A. 焦化廢渣的來源
焦化工業廢渣的來源主要來自回收與精製車間,有焦油渣、酸焦油(酸渣)和洗油再生殘渣等。
附:焦化工業污染物的來源及危害
焦化工業已從焦爐煤氣、焦油和精苯中製取100多種化學產品,對我國的國民經濟發展意義十分重大。但是,焦化生產有害物排放源多、排放物種類多、毒性大,對環境污染相當嚴重。
據不完全統計,中國每年焦炭生產要向大氣排放的苯可溶物、苯並芘及煙塵等污染物達70萬t,其中苯並芘1 700 t。這些苯、酚類污染物,用常規處理方法很難達到理想效果,污染物的累積對生態環境造成不可挽回的影響,尤其是向大氣排放的苯並芘是強致癌物,嚴重影響周圍居民的身體健康。
1 焦化工業廢水的來源及危害
1.1 焦化工業廢水的來源
焦化生產工藝中要用大量的洗滌水和冷卻水,也就產生了大量的廢水。各焦化廠的廢水數量及性質隨採用的生產工藝和化學產品精製加工的深度不同而異,焦化廢水的COD(化學耗氧量)相當高,主要污染物是酚、氨、氰、硫化氫和油等,如不進行處理或處理不認真,造成的後果十分嚴重。
1.2 焦化工業廢水的危害
(1)對水體和水生物的危害。焦化污水主要含有機物,絕大多數有機物具有生物可降解性,能消耗水中溶解氧。當水中氧濃度低於某一限值,水生動物的生存會受到影響。當水中氧消耗殆盡時,水質就嚴重惡化。污水中的其他物質如油、懸浮物、氰化物等對水體與魚類也都有危害,含氮化合物能導致水體富營養化。
(2)對人體的毒害作用。污水中含有的酚類化合物是原型質毒物,可通過皮膚、黏膜的接觸吸入和經口服而侵入人體內部,使人體細胞失去活力,另外,還可進一步向深部滲透,引起深部組織損傷或壞死;低級酚還能引起皮膚過敏,長期飲用含酚污水會引起頭暈、貧血以及各種神經系統病症。
(3)對農業的危害。用未經處理的焦化污水直接灌溉農田,會使農作物減產和枯死;污水中的油類物質堵塞土壤孔隙,使土壤含鹽量高,土壤鹽鹼化。
2 焦化工業粉塵與廢氣的來源及危害
2.1 焦化工業粉塵與廢氣的來源
焦化生產排放的有害物主要來自於備煤、煉焦、化工產品回收與精製車間,氣體污染物的排放量由煤質、工藝裝備水平和操作管理等因素決定。
(1)備煤車間。產生的污染物主要為煤塵。備煤過程向大氣排放煤塵,其數量取決於煤的水分和細度。
(2)煉焦車間。煉焦車間的煙塵來源於焦爐加熱、裝煤、出焦、熄焦、篩焦過程,主要污染物有固體懸浮物(TSP),苯可溶物(BSO),苯並芘(BaP),SO2,NOX,H2S,CO和NH3等,其中BSO、BaP是嚴重的致癌物質,導致焦爐工人肺癌的發病率較高。煉焦車間產生的污染主要由以下幾方面引起:第一,裝煤過程。其煙塵排放量約占焦爐煙塵總排放量的60 %。裝煤操作中會排出很多CnHm化合物,而CnHm化合物對人體健康影響嚴重,所以一定要控制好裝煤煙塵的排出。第二,推焦過程。推焦過程產生的煙塵占焦爐煙塵排放量的10 %。第三,熄焦過程。熄焦水噴灑在熾熱的焦炭上產生大量的水蒸氣,水蒸氣中所含的酚、硫化物、氰化物、一氧化碳和幾十種有機化合物與熄焦塔兩端敞口吸入的大量空氣形成混合氣流,夾帶大量水滴和焦粉從塔頂逸出,形成對大氣的污染。第四,篩焦工段。主要排放焦塵。
(3)化工產品回收車間。排放的有害物主要來自化學反應和分離操作的尾氣,燃燒裝置的煙囪等。主要污染物為NH3,H2S,HCN,C6H5OH,C5H5N,苯族烴等。
(4)精製車間。每t焦的氣體排放量約為4 900 m3,其中H2S為2 100 g,HCN為6.9 g,烴類為8 400 g,焦油車間排放萘為1 900 g。
