❶ 什麼是稀釋倍數法
1、主題內容與適用范圍
本標准規定了兩種測定顏色的方法。本標准測定經15min澄清後樣品的顏色。pH值對顏色有較大影響,在測定顏色時應同時測定pH值。
1.1 鉑鈷比色法參照採用國際標准ISO 7887—1985millipore sdi 《水質顏色的檢驗和測定》。鉑鈷比色法適用於清潔水、輕度污染並略帶黃色調的水,比較清潔的地面水、地下水和飲用水等。
1.2 稀釋倍數法適用於污染較嚴重的地面水和工業廢水。
兩種方法應獨立使用,一般沒有可比性。
樣品和標准溶液的顏色色調不一致時,本標准不適用。
2 、定義
本標準定義取自國際照明委員會第17號出版物(CIE publication No.17),採用下述幾條。
2.1 水的顏色
改變透射可見光光譜組成的光學性質。
2.2 水的表觀顏色
由溶解物質及不溶解性懸浮物產生的顏色,millipore sdi用未經過濾或離心分離的原始樣品測定。
2.3 水的真實顏色
僅由溶解物質產生的顏色。用經0.45?m濾膜過濾器過濾的樣品測定。
2.4 色度的標准單位,度:在每升溶液中含有2mg六水合氯化鈷(Ⅳ)和1mg鉑[以六氯鉑(Ⅳ)酸的形式]時產生的顏色為1度。
3、稀釋倍數法
3.1 原理
將樣品用光學純水(鉑鈷比色法)稀釋至用目視比較與光學純水相比剛好看不見顏色時的稀釋倍數作為表達顏色的強度,單位為倍。
同時用目視觀察樣品,檢驗顏色性質:顏色的深淺(無色,淺色或深色),色調(紅、橙、黃、綠、藍和紫等),如果可能包括樣品的透明度(透明、混濁或不透明)。用文字予以描述。
結果以稀釋倍數值和文字描述相結合表達。
3.2 試劑
3.2.1 光學純水(鉑鈷比色法)。
3.3 儀器
3.3.1 實驗室常用儀器及具塞比色管(鉑鈷比色法)、pH計(鉑鈷比色法)。
3.4 采樣和樣品
同鉑鈷比色法
3.5 步驟
3.5.1 試料
同鉑鈷比色法
3.5.2 測定
分別取試料(鉑鈷比色法)和光學純水(鉑鈷比色法)於具塞比色管中,充至標線,將具塞比色管放在白色表面上,具塞比色管與該表面應呈合適的角度,使光線被反射自具塞比色管底部向上通過液柱。垂直向下觀察液柱,比較樣品和光學純水,描述樣品呈現的色度和色凋,如果可能包括透明度。
將試料用光學純水逐級稀釋成不同倍數,分別置於具塞比色管井充至標線。將具塞比色管放在白色表面上,用上述相同的方法與光學純水進行比較。將試料稀釋至剛好與光學純水無法區別為止,記下此時的稀釋倍數值。
稀釋的方法:試料的色度在50倍以上時,用移液管計量吸取試料於容量瓶中,用光學純水稀至標線,每次取大的稀釋比,使稀釋後色度在50倍之內。
試料的色度在50倍以下時,在具塞比色管中取試料25mL,用光學純水稀至標線,每次稀釋倍數為2。
試料或試料經稀釋至色度很低時,應自具millipore sdi塞比色管倒至量筒適量試料並計量,然後用光學純水稀至標線,每次稀釋倍數小於2。記下各次稀釋倍數值。
另取試料測定pH值。
4、 結果的表示
將逐級稀釋的各次倍數相乘,所得之積取整數值,以此表達樣品的色度。
同時用文字描述樣品的顏色深淺、色調,如果可能,包括透明度。
在報告樣品色度的同時,報告pH值。
❷ 工業廢水色度常用稀釋倍數法,但是個人的經驗,稀釋倍數法肉眼看不準,請問各位大俠有沒有更好的辦法
分光光度計
就是利用分光光度法對物質進行定量定性分析的儀器
分光光度計採用一回個可以產生多個答波長的光源,通過系列分光裝置,從而產生特定波長的光源,光源透過測試的樣品後,部分光源被吸收,計算樣品的吸光值,從而轉化成樣品的濃度。樣品的吸光值與樣品的濃度成正比。
