用飲用水衛生標准進行評價,在評價的總井數中,僅有328眼井水質符合生活標准,只佔評價總數的31.2%,另外2/3以上到監測的井水質不符合生活飲用衛生標准。

為了推動對水資源進行綜合性統籌規劃和管理,加強水資源保護,解決日益嚴峻的缺水問題,開展廣泛的宣傳教育以提高公眾對開發和保護水資源的認識,1993年1月18日,第47屆聯合國大會確定自1993年起,將每年的3月22日定為世界水日。

面對嚴峻的缺水、水污染問題,我們應積極行動起來,珍惜每一滴水,採取節水技術、防治水污染、植樹造林等多種措施,合理利用和保護水資源。

B. 池塘水的污染程度怎麼判斷

國內通用的水體污染評價標准可以採用國標:《地表水環境質量標准》(GB3838-2002)的相關規定進行判斷和評價。具體的操作過程就是到池塘里去採集水樣進行有關污染指標的檢測,再根據檢測結果將水質劃分為I、II、III、IV、V、劣V類6個等級。
如果只要定性地判斷,只要自已簡單目測一下水的顏色、透明度,再聞一下水的氣味就行了,如果顏色發綠發黑,或者有腥臭味,那肯定是氮、磷、有機物超標了。

C. 污水表觀怎麼描述

污水水質指標,即各種受污染水中污染物質的最高容許濃度或限量閾值的具體限制和要求,是判斷水污染程度的具體衡量尺度。國家對水質的分析和檢測制定有許多標准,一般來說其指標可分為物理、化學、生物三大類。

物理性指標

編輯

溫度

許多工業排出的廢水都有較高的溫度,這些廢水排入水體使其水溫升高,引起水體的熱污染。水溫升高影響水生生物的生存和對水資源的利用。氧氣在水中的溶解度隨水溫的升高而減小,這樣一方面水中溶解氧減少,另一方面水溫升高加速耗氧反應,最終導致水體缺氧或水質惡化。地表水的溫度隨季節、氣候條件而有不同程度的變化,0.1-30℃,地下水的溫度比較穩定,8-12℃,工業廢水的溫度與生產過程有關。

顏色和色度

顏色有真色和表色之分。真色是由於水中所含溶解物質或膠體物質所致,即除去水中懸浮物質後所呈現的顏色。表色包括由溶解物質、膠體物質和懸浮物質共同引起的顏色。一般純凈的天然水是清澈透明的,即無色的,一般只對天然水和用水作真色的測定,但帶有金屬化合物或有機化合物等有色污染物的污水呈各種顏色。

嗅和味

嗅和味同色度一樣也是感官性指標,可定性反映某種污染物的多寡。天然水是無嗅無味的。當水體受到污染後會產生異樣的氣味。水的異臭來源於還原性硫和氮的化合物、揮發性有機物和氯氣等污染物質。不同鹽分會給水帶來不同的異味。如氯化鈉帶鹹味,硫酸鎂帶苦味,硫酸鈣略帶甜味等。

渾濁度和透明度

水中由於含有懸浮及膠體狀態的雜質而產生渾濁現象。水的渾濁程度可以用渾濁度來表示。水體中懸浮物質含量是水質的基本指標之一,表明的是水體中不溶解的懸浮和漂浮物質,包括無機物和有機物。懸浮物能在1至2小時內沉澱下來的部分稱之為可沉固體,此部分可粗略地表示水體中懸浮物之量。生活污水中沉澱下來的物質通常稱作污泥;工業廢水中沉澱的顆粒物則稱作沉渣。[1]

化學性指標

編輯

有機物

生活污水和某些工業廢水中所含的碳水化合物、蛋白質、脂肪等有機化合物在微生物作用下最終分解為簡單的無機物質、二氧化碳和水等。這些有機物在分解過程中需要消耗大量的氧,故屬耗氧污染物。耗氧有機污染物是使水體產生黑臭的主要原因之一。

無機性指標

D. 地下水污染評價

主要採用不同區域和城市的不同環境水文地質單元的地下水污染起始值或背景值作為評價標准,這樣有利於研究地下水從未污染-開始污染-嚴重污染的過程,並能顯示不同地區的環境特徵,同時還可以彌補有些組分當前還沒有規定標準的不足。

地下水污染評價一般採用綜合指數法。求得綜合污染指數(P)之後,根據綜合污染指數和參數評價的項次,對地下水污染程度進行分級,要求水質分級合理。對於水質的優劣而言,每一個水質參數都與水質標准有關。因此,應以水質標准變化為依據,賦予每個參數一定數值區間所對應的水質等級。一般將水污染狀況劃分為5個等級(表4-12)(陳望和,1999)。

表4-12 水污染分級表

註:P為綜合污染指數;n為評價因子項次。

E. 中國水污染嚴重到了什麼程度

1993年以來,我曾經三次沿長江的重慶至武漢段、一次從黃河源頭全程至入海口、一次沿淮河安徽至河南段采訪水污染問題,也采訪過滇池、太湖治污。對中國水污染問題的實情有些了解。以下僅舉一些區域來說明:
首先是淮河。1995年,中國政府以國務院令的形式,頒布了《淮河流域水污染防治暫行條例》,其中明確要求2000年淮河流域各主要河段、湖泊、水庫的水質達到淮河流域水污染防治規劃的要求,實現淮河水體變清。今天,淮河水變清了嗎?誰要問我這個問題,我只能說:呵呵!
在2000年承諾期到來的時候,我曾經去采訪淮河治污問題,了解到的一項指標完成情況是:原定到2000年沿線要建成52座城市污水處理廠,盡管當時國家計委、國家經貿委、國家環保局、水利部、建設部、農業部、中國輕工總會、化工部、財政部、中國人民銀行等部門和淮河流域山東、安徽、河南、江蘇四省政府領導一起,共同參加了第三次淮河流域環保執法檢查現場會,並對決戰階段各自所採取的措施作了承諾。但到2000年底,這52座生活污水處理廠絕大多數尚在圖紙之上。在2000年底能按生產規模投入運行的不足5座。
而且,按照國人多年一貫的做法,建污水處理廠,首先要建辦公樓,這幾乎是全國各地建污水處理廠的慣例。沿淮某市一位環保局長剛剛從英國考察歸來,他說:在英國,和我國同等規模的污水處理廠一般有6位工作人員,哪裡還需要什麼辦公樓?而我國一般最少得60人。一些必要的化驗等設備,國外是盡量提高社會化程度,盡量和大學或研究機構通用。我們卻是各家統統要自建一套,成本高、使用率低就是必然的。
中國在所有大江大河大湖中下了最大決心、最大功夫,向全世界有過庄嚴承諾的淮河治污是這樣,其他水體可想而知。
再說說上海。上海是中國最現代化、管理水平最高的城市,可是,2003至2013年,我在上海的黃金地段住了十年,對上海散發著強烈異味的自來水恐懼不已。由上海再到繁華美麗的長三角走走,從田間的溝渠,到周庄、紹興這些旅遊地,看看那些散發臭氣的黑水,還需要用什麼檢測數據來說明污染的普遍和嚴重程度嗎?