2.2 焦化生產中粉塵與廢氣的危害
(1)粉塵的危害。工業廢氣中的顆粒物即粉塵,粒徑范圍為0.001 μm ~500 μm。所謂降塵是指直徑大於10 μm的粉塵易於沉降;所謂飄塵是指直徑小於等於10 μm的粉塵以氣溶膠的形式長期漂浮於空氣中。直徑在0.5 μm~5 μm的粉塵對人體危害最大。在焦化生產中粉塵主要是煤塵和焦塵。作業場所空氣中的粉塵濃度不得大於10 mg/m3,外排氣體的含塵濃度應符合現行的工業三廢排放標准。焦化生產中粉塵與廢氣的危害主要表現在:第一,人吸進呼吸系統的粉塵量達到一定數值時,能引起鼻炎、各種呼吸道疾病以及肺癌等;第二,粉塵與空氣中的SO2協同作用會加劇對人體的危害;第三,人吸進含有重金屬元素的粉塵危害性更大;第四,粉塵能吸收大量紫外線短波部分,當粉塵濃度達到2 mg/m3以上時,對人傷害很大;第五,煙塵使光照度和能見度減弱,嚴重影響動植物的生長,也影響了城市交通秩序,造成交通事故的多發;第六,某些粉塵當濃度達到爆炸極限時,若存在足夠的火源將引起爆炸。粉塵的粒徑越小,粉塵和空氣的濕度越小,爆炸的危險性越大。
(2)廢氣的危害。第一, SO2是一種無色、不燃、有惡臭並具有辛辣味的窒息性氣體,車間空氣中SO2最高容許濃度為15 mg/m3。SO2對人眼及呼吸道黏膜有強烈的刺激作用,大量吸入可引起肺水腫、喉水腫、聲帶痙攣而致窒息;大氣中的SO2在陽光、水氣和飄塵的作用下,生成的SO3與水滴接觸形成酸霧,遇雨則形成酸雨(pH<5.6),酸霧和酸雨對自然界、人體都有嚴重危害。第二, NOX。車間空氣中NOX最高允許濃度為5 mg/m3。二氧化氮對肺組織產生劇烈的刺激和腐蝕作用,形成肺水腫;接觸高濃度二氧化氮可損害中樞神經系統。第三, H2S是無色透明的氣體,有臭雞蛋味,車間最高允許濃度為10 mg/m3。H2S是強烈的神經毒物,對黏膜有明顯的刺激作用。第四, CO是無色、無臭、無刺激性氣體,是一種窒息性毒氣,空氣中控制標准為小於30 mg/m3。空氣中CO濃度達到1.2 g/m3時,短時間可致人死亡。第五, NH3是一種無色、強烈刺激性氣體,對人的上呼吸道有刺激和腐蝕作用。車間允許濃度為30 mg/m3。第六,多環芳烴,包括苯並芘、7,12—二甲基苯並蒽、3—甲基膽蒽等約100多種,其中已被證實的致癌物有22種。苯並芘(BaP)是焦化生產中排放量最多的多環芳烴,具有致癌性,潛伏期可長達10~15年,人們易淡化病情而導致嚴重後果。
3 焦化工業廢渣的來源
主要來自回收與精製車間,有焦油渣、酸焦油(酸渣)和洗油再生殘渣等。
B. 焦化廢水多環烴化合物怎麼去除控制
焦化廢水是煉焦、煤氣在高溫干餾、凈化及副產品回收過程中,產生含有揮發酚、多環芳烴及氧內、硫、氮等雜容環化合物的工業廢水,是一種高CODcr、高酚值、高氨氮且很難處理的一種工業有機廢水.其主要來源有三個:一是剩餘氨水,它是在煤干餾及煤氣冷卻中產生出來的廢水,其水量占焦化廢水總量的一半以上,是焦化廢水的主要來源;二是在煤氣凈化過程中產生出來的廢水,如煤氣終冷水和粗苯分離水等;三是在焦油、粗苯等精製過程中及其它場合產生的廢水。焦化廢水是含有大量難降解有機污染物的工業廢水,其成分復雜,含有大量的酚、氰、苯、氨氮等有毒有害物質,超標排放的焦化廢水對環境造成嚴重的污染。焦化廢水具有水質水量變化大、成分復雜,有機物特別是難降解有機物含量高、氨氮濃度高等特點
C. 焦化廢水處理站一天處理量1500m3/天屬於小型規模嗎