單色光輻射穿過被測物質溶液時,被該物質吸收的量與該物質的濃度和液層的厚度(光路長度)成正比,其關系如下式:
A=-log(I/I。)=-lgT=kLc
式中 :A 為吸光度;
I。為入射的單色光強度;
I 為透射的單色光強度;
T 為物質的透射率;
k 為摩爾吸收系數;
L 為被分析物質的光程,即比色皿的邊長
c 為物質的濃度
❸ 色度的測定方法
本標准規定了兩種測定顏色的方法。本標准測定經15min澄清後樣品的顏色。pH值對顏色有較大影響,在測定顏色時應同時測定pH值。
⒈1 鉑鈷比色法參照採用國際標准ISO 7887—1985《水質顏色的檢驗和測定》。鉑鈷比色法適用於清潔水、輕度污染並略帶黃色調的水,比較清潔的地面水、地下水和飲用水等。
⒈2 稀釋倍數法適用於污染較嚴重的地面水和工業廢水。
兩種方法應獨立使用,一般沒有可比性。
樣品和標准溶液的顏色色調不一致時,本標准不適用。
本標準定義取自國際照明委員會第17號出版物(CIE publication No.17),採用下述幾條。
⒉1 水的顏色
改變透射可見光光譜組成的光學性質。
⒉2 水的表觀顏色
由溶解物質及不溶解性懸浮物產生的顏色,用未經過濾或離心分離的原始樣品測定。
⒉3 水的真實顏色
僅由溶解物質產生的顏色。用經0.45μm濾膜過濾器過濾的樣品測定。
⒉4 色度的標准單位,度:在每升溶液中含有2mg六水合氯化鈷(Ⅳ)和1mg鉑[以六氯鉑(Ⅳ)酸的形式]時產生的顏色為1度。 ⒊1 原理
用氯鉑酸鉀和氯化鈷配製顏色標准溶液,與被測樣品進行目視比較,以測定樣品的顏色強度,即色度。
樣品的色度以與之相當的色度標准溶液(3.2.3)的度值表示。
註:此標准單位導出的標準度有時稱為「Hazen際」或「Pt-Co標」[GB 3143《液體化學產品顏色測定法(Hazcn單位——鉑-鈷色號)》]、或毫克鉑/升。
⒊2 試劑
除另有說明外,測定中僅使用光學純水(3.2.1)及分析純試劑。
⒊2.1 光學純水:將0.2μm。濾膜(細菌學研究中所採用的)在100mL蒸餾水或去離子水中浸泡1h,用它過濾250mL蒸餾水或去離子水,棄去最初的250mL,以後用這種水配製全部標准溶液並作為稀釋水。
⒊2.2 色度標准儲備液,相當於500度:將1.245±0.001g六氯鉑(Ⅳ)酸鉀(K2PtC16)及1.000±0.001g六水氯化鈷(Ⅳ)(CoCl2·6H2O)溶於約500mL水(4.1)中,加100±1mL鹽酸(p=1.18g/mL)並在1000mL的容量瓶內用水稀釋下標線。
將溶液放在密封的玻璃瓶中,存放在暗處,溫度不能超過30℃。個溶液至少能穩定6個月。
⒊2.3 色度標准溶液:在一組250mL的容量瓶中,用移液管分別加入2.50,5.00,7.50,10.00,12.50,15.00,17.50,20.00,30.00及35.00mL儲備液(3.2.2),並用水(3.2.1)稀釋至標線。溶液色度分別為:5,10,15,20,25,30,35,40,50,60和70度。
溶液放在嚴密益好的玻璃瓶中,存放於暗處。溫度不能超過30℃。這些溶液至少可穩定1個月。
⒊3 儀器
⒊3.1 常用實驗室儀器和以下儀器。
⒊3.2 具塞比色管,50mL。規格一致,光學透明玻璃底部無陰影。
⒊3.3 pH計,精度±0.1pH單位。
⒊3.4 容量瓶,250mL。
⒊4 采樣和樣品
所用與樣品接觸的玻璃器皿都要用鹽酸或表面活性劑溶液加以清洗,最後用蒸餾水或去離了水洗凈、瀝干。
將樣品採集在容積至少為1L的玻璃瓶內,在采樣後要盡早進行測定。如果必須貯存,則將樣品貯於暗處。在有些情況下還要避免樣品與空氣接觸。同時要避免溫度的變化。