說說長江。坐船順長江而行,再在重慶、宜昌、武漢等城市繞行一周,目光所及,觸目驚心。無數的排污口像一條條孽龍,整日嘩嘩不停地向長江噴吐著毒液。無數垃圾堆沿江邊堆放,堆多了,會自然滑進長江,江水漲高了,也會自然將垃圾帶入江中。有特大企業的治污經驗是:把排污口延伸到長江江心,他們說:這叫充分利用江水的自我凈化能力。對於沿江生活的人們來說,不幸之處在於:長江既是沿江各城鎮主要的納污水體,又是人們主要的生活飲用水源。

說說黃河。黃河泥沙含量大帶來的一大好處是凈化能力極強。在青海被嚴重污染的黃河在流進中自我凈化,尤其在到達劉家峽水電站庫區後,經過沉澱,以一類水質流出劉家峽。但僅僅經過上百公里之後,在進入蘭州市時就成了三類水。流出蘭州市時成為四類水,流經白銀市後又下降為五類水。大量工業和生活廢水源源不斷地被排入黃河。

水利部曾經對全國700餘條河流,約10萬公里河長的水資源質量進行了評價,結果是:46.5%的河長受到污染,水質只達到四、五類;10.6%的河長嚴重污染,水質為超五類,水體已喪失使用價值;90%以上的城市水域污染嚴重。水污染正從東部向西部發展,從支流向幹流延伸,從城市向農村蔓延,從地表向地下滲透,從區域向流域擴散。

在全中國七大流域中,面臨的嚴重問題是水體污染和水資源短缺,主要河流有機污染普遍,主要湖泊富營養化嚴重。七大水系污染程度由重到輕順序為:遼河、海河、淮河、黃河、松花江、珠江、長江。其中遼河、淮河、黃河、海河等流域都有70%以上的河段受到污染。

F. 地下水污染程度評價主要包括哪些離子

目前,在城市地下水污染評價中,大多採用對揮發酚,氰、汞、鉻、砷、(稱為工業污染質),硝酸、亞硝酸、和氨氮(稱為農業和生活污染)等7項污染質的評價。
經常採用的指標有:
(1)檢出率:檢出率(%)=檢出點總數/監測點總數;
(2)超標率:超標率(%)=超標點數/檢出點總數;
(3)超標倍數:超標倍數=超標點某物質的含量/該物質的飲用水質標准;
(4)綜合污染指數:綜合污染指數採用下列公式計算
P=n∑i=1ci/coi
式中:P為綜合污染指數;
Ci/Coi為物質的污染指數;
Ci為i物質的實測含量(m/l);
Coi為i物質的飲用水標准;
i=1、2、3、4……n為污染

G. 大家怎麼看待現在的水污染問題

發展中國家不可避免的發展過程,重工業污染,植被破壞,現在大家都知道了我覺得就會在國家的關注下大家共同努力,一定會建設好理想家園,中國夢應該是幾代乃至於幾十代中國人共同努力才有可能實現的,而不會一蹴而就,那不是成了大躍進了。