焦化廢水是煉焦、煤氣在高溫干餾、凈化及副產品回收過程中,產生含有揮發酚回、多環芳答烴及氧、硫、氮等雜環化合物的工業廢水,是一種高CODcr、高酚值、高氨氮且很難處理的一種工業有機廢水。其主要來源有三個:一是剩餘氨水,它是在煤干餾及煤氣冷卻中產生出來的廢水,其水量占焦化廢水總量的一半以上,是焦化廢水的主要來源;二是在煤氣凈化過程中產生出來的廢水,如煤氣終冷水和粗苯分離水等;三是在焦油、粗苯等精製過程中及其它場合產生的廢水。焦化廢水是含有大量難降解有機污染物的工業廢水,其成分復雜,含有大量的酚、氰、苯、氨氮等有毒有害物質,超標排放的焦化廢水對環境造成嚴重的污染。
D. 焦化廢水的來源
焦化廢水是由原煤的高溫干餾、煤氣凈化和化工產品精製過程中產生的。廢水成分復雜,其水質隨原煤組成和煉焦工藝而變化。核磁共振色譜圖中顯示:焦化廢水中含有數十種無機和有機化合物。其中無機化合物主要是大量氨鹽、硫氰化物、硫化物、氰化物等,有機化合物除酚類外,還有單環及多環的芳香族化合物、含氮、硫、氧的雜環化合物等。總之,焦化廢水污染嚴重,是工業廢水排放中一個突出的環境問題。
《污水綜合排放標准》(GB8978-96)對焦化廢水新改擴建項目要求:NH 3 -N≤15mg/L,COD≤100mg/L。過去,國內外去除焦化廢水中的NH 3 -N和COD主要採用生化法,其中以普通活性污泥法為主,該方法可有效去除焦化廢水中酚、氰類物質,但對於難降解有機物和NH 3 -N去除效果較差,難以達標排放。難降解有機物的處理已引起國內外有關學者的高度重視,許多學者對難降解有機物進行了大量研究,同時改進了焦化廢水中NH 3 -N脫除工藝,提出了許多切實可行的處理設施和技術,使出水COD和NH 3 -N濃度大大降低。本文將介紹幾種先進有效的焦化廢水的處理技術。
1 焦化廢水的預處理技術
去除焦化廢水中的有機物主要採用生物處理法,但其中部分有機物不易生物降解,需要採用適當的預處理技術。常用的預處理方法是厭氧酸化法。
厭氧酸化法是一種介於厭氧和好氧之間的工藝,其作用機理是通過厭氧微生物水解和酸化作用使難降解有機物的化學結構發生變化,生成易降解物質。厭氧微生物對於雜環化合物和多環芳烴中環的裂解,具有不同於好氧微生物的代謝過程,其裂解為還原性裂解和非還原性裂解。厭氧微生物體內具有易於誘導、較為多樣化的健全開環酶體系,使雜環化合物和多環芳烴易於開環裂解。焦化廢水中存在較多的易降解有機物,可以作為厭氧酸化預處理中微生物生長代謝的初級能源和碳源,滿足了厭氧微生物降解難降解有機物的共基質營養條件。焦化廢水經厭氧酸化預處理後,可以提高難降解有機物的好氧生物降解性能,為後續的好氧生物處理創造良好條件 [1] 。趙建夫等 [2] 將水解一酸化作為焦化廢水預處理工藝,廢水經6h水解一酸化,12h好氧生化處理,COD去除率達91%,比傳統的生化處理法提高了近40% [3] 。
2 焦化廢水的二級處理技術
焦化廢水經預處理後,廢水的可生化性得到了提高,但其中難降解有機物不能徹底分解為CO2和H2O,必須進行二級處理。焦化廢水的二級處理方法很多,有生物化學法、物理法、化學法以及物理化學法等。目前,效果較好的二級處理技術主要有以下幾種。
2.1 催化濕式氧化技術