⒊5 步驟
⒊5.1 試料
將樣品倒入250mL(或更大)量筒中,靜置15min,傾取上層液體作為試料進行測定。
⒊5.2 測定
將一組具塞比色管(3.3.2)用色度標准溶液(3.2.3)充至標線。將另一組具塞比色管用試料(3.5.1)充至標線。
將具塞比色管放在白色表面上,比色管與該表面應呈合適的角度,使光線被反射自具塞比色管底部向上通過液柱。
垂直向下觀察液柱,找出與試料色度最接近的標准溶液。
如色度≥70度,用光學純水(3.2.1)將試料適當稀釋後,使色度落入標准溶液范圍之中再行測定。
另取試料測定pH值。
⒊6結果的表示
以色度的際准單位⑶報告與試料最接近的標准溶液的值,在0~40度(不包括40度)的范圍內,准確到5度。40~70度范圍內,准確到10度。
在報告樣品色度的同時報告pH值。
稀釋過的樣品色度(A0),以度計,用下式計算:
式中:V1——樣品稀釋後的體積,mL;
V0——樣品稀釋前的體積,mL;
A1——稀釋樣品色度的觀察值,度。 ⒋1 原理
將樣品用光學純水(3.2.1)稀釋至用目視比較與光學純水相比剛好看不見顏色時的稀釋倍數作為表達顏色的強度,單位為倍。
同時用目視觀察樣品,檢驗顏色性質:顏色的深淺(無色,淺色或深色),色調(紅、橙、黃、綠、藍和紫等),如果可能包括樣品的透明度(透明、混濁或不透明)。用文字予以描述。
結果以稀釋倍數值和文字描述相結合表達。
⒋2 試劑
⒋2.1 光學純水(3.2.1)。
⒋3 儀器
⒋3.1 實驗室常用儀器及具塞比色管(3.3.1)、pH計(3.3.3)。
⒋4 采樣和樣品
同3.4條
⒋5 步驟
⒋5.1 試料
同第3.5.l條。
⒋5.2 測定
分別取試料(4.5.1)和光學純水(4.2.1)於具塞比色管中,充至標線,將具塞比色管放在白色表面上,具塞比色管與該表面應呈合適的角度,使光線被反射自具塞比色管底部向上通過液柱。垂直向下觀察液柱,比較樣品和光學純水,描述樣品呈現的色度和色凋,如果可能包括透明度。
將試料用光學純水逐級稀釋成不同倍數,分別置於具塞比色管井充至標線。將具塞比色管放在白色表面上,用上述相同的方法與光學純水進行比較。將試料稀釋至剛好與光學純水無法區別為止,記下此時的稀釋倍數值。
稀釋的方法:試料的色度在50倍以上時,用移液管計量吸取試料於容量瓶中,用光學純水稀至標線,每次取大的稀釋比,使稀釋後色度在50倍之內。
試料的色度在50倍以下時,在具塞比色管中取試料25mL,用光學純水稀至標線,每次稀釋倍數為2。
試料或試料經稀釋至色度很低時,應自具塞比色管倒至量筒適量試料並計量,然後用光學純水稀至標線,每次稀釋倍數小於2。記下各次稀釋倍數值。
另取試料測定pH值。 將逐級稀釋的各次倍數相乘,所得之積取整數值,以此表達樣品的色度。
同時用文字描述樣品的顏色深淺、色調,如果可能,包括透明度。
在報告樣品色度的同時,報告pH值。
❹ 水質色度倍數怎麼理解,比如用稀釋倍數法稀釋5次操作,色度結果怎樣表示
稀釋是2的5次方
❺ 如何測污水的色度
理化檢驗-化學分冊(PARTB:CHEM.ANAL.)2008年 第44卷