H. 水污染體現了怎樣的基本國情

水體污染是指大量污染物質排入水體,超過水體的自凈能力使水質惡化,水體及其周圍的生態平衡遭到破壞,對人類健康、生活和生產活動等方面造成損失和威脅的情況。
水污染來源
水體污染的來源主要有工業污染、農業污染和生活污染。
1997年,全國污水排放量約416億噸,其中45%來源於城市生活污水,55%為工業廢水。
工業廢水。工業水污染主要來自造紙業、冶金工業、化學工業以及采礦業等等。而在一些城市和農村水域周圍的農產品加工和食品工業,如釀酒、製革、印染等,也往往是水體中化學需氧量和生物需氧量的主要來源。
城市生活污水。盡管工業廢水的排放量在過去的十年期間逐年下降,而生活污水的總量卻在增加。1997年與1990年相比,城市生活污水排放量整整翻了一番,達到189億噸,而我國城市污水的集中處理率僅為13.6%。全國各地生活污水對當地水體化學需氧量和生物需氧量的影響不盡相同。例如,山東省生活污水占廢水總量的40%,而重慶市生活污水則產生了當地水體中68%的化學耗氧量和85%的生物耗氧量。
農業廢水。除了農產品加工這一間接水污染行業外,作物種植和家畜飼養等農業生產活動對水環境也產生重要影響。最近的研究結果表明氮肥和農葯的大量使用是水污染的重要來源。盡管我國的化肥使用量與國際標准相比並不特別高,但由於大量使用低質化肥以及氮肥與磷肥、鉀肥不成比例的施用,其使用效率較低。特別值得注意的是大量廉價低質的氨肥的使用。這種地方生產的氨肥極易溶解而被沖人水體中造成污染。近年來,殺蟲劑的使用范圍也在擴大,導致物種的損失(鳥類),並造成一些受保護水體的污染。牲畜飼養場排出的廢物也是水體中生物需氧量和大腸桿菌污染的主要來源。肉類製品(包括雞、豬、牛、羊等)在過去的15年中產量急劇增長,隨之而來的是大量的動物糞便直接排入飼養場附近水體。在杭州灣進行一項研究發現,其水體中化學耗氧量的88%來自農業,化肥和糞便中所含的大量營養物是對該水域自然生態平衡以及內陸地表水和地下水質量的最大威脅。
水污染類型
水體污染類型較多,主要有以下幾類。
1. 有機耗氧性污染
生活污水和一部分工業廢水中含有大量的碳水化合物、蛋白質、脂肪和木質素等有機物。這類物質進入水體,在好氧微生物的作用下,多分解為簡單無機物質。在此過程中消耗水體中的大量溶解氧。大量的有機物進入水體,勢必導致水體中溶解氧急劇下降,因而影響魚類和其它水生生物的正常生活。嚴重的還會引起水體發臭,魚類大量死亡。
2. 化學毒物污染
隨著現代工農業生產的發展,每年排入水體的有毒物質越來越多。有毒污染物的種類已達數百種之多,大體可分為四類:(1)非金屬無機毒物(CN、F、S等),(2)重金屬與類金屬無機毒物(Hg、Cd、Cr、Pb、Mn等),(3)易分解有機毒物(揮發酚、醛、苯等),(4)難分解有機毒物(DDT、六六六,、多氯聯苯、多環芳烴、芳香胺等)。
3. 石油污染
隨著石油工業的迅速發展,油類對水體特別是海洋的污染越來越嚴重。目前由人類活動排入海洋的石油每年達幾百萬噸以至幾千萬噸。1991年的海灣戰爭造成的石油污染是至今最大的石油污染。進入海洋的石油在水面形成一層油膜,影響氧氣擴散進入水中,因而對海洋生物的生長產生不良影響。石油污染對幼魚和魚卵危害極大,油膜和油塊粘附在幼魚和魚卵上;使魚卵不能成活或使幼魚死亡。石油使魚蝦類產生石油臭味,降低海產品的食用價值。石油污染破壞優美的海濱,風景,降低了作為療養、旅遊地的使用價值。

4. 放射性污染
水體中放射性物質主要來源於鈾礦開采、選礦、冶煉、核電站及核試驗以及放射性同位素的應用等。從長遠來看,放射性污染是人類所面臨的重大潛在性威脅之一。
5. 富營養化污染
富營養化污染主要是指水流緩慢、更新期長的地表水體,接納大量氮、磷、有機碳等植物營養素引起的藻類等浮游生物急劇增殖的水體污染。自然界湖泊也存在富營養化現象,由貧營養湖→富營養湖→沼澤→乾地,但速率很慢。人為污染所致的富營養化,速率很快。在海洋水面上發生富營養化現象稱為「赤潮」。在陸地水體中發生富營養化現象稱為「水華」。在地下水中發生富營養化現象,稱該地下水為『肥水」。一般認為,總磷和無機氮含量分別在20mg/m3 和300mg/m3以上,就有可能出現水體富營養化過程。不同的研究者對水體富營養化的劃分指標給出不同的值。
6. 致病性微生物污染
致病性微生物包括細菌和病毒。致病性微生物污染大多來自於未經消毒處理的養殖場、肉類加工廠、生物製品廠和醫院排放的污水。
水污染與水質評價指標
水受到污染時,首先要知道受污染的程度,水的分析測定概括起來有化學、物理、生物學性質三個方面,並通過不同的指示定性定量地反映,這些指標稱為水質評價指標。一般地水質評價指標如下:
(1)pH值
在水中pH值的允許范圍一般在6.5~8.5之間。就天然水域而言,其pH值的變化范圍是比較小的。一般認為魚能正常生存的酸鹼度就是pH值的允許范圍。當降雨時,鮭魚在pH為5.5的條件下,就全部死亡。顯然,pH值為5.5時就不是允許范圍了。
(2)濁度和透明度
所謂濁度,就是用來表示水質混濁程度的單位。當1L水中含有1mg直徑為62~74μm的白陶土時,被稱為濁度1度(1°)。使用濁度計的方法通常是把水的吸光度與標准液的吸光度進行比較測定。所謂透明度,在日本是用5號活字印刷成文字,置於被測液的底部,然後通過液層垂直看底部的文字,以剛剛能辨認出文字的水層高度的厘米數來表示。進行了廢水濁度和透明度的測定,水的污濁程度就基本上知道了。
(3)懸浮物(SS)
多數廢水含有不溶解性的懸浮物。所謂懸浮物,也有人稱之為「浮游物」。當溶液混濁時,除含有懸浮物外,也含有微量的溶解物。不過這二者是難以截然分開的。
(4)溶解氧(DO)
當廢水中含有還原性有機物質時,這些還原性物質就和水中的溶解氧起反應,往往引起水中溶解氧不足。所以,當水中有機物多時,溶解氧就少。因此,測定水中的溶解氧就能知道水的污染程度。但是作為河流水質自動監測的方法,則還需要進一步研究並付諸於實踐。系表示污染物質數量的個指標,它是水中的有機物被好氣性微生物分解時所需氧的數量,而氧的量與有機物的量是有一定比例關系的。
(5)化學需氧量(COD)(Chemical-Oxygen-Demand)
COD是表示水中的有機物被氧化分解時,所消耗氧化劑KMnO4(CODMn)或K2Cr2O7(CODcr)氧化有機污染物時所需的氧的當量,這個氧的當量與有機物的量是有一定比例關系的。在我國一般多採用CODMn評價地面水環境和自來水質評價。
(6)生物化學需氧量(BOD)(Biochemical-Oxygen-Demand)
BOD表示水中的有機物在好氧條件下,經微生物分解時,所需的氧的當量,然而,COD及BOD兩個指標,都不能完全反映水中有機物的含量,只有相當於有機物氧化率的60%~70%,況且COD及BOD在不同的條件下所測結果又不一致,但目前這兩種指標仍被採用,在時間上BOD的測定在20℃條件需要5天(BOD5)而COD測定只需2小時就可以了。現在對於BOD、COD的測定又被所謂的TOC、TOD測定器所代替,近來已作為公認的方法普遍採用。
TOC、TOD僅用幾分鍾的時間就可測定出來,而巳還能連續測定。TOC(Total Or-ganic Carbon)為有機碳總量。在測定水中的碳化物時,以鈷(Co)作觸媒,在950℃的條件下燃燒。燃燒時產生的CO2,用非分散型紅外線氣體分析儀測定。其間把無機的碳酸鹽在150℃的低溫條件下燃燒,測出其CO2的數量。從總碳中減去此CO2量後,就為有機碳的測定值。
也可用總需氧量TOD(Total Oxygen Demand)表示,即以白金為觸媒,在900℃的條件下燃燒。此時產生的總氧量,因為包括了一部分亞硝酸氧化時所用去的氧,所得結果不夠准確。
用TOC、TOD法所測定的理論值准確度高,是目前對水質各指標測定中不可缺少的方法。
BOD、COD、TOC、TOD測定值的比較如圖6-14所示。從圖里可以看到BOD、COD的理論值是相當低的,僅為60%~70%。而TOC、TOD的理論值卻能達到90%。ThOC表示理論TOC。