催化濕式氧化技術是80年代國際上發展起來的一種治理高濃度有機廢水的新技術,是在一定溫度、壓力下,在催化劑作用下,經空氣氧化使污水中的有機物、氨分別氧化分解成CO2、H2O及N2等無害物質,達到凈化目的。其特點是凈化效率高,流程簡單,佔地面積少。杜鴻章等研製出適合處理焦化廠蒸氨、脫酚前濃焦化污水的濕式氧化催化劑,該催化劑活性高,耐酸、鹼腐蝕,穩定性高,適用於工業應用,對CODcr及NH 3 -N的去除率分別為99.5%及99.9%;而且,經催化濕式氧化法治理焦化廢水小試結果估算,治理費用與生化法相近,但處理後的水質遠優於生化法。從技術、經濟指標、環境效益分析採用催化濕式氧化法治理焦化廢水經濟可行 [4] 。
2.2 生物強化技術
生物強化技術是指在生物處理體系中投加具有特定功能的微生物來改善原有處理體系的處理效果。投加的微生物可以來源於原有的處理體系,經過馴化、富集、篩選、培養達到一定數量後投加,也可以是原來不存在的外源微生物。實際應用中這兩種方法都有採用,主要取決於原有處理體系中的微生物組成及所處的環境 [5] 。這一技術可以充分發揮微生物的潛力,改善難降解有機物生物處理效果 [6-7] 。Selvaratnam等 [8] 通過在活性污泥中投加苯酚降解菌Psendomonas Pvotida ATCC11172,提高了苯酚的去除率,系統在40d內一直保持在95%-100%的苯酚去除率,而沒有進行生物強化的對照組中苯酚去除率開始很高,但很快降到40%左右。
2.3 紛頓試劑技術
紛頓試劑對有機分子的破壞是非常有效的,其實質是二價鐵離子和過氧化氫之間的鏈反應催化生成·OH自由基,三價鐵離子催化劑(稱紛頓類試劑)也能激發這個反應,這兩個反應生成的·OH自由基能有效地氧化各種有毒的和難處理的有機化合物;或者採用紫外燈作為輻射能源放射紫外線進入廢水,當過氧化氫被紫外光激活後,反應產物是一個高反應性的·OH自由基,這個·OH基團迅速引發氧化鏈反應,最終有機化合物被分解為CO2和H2O。K.Banerjeek等經實驗證明:採用過氧化氫添加鐵鹽和同時採用紫外光、過氧化氫和催化劑的兩個處理過程都能有效地減少焦化廢水中COD濃度 [9] 。
2.4 固定化細胞技術
固定化細胞(簡稱IMC)技術是通過採用化學或物理的手段將游離細胞或酶定位於限定的空間區域內,使其保持活性並可反復利用的方法。制備固定化細胞可採用吸附法、共價結合法、交聯法、包埋法等。固定化細胞技術充分發揮了高效菌種或遺傳工程菌在降解有機物治理中的降解潛力,該技術特點是細胞密度高,反應迅速,微生物流失少,產物分離容易,反應過程式控制制較容易,污泥產生量少,可去除氮和高濃度有機物或某些難降解物質 [10] 。
Amanda等 [11] 以PVA-H3BO3包埋法固定化假單孢菌Psendomonas,在流化反應器中連續運行2周,進水酚濃度從250mg/L逐漸提高到1300mg/L,出水酚濃度均為0。
2.5 三相氣提升循環流化床
蔡建安 [12] 經實驗研究證明:用三相氣提升內循環流化床反應器(AZLR)處理焦化廢水比活性污泥法效果好,其處理負荷高,COD進水負荷為13kg/(d·m 3 ),COD去除的容積負荷可達7kg/(d·m 3 )。它對酚、氰等污染物的耐受力強,去除效果好,並具有較低的曝氣能耗,其COD去除率為54.4%~76%,酚的去除率為95%~99.2%,氰去除率為95%~99.2%。
2.6 缺氧-好氧-接觸氧化法