① 工作簡報 污水色度的測定 姚 國,王建衛 (東莞市市區污水處理廠,東莞523080) 摘 要:作為對常規方法的改進,提出用分光光度法代替目視比色法作為污水色度的測試方法, 並採用重鉻酸鉀及硫酸鈷配製的稀硫酸溶液(酸度約0.02mol・L-1)作為測定色度的標准溶液。 以此標准溶液的吸收峰350nm作為測定波長測定標准及水樣的吸光度。製作了色度在10°~100°之間的標准曲線,對試液的溫度、濁度及酸度的影響作了試驗,此方法的檢出限為色度5°。 關鍵詞:分光光度法;目視比色法;色度;污水 中圖分類號:O657.31 文獻標識碼:A 文章編號:100124020(2008)0120061202 YAOGuo,WANGJian2wei (,Dongguan523080,China) Abstract:, ,ansingadil.H2SO4solution(ca.0.02mol・L-1).,.°to100°wasprepared.(i.e.temperature,)werestudied.°. Keywords:Spectrophotometry;Visualcolorimetry;Colority;Sewagewater 色度是城鎮污水處理廠水質監測的一項基本控制項目。水中色度的測定方法有兩種,測定較清潔的天然水和飲用水的色度用鉑鈷標准比色法或鉻鈷標准比色法[1],測定工業污水和受工業污水污染的地表水及生活污水用稀釋倍數法。新鮮的生活污水中含大量的有機物、無機鹽、懸浮物和膠態物質,使水體混濁,呈淺灰褐色。生活污水經污水處理廠處理後或用0.45μm濾膜過濾後,水樣較清,色度很低,微黃色,可以採用上述兩種方法測定。 稀釋倍數法需將水樣稀釋成不同的稀釋倍數,然後與光學純水比較最後確定出水樣的稀釋倍數,對未受工業廢水污染的生活污水及污水處理廠處理後的出水,在稀釋5~20倍之間色度差異不大,
很難 收稿日期:2006206213 作者簡介:姚國(1965-),女,廣州市人,工程師,主要從事化 學分析工作。 用眼睛分辨。標准比色法通過配製一系列色度標准 溶液,然後與水樣進行目視比色,最後確定出水樣的色度。這兩種方法的共同缺點是受比色管顏色、刻度、天氣和人為影響因素大。試驗結果發現:鉻鈷標准溶液在350nm波長附近有最大吸收峰,且在10°~100°色度范圍內吸光度與色度符合朗伯比耳定律,本法改用重鉻酸鉀代替氯鉑酸鉀配製色度標准溶液,用分光光度計代替人眼進行定量測定。 1 試驗部分 1.1 儀器與試劑 Carry50紫外2可見分光光度計;Millipore純水 機,濾膜及抽濾裝置。 500°鉻鈷標准溶液[1]:准確稱取重鉻酸鉀0.0437g及硫酸鈷(CoSO4・7H2O)1.000g溶於少量水中,加入濃硫酸0.5mL,用水稀釋至500mL。此溶液的色度為500°。 ・ 16・
理化檢驗-化學分冊 姚國等:
污水色度的測定 1.2 標准曲線的繪制 分別取500°鉻鈷標准溶液0,1,2,…,10mL於50mL比色管中,用純化水稀至刻度,搖勻,各管的色度分別為10°,20°,40°,60°,80°,100°,於350nm波長處,以純水為空白,以1cm石英比色皿測定吸光度,繪制標准曲線,相關系數為0.9999,見圖1
。 圖1 用鉻(Ⅵ)2鈷(Ⅱ)標准溶液(色度范圍10°~100° )製作的色度標准曲線 Fig.1 Standardcurveofcolority(intherangeof10°-100° )preparedwithCr(Ⅵ )2Co(Ⅱ)standardsolution500°鉑鈷標准溶液與鉻鈷標准溶液顏色一致, 均呈黃色。稀釋後同一色度的標准溶液顏色也一 致,可用鉻鈷標准溶液代替鉑鈷標准溶液進行測定。 2 結果與討論 2.1 測定波長的選擇 (1)分別取10°~100°鉑鈷標准溶液,以純化水 為空白進行基線效正,用1cm石英比色皿在200~ 800nm波長范圍內掃描,在262nm波長處有最大吸收峰,且吸光度大於1,小於300nm波長處幾乎無吸收,故鉑鈷標准溶液在10°~100°范圍內不適合用於定量測定。掃描圖譜見圖2