(7)依賴生物指標的方法
僅僅採用如前所述的BOD、COD這兩個指標作為表示水中含有機物的量是不夠的。例如在兩種水內,如果A的BOD高,而B是COD高,在此種情況下比較哪一個已經污染?哪一個沒有污染?是難以分清的。可是,如果知道了棲住在那裡的生物種類,就可判定水質污染的程度了。
日本津田松苗氏搜集整理的多腐性水域特徵的具體內容如表6-5所示。該表把水質分為強腐水性、α-中腐水性、β-中腐水性和貧腐水性四種。按水質污染、惡化程度的順序,以等級表示。
貧腐性的清潔水,在昔日到處都是。而遺憾的是現在不多了。那時從山谷中流出的水,既清潔又潔凈,不加任何處理也是很可口的飲用水。在這種水中,既沒有鯉魚也沒有鯽魚,連細菌和植物性生物也很少。至於原生動物,則更為稀少。
與此相反,在第一污染區——強腐水性水域,不僅BOD多,而且底層的污泥是黑色;不單是細菌的數量多,而且嫌氣性的生物也多;一切腐敗性的毒物,特別是硫化氫(H2S)和氨(NH3)之類的物質全有。在這種環境中,只有抵抗力很強的生物方能適應。在該水域打撈的魚,對人們來說已經成為無用之物了。