該工藝在缺氧過程溶解氧控制在0.5mg/L以下,兼性脫氮菌利用進水中的COD作為氫供給體,將好氧池混合液中的硝酸鹽及亞硝酸鹽還原生成氨氣排入大氣,同時利用厭氧生物處理反應過程中的產酸過程,把一些復雜的大分子稠環化合物分解成低分子有機物。在好氧過程溶解氧在3~6mg/L范圍內,先由好氧池中的碳化菌降解易降解的含碳化合物,再由亞硝酸鹽菌和硝酸鹽菌氧化氨氮;在接觸氧化過程溶解氧控制在2~4mg/L,能夠進一步降解難降解有機物,脫除氨氮、磷,對水質起關鍵作用。山西省臨汾市煤氣化公司採用這一工藝,出水水質由處理前COD3000mg/L、氨氮650mg/L、酚250mg/L,經處理後分別變為140mg/L、230mg/L、0.9mg/L,基本接近《污水綜合排放標准》 [13] 。
3 焦化廢水深度處理技術
焦化廢水二級出水中COD和NH 3 -N常常超標,應進行三級處理。許多學者已研究出了一些三級處理方法,如化學氧化法、折點加氯法、絮凝沉澱輔以加氯法、吸附過濾輔以離子交換法等,但由於經濟和技術的原因,這些方法均處於試驗階段,目前較為經濟可行的三級處理方法主要有以下兩種。
3.1 氧化塘深度處理法
氧化塘深度處理焦化廢水簡單易行,處理效果好,能耗低,易管理,費用低。COD進水濃度在250-400mg/L范圍內,該方法對COD處理效果較為理想。氧化塘對低濃度焦化廢水進行處理的適宜pH值為6-8,最佳pH值為7;適宜溫度范圍為25-35℃,最佳溫度為35℃。如果投加生活污水於焦化廢水中,其COD和NH 3 -N去除率都可得到提高。藻類吸收作用是焦化廢水氧化塘脫除NH 3 -N的主要途徑,硝化反應是焦化廢水NH 3 -N轉化的重要反應。吳紅偉等經試驗證明,採用氧化塘深度處理焦化廢水,COD、NH 3 -N均可達標排放 [14] 。
3.2 粉煤灰吸附法
X光衍射儀測定結果表明:粉煤灰主要成分是SiO 2 、Al 2 SO 5 、NaAlSiO 4 等,將粉煤灰作為吸附劑深度處理焦化廢水,脫色效果好,對CODcr、揮發酚、油等去除效果好,費用低廉。張兆春 [15] 等研究表明腐植酸類物質-長焰煤作為吸附劑對焦化廢水中化學耗氧物質具有較快的吸附速率以及可觀的吸附容量,可以對焦化廢水進行深度處理。山西焦化廠採用生化-粉煤灰深度處理焦化廢水的工藝技術,經處理後,除氨氮偏高外,CODcr、揮發酚、硫化物、氰化物、BOD5等污染物濃度均低於國家規定的允許排放標准,處理後的水60%被回用。
4 結束語
深入研究焦化廢水的先進處理技術,既是當前經濟建設面臨的現實問題,也是將來進行技術攻關的重點,我們應該尋求既高效又經濟的處理技術,改善環境質量,實現水資源的循環利用。
E. 活性污泥法處理焦化廢水為何出水氨氮很難控制
1.氨氮負荷高
2.進水氨氮本身不穩定
F. 焦化廢水中的硫氰化合物的來源和種類 有哪位知道 要詳細點的答案哦 萬分感謝
這個問題估計沒人能夠准確回答你。我只知道焦化廢水中會含有幾十mg/L的硫化物專和氰化物,主要屬是焦爐荒煤氣和煤焦油、氨水分離過程中溶解在廢水中的,(煤氣中含有6000~8000mg/m³的硫化氫,含量不詳的氰化氫),這兩種氣體在廢水中的溶解度不高,所以廢水中含量也不會超過100ppm。我最近在研究一個現象,就是焦化廢水經過生化後,產品水中的硫酸根大幅度增高了,初步估計是廢水中還含有大量的亞硫酸鹽、硫代硫酸鹽、二硫代硫酸鹽等等。如果你有答案,也可交流一下。
G. 焦化廢水處理工藝有哪些
焦化廢水的處理工藝:
1.改性沸石對焦化廢水中COD的去除