水污染現狀
據《中國環境狀況公報》和水利部門報告顯示, 1997年,我國七大水系、湖泊、水庫、部分地區地下水受到不同程度的污染,河流污染比重與1996年相比,枯水期污染河長增加了6.3個百分點,豐水期增加了5.5個百分點,在所評價的5萬多公里河段中,受污染的河道佔42%,其中污染極為嚴重的河道佔12%。 全國七大水系的水質繼續惡化。
長江幹流污染較輕。監測的67.7%的河段為Ⅲ類和優於Ⅲ類水質,無超Ⅴ 類水質的河段。但長江江面垃圾污染較重,這是沿岸城鎮和江上客船亂扔垃圾所致。成堆的垃圾已嚴重妨礙了葛洲壩水電站的正常運行,影響了長江三峽的自然景觀。
黃河面臨污染和斷流的雙重壓力。監測的66.7%的河段為Ⅳ類水質。主要污染指標為氨氮、揮發酚、高錳酸鹽指數和生化需氧量。70年代黃河斷流的年份最長歷時21天,1996年為133天,1997年長達226天。
珠江幹流污染較輕。監測的62.5%的河段為Ⅲ類和優於Ⅲ類水質,29.2%的河段為Ⅳ類水質,其餘河段為Ⅴ類和超Ⅴ類水質,主要污染指標為氨氮、高錳酸鹽指數和總汞。
淮河於流水質有所好轉,尤其是往年高污染河段的狀況改善明顯。幹流水質以Ⅲ、Ⅳ類為主,支流污染仍然嚴重,一級支流有52%的河段為超Ⅴ類水質,二、三級支流有71%的河段為超Ⅴ類水質,主要污染指標為非離於氨和高猛酸鹽指數。
海灤河水系污染嚴重,總體水質較差。監測的50%的河段為Ⅴ類和超Ⅴ類水質。主要污染指標為高錳酸鹽指數、氨氮和生化需氧量。
大遼河水系總體水質較差,污染嚴重。監測的50%的河段為超Ⅴ類水質。主要污染指標為氨氮、總汞、揮發酚、生化需氧量和高錳酸鹽指數。
松花江水質與往年相比有所改善。監測的70.6%的河段為Ⅳ類水質。主要污染指標為高錳酸鹽指數、揮發酚和生化需氧量。
大淡水湖泊和城市湖泊均為中度污染,水庫污染相對較輕。與1996年相比,1997年巢湖和滇池污染程度有所加重,太湖有所減輕。主要大淡水湖泊的污染程度次序為:滇他最重,其次是巢湖(西半湖)、南四湖、洪澤湖、太湖、洞庭湖、鏡泊湖、博斯騰湖、興凱湖和洱海。湖泊水庫突出的環境問題是嚴重富營養化和耗氧有機物增加。大淡水湖泊和城市湖泊的主要污染指標為總氮、總磷、高猛酸鹽指數和生化需氧量。大型水庫主要污染指標為總磷、總氮和揮發酚。部分湖庫存在汞污染。個別水庫出現砷污染。
水污染治理
1. 水體自凈
水體中污染物濃度自然逐漸降低的現象稱為水體自凈。水體自凈機制有三種。
(1)物理凈化:物理凈化是由於水體的稀釋、混合、擴散、沉積、沖刷、再懸浮等作用而使污染物濃度降低的過程
(2)化學凈化:化學凈化是由於化學吸附、化學沉澱、氧化還原、水解等過程而使污染物濃度降低。
3)生物凈化:生物凈化是由於水生生物特別是微生物的降解作用使污染物濃度降低。
水體自凈的三種機制往往是同時發生,並相互交織在一起。哪一方面起主導作用取決於污染物性質和水體的水文學和生物學特徵。水體污染惡化過程和水體自凈過程是同時產生和存在的。但在某一水體的部分區域或一定的時間內,這兩種過程總有一種過程是相對主要的過程。它決定著水體污染的總特徵。這兩種過程的主次地位在一定的條件下可相互轉化。如距污水排放口近的水域,往往總是表現為污染惡化過程,形成嚴重污染區。在下游水域,則以污染凈化過程為主,形成輕度污染區,再向下游最後恢復到原來水體質量狀態。所以,當污染物排入清潔水體之後,水體一般呈現出三個不同水質區:即水質惡化區,水質恢復區和水質清潔區。
2. 水污染治理辦法
為加強水資源保護,防止對水資源的破壞、浪費和嚴重污染,應有適當的對策。
1、增加水資源收費范圍,提高收費價格
水資源費的收繳不能僅限於地下水,對一切地表水如河流、湖泊、水庫等均應該是水資源費的收繳范圍,使全社會樹立起珍惜寶貴的水資源觀念。過低的水費價格給人以水資源廉價的錯誤感覺,廉價用水淡化了人們的節水意識,間接地鼓勵了浪費。水資源是一個國家經濟可持續發展的重要保證,保護水資源的重點是節約用水,只有利用高價格的杠桿作用完全可以達到節約用水的目的。水費的價格應包括水資源費、水資源補償費、水處理成本、輸送費、稅費、污水處理費、超量水費等。
2、提高水污染排污費的收繳額度,使排污費遠遠地高於水資源恢復治理的費用
當前,我國排污費定位太低,遠遠低於水資源補償費用,這種欠量收費辦法難以體現國家用經濟手段處罰水資源破壞和污染行為,難以實現有效的水資源保護。因此,全面提高排污收費指標,向等量甚至高於水資源恢復治理費靠攏,採取「嚴進嚴出」的措施,就能徹底規范污染者的行為,企業就會從維護自身利益出發,努力做好水污染的治理,加強水資源的保護。
3、大力提高水資源的利用率和重復利用率
我國水資源利用率不足50%,重復利用率為20%左右,低效的水資源利用,加劇了水資源的供需矛盾和嚴重浪費局面。只有施行較高的水資源價格,高額的水污染排污費,就會有效地促使企業採取措施,改直流冷卻為循環冷卻,改漫罐為噴罐或滴罐,採用先進的節水技術和生產工藝,研究污水的治理和重復利用,降低生產成本,進而實現企業的經濟效益和社會的環境效益雙統一。
4、加強對地下水資源污染和破壞的處罰力度
伴隨煤炭、石油等地下礦藏資源開採的同時,也抽排了大量的地下水資源,就黑龍江省雙鴨山礦山區而言,平均每開采1噸原煤,抽排近6m3的地下水資源,這些地下水初始流出時並未受到污染,但在流經井筒採掘作業現場時,被人為污染,這些礦井地下水只有少量被利用,絕大部分是白白地排放掉了,造成近4000萬m3地下水損失。有此可見,地下生產作業對地下水資源有重大的污染和破壞行為,對這種污染和破壞行為,應收取地下水資源費、水資源補償費、排污費,並嚴格要求較高的水利用率,採取有效措施和技術,減輕地下水資源的污染和破壞,嚴禁超量抽排地下水資源,違者予以重罰,避免造成區域性地下水資源的枯竭。
5、研究解決污水的資源化利用
污水資源化利用是解決用水緊張的一個有效途徑,並產生較高的經濟效益,實現較好的環境效益。就拿全國煤炭產量12億噸計算,大約抽排50億m3的受污染的礦井地下水,如若全部凈化成飲用水,可產生50億元的毛利潤,完全可稱補全煤炭行業的虧損指標。另外,利用礦井水做選煤用水、水產養殖、農田灌溉、地下回灌等。
6、廢水不廢
為糾正以往把廢水當作廢物的錯誤觀念,應該把廢水稱作污水比較妥當,藉以提高人們對污水也是資源的認識,提高污水資源的有效利用率。

我們的想法:
以前對水污染的認識不是很深,甚至有些片面,雖然口口聲聲揮著保護水資源的大旗,但日常生活中的做法卻常常是大相徑庭。在做研究性課題的過程中,我們自己也在時時刻刻受著鞭笞,為自己平時某些不理智行為感到懊悔。其實保護水資源沒有想像的那麼遙遠,可以從身邊的小事做起,如用洗臉水澆花,拖地等。我想,通過這次研究性學習,更多是讓我們自己受到了教育,思想上有了一定的提高,也希望通過這次的研究成果,讓更多的人了解保護水資源的重要性。

I. 知道SO2污染物排放量(單位為t/h),怎麼確定其評價等級

排污系數,即污染物排放系數,指在典型工況生產條件下,生產單位產品(實用訂單為原料等)所產生的污染物量經過末端治理設施削減後的殘餘量,或生產單位產品(實用單位原料)直接排放到環境中的污染物量。當污染物直排時,排污系數與產污系數相同。