沸石是一種天然的多孔礦物,是呈架狀結構的多孔含水鋁硅酸鹽晶體的沸石族礦物的總稱,沸石化學成分實際上是由Si 、Al203、H2O、鹼和鹼土金屬離子四部分構成[4]。沸石的一般化學式為:AmBqO2q.nH20,結構式為Ax/q[(AlO2)x(SiO2)y]nH2O,其中:A為Ca、Na、K、Ba、Si等陽離子,B為Al和Si,q為陽離子電價,m為陽離子數,n為水分子數,X為AJ原子數,Y為Si原子數,v,x通常在1~5之間,(x+y)是單位晶胞中四面體的個數[5]。沸石是一種廉價的地方性材料,在我國具有豐富的儲量,來源廣泛,作為水處理的吸附過濾材料,具有足夠的強度,其價格低於活性炭1/20,接近於砂濾料的價格l5元,噸。可以在不增設專門構築物和不增加設備的前提下,改善出水水質,適用於現有工廠的處理工藝改選和新建水廠。天然沸石在常溫、常壓下經過化學溶液的活化處理,可改變吸附有機物的效果。
2.聚硅酸鹽處理焦化廢水
聚硅酸鹽是一類新型無機高分子復合絮凝劑,是在聚硅酸(即活化硅酸)及傳統的鋁鹽、鐵鹽等絮凝劑的基礎上發展起來的聚硅酸與金屬鹽的復合產物[7] ,這類絮凝劑同時具有電中和及吸附架橋作用,絮凝效果好,且易於制備,價格便宜,處理焦化廢水有顯著的效果。本文針對焦化廢水二沉池出水COD較高,排放難以達標的問題,制備了新型絮凝劑聚硅氯化鋁,採用絮凝與吸附相結合的方法對焦化廢水進行深度處理,並對該處理工藝的反應條件、影響因素以及去除效果進行了研究,找出了最佳處理條件,處理後出水能夠達標。
3.SBR工藝
SBR工藝是一種新近發展起來的新型處理焦化廢水的工藝,即為序批式好氧生物處理工藝,其去除有機物的機理在於充氧時與普通活性污泥法相同,不同點是其在運行時,進水、反應、沉澱、排水及空載5個工序,依次在一個反應池中周期性運行,所以該法不需要專門設置二沉池和污泥迴流系統,系統自動運行及污泥培養、馴化均比較容易。該法處理焦化廢水有著獨有的優勢:一是不要空問分割,時序上就能創造出缺氧和好氧的環境,即具有A/O 的功能,十分有利於氨氮和COD的去除。二是該法的沉澱是一種靜止的沉澱,對焦化廢水這種污泥沉澱性能不好的廢水,固液分離效果非常明顯。三是該法可以省去二沉池,其佔地面積相對要小一些。
H. 跪求《焦化廢水處理技術及發展前景》論文大綱
(一)工程概述
1、廢水水質
本工程現有一套處理裝置,處理量為200m3/d,需要改建;另外增加馬上需要投產的二期工程,新建一套廢水處理裝置,處理廢水量為200m3/d,合計廢水總量為400m3/d。
表-1 焦化廢水水質 (單位為mg/L)
2、水質排放要求
根據上海市污水綜合排放標准二級標准,廢水處理後需達到的排放標准如表-2所示:
表-2廢水處理排放標准 (除溫度、pH外,其餘單位為mg/L)
(二) 廢水處理工藝
1、工藝流程
本改擴建工程包括原有系統改造及新建兩部分。根據上海焦化有限公司廢水處理的成果,結合原有的廢水處理工藝,新擴改工程採用A1-A2-O生物膜工藝。
盡量不改變已有廢水處理設施的功能和結構,充分利用已有廢水處理構築物的處理能力,對老系統進行改造,在原有的A/O系統基礎上增加一個厭氧酸化池,即改為A1-A2-O生化系統。新建一套A1-A2-O生化系統,兩套系統各承擔一半的處理水量。
整個廢水處理改擴建工程工藝流程圖(略)
2、工藝流程說明
(1)從各車間出來的生產廢水及生活污水統一進入調節池,調節池的主要作用是均衡廢水的水質和水量,保證後續生化處理設施運行的穩定性。由於廢水的含磷量極少,故在調節池中加入磷營養鹽,提供微生物所需的營養。
(2)調節池出來的廢水由兩台泵分別提升至新老兩套A1-A2-O生化系統,在生化處理系統中,廢水的降解過程如下:
a. 焦化廢水首先進入厭氧酸化段。在該段,廢水中的苯酚、二甲酚以及喹啉、異喹啉、吲哚、吡啶等雜環化合物得到了較大的轉化或去除,厭氧酸化段的設置對於復雜有機物的轉化與去除是十分有利的。因此,廢水經過厭氧酸化段後水質得到了很好的改善,廢水的可生化性較原水有所提高,為後續反硝化段提供了較為有效的碳源。
b. 在缺氧段進行的主要是反硝化反應,從酸化段出來的廢水進入缺氧段,同時好氧段處理後的出水也部分迴流至缺氧段,為缺氧段提供硝態氮。另外,由於焦化廢水中所含反硝化碳源不足,需在缺氧池中加入甲醇作為補充碳源。
經過缺氧段的處理,硝態氮被轉化為氮氣,達到脫氮的目的。同時,廢水中的大部分有機物得到了去除,使廢水以較低的COD進入好氧段,這對於好氧段進行的硝化反應是十分有利的。
c. 廢水經過缺氧段的處理後進入好氧段。在好氧段,由於廢水中所含氨氮較高而COD較低。因此,在這里進行的主要是硝化反應,在好氧段需投加純鹼溶液提供硝化反應所需的鹼度。廢水經過好氧段的處理後,氨氮基本可全部轉化為硝酸鹽氮(硝酸鹽氮通過迴流至缺氧段,在缺氧段最終轉化為氮氣後得到有效脫氮),同時,有機物得到進一步的降解,使最終出水COD達標。
(3)廢水經生化系統處理出來後,經過混凝沉澱池進行泥水分離,在混凝部分投加聚鐵,以增加沉澱部分污泥的沉澱性能,並且進一步降低出水COD。
二沉池出水接入「北排」管網。
(4)從二沉池排出的剩餘污泥定時排至污泥濃縮池進行濃縮穩定處理,濃縮池上清液迴流至調節池再次進行處理,濃縮池污泥排入污泥貯池中,定時由污泥脫水機進行脫水處理。脫水前需加入PAM與污泥進行絮凝反應,提高污泥脫水效率。
污泥脫水後外運處置。
4、工藝條件
(1)控制進水水質水量
根據焦化廢水主要來源水質水量的原始統計數據,以及設計方案的規定,進入污水處理系統的廢水水質水量必須達到設計要求
(2)廢水預處理
為降低後續生化處理負荷,減輕有毒物質的沖擊負荷,同時為穩定後續生化處理效果,利於操作管理,廢水進入系統以前需進行預處理。
a. 控制進水COD含量
進水COD波動過大,會對系統運行帶來很大沖擊。因此,根據設計要求應嚴格控制進水COD在設計要求范圍內。
b. 控制進水水溫
來自老廠區的終冷廢水、蒸氨廢水和5#、6#焦爐蒸氨廢水因水溫很高,需經板式冷凝器及霧化冷卻器冷卻到38℃以下再排入調節池。
c. 控制進水中油類含量
煤氣冷凝廢水及各處清濁分流的濁水經重力隔油、氣浮除油處理(含油低於30mg/L),使含油量低於影響微生物正常生長的濃度後,再排入調節池。
d. 降低氨氮
部分蒸氨廢水先通過焦化有限公司固定氨分解裝置,將其氨氮濃度由800 mg/L降低到250 mg/L後,排入調節池。
e. 降低灰分
來自「三聯供」的廢水因灰分較多,需經沉澱除灰後再排入調節池。
登錄到世界印染網站上查閱
I. 焦化廢水是什麼
焦化廢水是一種典型的有毒難降解有機廢水。
焦化廢水主要來自焦爐煤氣初專冷和焦化生產屬過程中的生產用水以及蒸汽冷凝廢水。
特徵:焦化廢水中污染物濃度高,難於降解,由於焦化廢水中氮的存在,致使生物凈化所需的氮源過剩,給處理達標帶來較大困難;
廢水排放量大,每噸焦用水量大於2.5t;
廢水危害大,焦化廢水中多環芳烴不但難以降解,而且通常還是強致癌物質,對環境造成嚴重污染的同時也直接威脅到人類健康。
J. 焦化廢水的廢水來源
焦化廠主要生產焦碳、商業煤氣、硫銨和輕苯等化工產品。該廠焦油回收內系統採用硫銨流容程,焦油加工採用管式爐兩塔連續蒸餾,工業奈生產工藝為雙爐雙塔連續蒸餾、洗滌、精製。在焦爐煤氣冷卻、洗滌、粗苯加工及焦油加工過程中,產生含有酚、氰、油、氨及大量有機物的工業廢水。