這個理解了就行,不需要什麼公式的。具體你看你們單位的數據。什麼廢水污染物生產量等等的
常用的排污系數

燒一噸煤,產生1600×S%千克SO2,1萬立方米廢氣,產生200千克煙塵。
燒一噸柴油,排放2000×S%千克SO2,1.2萬立米廢氣;排放1千克煙塵。
燒一噸重油,排放2000×S%千克SO2,1.6萬立米廢氣;排放2千克煙塵。
大電廠,煙塵治理好,去除率超98%,燒一噸煤,排放煙塵3-5千克。
普通企業,有治理設施的,燒一噸煤,排放煙塵10-15千克;
磚瓦生產,每萬塊產品排放40-80千克煙塵;12-18千克二氧化硫。
規模水泥廠,每噸水泥產品排放3-7千克粉塵;1千克二氧化硫。
鄉鎮小水泥廠,每噸水泥產品排放12-20千克粉塵;1千克二氧化硫。
物料衡算公式:
1噸煤炭燃燒時產生的SO2量=1600×S千克;S含硫率,一般0.6-1.5%。若燃煤的含硫率為1%,則燒1噸煤排放16公斤SO2 。
1噸燃油燃燒時產生的SO2量=2000×S千克;S含硫率,一般重油1.5-3%,柴油0.5-0.8%。若含硫率為2%,燃燒1噸油排放40公斤SO2 。
¬排污系數:燃燒一噸煤,排放0.9-1.2萬標立方米燃燒廢氣,電廠可取小值,其他小廠可取大值。 燃燒一噸油,排放1.2-1.6萬標立方米廢氣,柴油取小值,重油取大值。
【城鎮排水折算系數】 0.7~0.9,即用水量的70-90%。
【生活污水排放系數】採用本地區的實測系數。。
【生活污水中COD產生系數】60g/人.日。也可用本地區的實測系數 。
【生活污水中氨氮產生系數】7g/人.日。也可用本地區的實測系數。使用系數進行計算時,人口數一般指城鎮人口數;在外來較多的地區,可用常住人口數或加上外來人口數。
【生活及其他煙塵排放量】
按燃用民用型煤和原煤分別採用不同的系數計算:
民用型煤:每噸型煤排放1~2公斤煙塵
原 煤:每噸原煤排放8~10公斤煙塵
一、工業廢氣排放總量計算
1.實測法
當廢氣排放量有實測值時,採用下式計算:

Q年= Q時× B年/B時/10000
式中:
Q年——全年廢氣排放量,萬標m3/y;
Q時——廢氣小時排放量,標m3/h;
B年——全年燃料耗量(或熟料產量),kg/y;
B時——在正常工況下每小時的燃料耗量(或熟料產量) ,kg/h。
2.系數推演算法
1)鍋爐燃燒廢氣排放量的計算
①理論空氣需要量(V0)的計算a. 對於固體燃料,當燃料應用基揮發分Vy>15%(煙煤),計算公式為:V0=0.251 ×QL/1000+0.278[m3(標)/kg]
當Vy<15%(貧煤或無煙煤),
V0=QL/4140+0.606[m3(標)/kg]
當QL<12546kJ/kg(劣質煤), V0=QL//4140+0.455[m3(標)/kg)
b. 對於液體燃料,計算公式為:V0=0.203 ×QL/1000+2[m3(標)/kg]
c. 對於氣體燃料,QL<10455 kJ/(標)m3時,計算公式為:
V0= 0.209 × QL/1000[m3/ m3]
當QL>14637 kJ/(標)m3時,
V0=0.260 × QL/1000-0.25[m3/ m3]
式中:V0—燃料燃燒所需理論空氣量,m3(標)/kg或m3/m3;
QL—燃料應用基低位發熱值,kJ/kg或kJ/(標)m3。
各燃料類型的QL值對照表
(單位:千焦/公斤或千焦/標米3)
燃料類型 QL
石煤和矸石 8374
無煙煤 22051
煙煤 17585
柴油 46057
天然氣 35590
一氧化碳 12636
褐煤 11514
貧煤 18841
重油 41870
煤氣 16748
氫 10798
②實際煙氣量的計算a.對於無煙煤、煙煤及貧煤 :Qy=1.04 ×QL/4187+0.77+1.0161(α-1) V0[m3(標)/kg]
當QL<12546kJ/kg(劣質煤),
Qy=1.04 ×QL/4187+0.54+1.0161(α-1) V0[m3(標)/kg]
b.對於液體燃料 : Qy=1.11 ×QL/4187+(α-1) V0[m3(標)/kg]
c.對於氣體燃料,當QL<10468 kJ/(標)m3時 :
Qy=0.725 ×QL/4187+1.0+(α-1) V0(m3/ m3)
當QL>10468 kJ/(標)m3時,
Qy=1.14 ×QL/4187-0.25+(α-1) V0(m3/ m3)
式中:Qy—實際煙氣量,m3(標)/kg;
α —過剩空氣系數, α = α 0+Δ α
爐膛過量空氣系數
禽養殖排污系數表:
畜禽糞便排泄系數
項目 單位 牛 豬 雞 鴨

公斤/天 20.0 2.0 0.12 0.13
公斤/年 7300.0 398.0 25.2 27.3
尿
公斤/天 10.0 3.3 —— ——
公斤/年 3650.0 656.7 —— ——
飼養周期 天 365 199 210 210

畜禽糞便中污染物平均含量 (單位:公斤/噸)
項目 COD BOD NH3-N 總磷 總氮
牛糞 31.0 24.53 1.7 1.18 4.37
牛尿 6.0 4.0 3.5 0.40 8.0
豬糞 52.0 57.03 3.1 3.41 5.88
豬尿 9.0 5.0 1.4 0.52 3.3
雞糞 45.0 47.9 4.78 5.37 9.84
鴨糞 46.3 30.0 0.8 6.20 11.0

環境統計有關系數的核算
(2004)
在基層環境統計中,經常涉及到「三廢」排放量和污染物排放的計算。其計算方法多種多樣,歸納起來主要有以下三種方法:
實測法、物料衡演算法和經驗計演算法。
生產工藝過程中的污染物排放量的計算可以參考有關系數。
用水量的計算
工業用水量=工業重復用水量+工業用新鮮水量
=工業重復用水量+廠區內新鮮用水(生產+生活)
工業用水包括:生產用水(冷卻用水、除塵洗滌和沖渣用水、工藝沖洗用水);
廠區生活用水(飲用、沐浴用水);
消防用水。
生產用水:包括新鮮水和重復(循環)用水。
新鮮水量的計算:自來水(從收費單據中獲得)
自備水(地面水、地下水)
自備水源供水量Wp=q.t.η
q__單位時間機泵出水量(噸/時);
t__機泵運行時間(小時)
η__機泵抽水效率(%)一般為75%以上;最好用實測確定;如無計量裝置,可用單位產品用水量進行計算。

根據市統計局測算,全市人均日生活用水量:(公斤)
2003年 2002年 2001年 三年平均
131.0 132.9 144.9 136.27
也可以按照區、縣統計局的實測數據計算生活用水量。
工業重復用水量=未採用循環(重復)措施時所需新鮮水量-採用循環(重復)用水措施後的所需新鮮水量。
廢水排放量的計算
廢水一類污染物在車間和車間處理設施排放口取樣監測(包括:汞、鎘、鉻、六價鉻、砷、鉛、3,4-苯並比)。
廢水排放量(噸)=某廢水平均排放量(立方米/時)×某廢水排放時間(時)×廢水密度(取1立方米=1噸水)。
工業廢水排放量也可以按單位產品排污系數測算;或按生產設計規范要求,按新鮮用水量的60-90%計算。
污染物去除量(純重量)=處理的工業廢水量×(處理前污染物的平均濃度-處理後污染物的平均濃度)。
污染物排放量(純重量)=工業廢水排放量×排放口污染物的平均濃度。
各類型醫院污水定額
醫院病床床位數 病床污水量定額(公斤/床.日)
400床及以上 400
200-400床 250
200床以下 100
COD排放量依據實測數據或參考申報登記數據。
廢氣排放量的計算
生產工藝廢氣排放量的計算一般按實測,也可以按原設計技術參數進行統計或按風機銘牌所標注的風量進行統計。也可以使用書中計算公式。
風量(標立方米/時)=風機風量×(273×P)/(760(273+T0))
P=大氣壓力,毫米汞柱 T0=廢氣溫度
廢氣排放量=平均實測風量(標立方米/時×年工作小時)。
燃料燃燒廢氣排放量:(經驗公式)
燃燒每噸煤產生0.8-1.0萬標立方米廢氣(手燒爐取上限);
燃燒每噸油產生1.1-1.5萬標立方米廢氣;
燃燒氣體燃料:電石爐煤氣3-6標立方米/立方米;
油田伴生氣11-14標立方米/立方米;
高爐煤氣1.7-2標立方米/立方米;
天然氣11-13標立方米/立方米;
液化石油氣12-15標立方米/立方米;
發生爐煤氣2-3.5標立方米/立方米。
其他燃料:可以採用能源折算系數推算。
二氧化硫的計算
二氧化硫排放量=二氧化硫產生量×(1-脫硫效率%)
二氧化硫去除量=二氧化硫產生量-二氧化硫排放量
燃煤二氧化硫排放量預測公式為:
QSO2=2×S×G×K×(1-η)
其中:S—燃料中的含硫量 G—燃料的消耗量
K—燃料硫轉化率80% η—控制措施的脫硫效率,%。
如沒有脫硫措施,燃燒二氧化硫排放量為12.8公斤/噸煤(大氣處提供)。(2001年系數為8公斤/噸煤,當時確定燃料中的含硫量為0.5%,目前測定燃料中的含硫量在0.8%左右)。
燃油二氧化硫產生量為:11.65公斤/噸油。
燃氣二氧化硫產生量為:630公斤/百萬立方米。
煙塵量的計算
煙塵排放量=煙塵產生量×(1-除塵效率%)
煙塵去除量=煙塵產生量-煙塵排放量
燃煤煙塵產生量40公斤/噸煤,平均燃煤煙塵排放量2004年調整為4.8公斤/噸煤(測算值)。
燃煤煙塵排放量預測公式為:
Q煙塵=G×A×V×(1-η)
其中:G—燃料的消耗量 A—燃料中的灰分,20%;
V—爐型系數20% η—控制措施的除塵效率,2004年調整為平均88%。
燃油煙塵產生量:
電站鍋爐:2公斤/噸油;
工業鍋爐:渣油燃燒爐5.5公斤/噸油;
蒸餾油燃燒爐3.6公斤/噸油;
採暖爐及家用爐2.4公斤/噸油。
燃料氣煙塵產生量:
電站鍋爐:238.5公斤/百萬立方米;
工業鍋爐:286.02公斤/百萬立方米;
採暖爐及家用爐:302公斤/百萬立方米。
一般常用鍋爐耗煤量(5000大卡配煤)的估算
鍋爐噸位數(蒸噸) 每蒸噸耗煤量(kg/時) 燃煤工作時間
2蒸噸及以下 200 一班8小時
6-4蒸噸 180 二班16小時
20蒸噸以上 170 三班24小時
蒸噸折算系數:1蒸噸=60萬大卡,1大卡=4.187千焦
註:取暖鍋爐按20小時/天計算;採暖鍋爐按120天/年計算;生產用鍋爐按300天/年計算。
工業粉塵量的計算:
工業粉塵去除量=(進口平均濃度-出口平均濃度)×除塵系統排放量×運行時間;
工業粉塵排放量=出口平均濃度×除塵系統排風量×運行時間(以實測為主)。
工業固體廢物量的計算:
工業固體廢物量的計量方法參考書中計算公式,或採用下列方法計算:工業爐渣產生量=用煤量×30%。

J. 地表水質量污染程度及其發展趨勢分析與評價

一、現狀水質評價

現狀水質評價採用單指示評價法(最差的項目賦全權,又稱一票否決法),以Ⅲ類地表水標准值作為水體是否超標的判定值(Ⅰ、Ⅱ、Ⅲ類水質定義為達標,Ⅳ、Ⅴ類和劣Ⅴ類水質定義為超標)。

湖泊(水庫)營養狀態評價採用平均值法,選用汛期、非汛期、全年均值作為評價代表值。

1.河流水質現狀評價

近些年來,隨著經濟持續高速增長和城市化迅速發展,「三廢」排放量有較大增長,區內被污染的河流有20多條。

根據本次地表水水質評價的范圍,共選用河流代表斷面84處,總評價河長2769.1km。

全年期評價超標(指超《地表水環境質標准》GB3838—2002的Ⅲ類水標准)河長2061.9km,占總評價河長的74.5%,其中,各地情況見表5-7。

表5-7 山東半島城市群地區河流水質超標率統計

上述超標污染參數主要為高錳酸鹽指數、氨氮、化學需氧量和溶解氧量等,污染嚴重的河流有小清河、彌河、白浪河、膠河、濰河、大沽河、城陽河、白沙河、洋河、淄河、朱龍河等。

2.水庫水質現狀評價

根據本次地表水水質評價的范圍,共評價水庫33座,全年期超標水庫7座,超標率21.2%;汛期超標水庫14座,超標率42.4%;非汛期超標水庫10座,超標率30.3%(表5-8)。

表5-8 山東半島城市群地區水庫水質評價

3.水庫營養成分狀態評價

全年期水庫富營養狀態評價共評價水庫33庫,營養狀態評價為中營養的水庫24座,占總評價水庫的72.7%;營養狀態評價為富營養的水庫9座,占總評價水庫的27.3%。在參加評價的4個評價因子(總磷、總氮、高錳酸鹽指數、葉綠素(a))中,單項參評因子評分值最高的是總氮,33座水庫平均評分值為66,其他3項參評價因子高錳酸鹽指數、總磷、葉綠素(a)的平均評分值分別為50、33、39。

汛期水庫富營養狀態評價共評價水庫33座,營養狀態評價為中營養的水庫12座,占總評價水庫的36.4%;營養狀態評價為富營養的水庫21座,占總評價水庫的63.6%。在參加評價的4個評價因子(總磷、總氮、高錳酸鹽指數、葉綠素(a))中,單項參評因子評分值最高的是總氮,33座水庫平均評分值為67,其他3項參評價因子高錳酸鹽指數、總磷、葉綠素(a)的平均分值分別為50、47、41。

非汛期水庫富營養狀態評價共評價水庫33座,營養狀態評價為中營養的水庫23座,占總評價水庫的69.7%;營養狀態評價為富營養的水庫10座,占總評價水庫的30.3%。在參加評價的4個評價因子(總磷、總氮、高錳酸鹽指數、葉綠素(a))中,單項參評因子評分值最高的是總氮,33座水庫平均評分值為62,其他3項參評因子高錳酸鹽指數、總磷、葉綠素(a)的平均評分值分別為47、46、33。

二、水質變化趨勢分析

1.水質變化趨勢分析項目

水質變化趨勢分析的一般項目包括總硬度、高錳酸鹽指數、五日生化需氧量、氨氮、溶解氧、揮發酚和鎘7項,湖泊(水庫)增加總磷、總氮分析;城市下遊河段和入海口增加氯化物分析、內陸河增加硫酸鹽分析。

2.水質變化趨勢分析與評價

(1)水質變化趨勢分析方法簡述

趨勢分析方法採用趨勢季節性Kendall檢驗法,趨勢結果分5種情況,分別是顯著上升、上升、無趨勢、顯著下降、下降。趨勢分析資料選用1993、2000年的水質數據。

(2)水質變化趨勢成果分析與評價

從各單項因子的趨勢分析成果來看,除鎘無趨勢外,趨勢上升(溶解氧下降)監測站的平均比例要高於趨勢下降(溶解氧上升)監測站的比例,尤其是總硬度、高錳酸鹽指數、五日生化需氧量、氨氮、總磷、總氮、硫酸鹽、氯化物等項目差別更為明顯,反映出地表水水質從1993年至2000年污染有加重趨勢(表5-9)。

表5-9 山東半島水質變化趨勢分析

續表

3.污染廢水調查分析

本區污染廢水主要來自工業污水、城鎮生活污水及農村生活污水。2000年,總排污水量為1429×108m3,據調查工業污染排放量較多的行業為造紙及紙製品業、食品、煙草加工業、化工原料及化學製品業、紡織業、電業、採掘業和非金屬礦物製造等,分別佔山東省工業產生的污廢水的54.7%、20.4%、10.9%、5.2%、2.5%、2.2%和2.0%,可見造紙及紙製品是污水排放量及污染環境最嚴重的企業。城鎮生活污水排放量為12.10×108m3,農村生活污水排放量為2.19×108m3

占污廢水排放總量50%以上的生活污廢水絕大部分沒有經過任何處理而直接排放至大小河流中,對生態環境尤其是水環境造成了較大的破壞。目前,山東省各級政府正加大對治污方面的投資力度,到2000年底,山東半島城市群地區共建成城市污水集中處理廠30座。

閱讀全文

與如何評價廢水污染程度相關的資料

熱點內容
礦物質濾芯什麼品牌好 瀏覽:497
160的污水管怎麼接中間一段 瀏覽:190
中水回用尺寸 瀏覽:59
醫院里飲水機怎麼接水 瀏覽:944
大慶生活污水去哪裡了 瀏覽:970
卡特307提升器加工 瀏覽:386
nf超濾 瀏覽:298
勁牌酒業污水處理招標 瀏覽:363
熱水回用烘乾設備 瀏覽:898
污水坑抽水泵要多少瓦 瀏覽:615
純水機怎麼樣換電機 瀏覽:143
浙江pvc樹脂瓦 瀏覽:234
電廠廢水零排放包括哪些廢水 瀏覽:740
xrv空調濾芯卡扣壞了怎麼辦 瀏覽:663
污水掛管走涵渠怎麼施工 瀏覽:276
碧麗飲水機品牌怎麼樣 瀏覽:90
鋁鍋下面一層水垢怎麼除掉 瀏覽:433
蔬菜大棚內的污水怎麼處理 瀏覽:755
家用凈水器ro膜規格 瀏覽:940
威武機油濾芯多少錢 瀏覽:22