。 圖2 色度為10°的鉑鈷標准溶液的吸收光譜 Fig.2 solutionequivalentto10°colority (2)分別取10°~100°鉻鈷標准溶液,以相同的 操作步驟在200~800nm波長范圍內掃描,鉻鈷標准溶液有兩個最大吸收峰,第一個在257nm附近,第二個在350nm附近,為重鉻酸鉀的兩個特徵吸 收峰,掃描圖譜見圖3
。 圖3 色度為10° (a),20°(b),40°(c),60°(d),80°(e)及100° (f)的鉻(Ⅵ)2鈷(Ⅱ)標准溶液的吸收光譜Fig.3 AbsorptionspectraofChromium(Ⅵ)2Cobalt(Ⅱ)° (a),20° (b),40°(c),60°(d),80°(e)and100°(f)(3)分別取污水處理廠的生活污水的原進水和 處理後的出水,以相同的操作步驟在200~800nm波長范圍內掃描;在257nm處的紫外區,由於水樣中含有機物和硝酸鹽干擾色度的測定,選取用靠近可見光區且無干擾的350nm作為測定波長,並製作色度在10°~100°之間的標准曲線。掃描圖譜見圖4
。 圖4 進水及出水樣的吸收光譜 Fig.4 2.2 溫度、濁度[1]、酸度[2]的影響 常溫下溫度對色度的影響很小,可以忽略。濁 度對色度的影響較大,可將水樣經0.45μm濾膜過濾後除去。在微酸性和中性條件下,酸度對色度的影響較小,可以忽略。2.3 檢出限[1] 分光光度法中以扣除空白值後的與0.01吸光度相對應的濃度為檢出限。本法檢出限為色度5°。2.4 水樣的測定 含懸浮物、混濁的水樣需經0.45μm濾膜過濾後進行測定。分取預處理過的水樣50mL於比色管中(或進行適當稀釋),按繪制標准曲線的步驟測定吸光度,根據標准曲線儀器自動算出水樣的色度。 (下轉第65頁) ・ 26・
理化檢驗-化學分冊 王永祥等:
大別山區野生黎豆中微量元素的測定與品質評價 表2 回收率和精密度試驗及與ICP2AES法 測定結果的比較(n=8) Tab.2 Testsforrecoveryandprecision,andanalyt. 元素 Element 測得量Am′toftheelementfound加標量Am′tofstdsaddedρ/(mg・L-1)測得總量Totalam′t ofthe element found 回收率 Recovery /% RSD /% ICP2AES法 測定值 ResultsobtainedbyICP2AESρ/(mg・L-1
) Mg0.180.200.40110.00.170.
19Ca0.350.400.7292.51.140.37Zn0.410.400.8097.50.480.38Cu0.330.300.65106.71.340.29Fe5.255.0010.495.81.865.10Mn 0.46 0.50 0.95 98.0 2.17 0.
44 表3 黎豆與黃豆、黑豆中6種微量元素含量的比較
Tab.3 ,
樣品 Sample 6種痕量元素的測定值 w/(μg・g-1)Mg CaZnCuFeMn黎豆2532177767.0920.86112.9041.02黃豆2270204770.4615.14117.5424.37黑豆 2098 2124 66.72 18.85 139.74 25.80 鎂、鐵等元素,從黎豆與黑豆、黃豆的測定結果比較 中可以看出,黎豆中鎂、錳、銅的含量均明顯高於其 他兩種同類作物,有較高的開發利用價值。參考文獻: [1] 劉萍,吳世德.原子吸收光譜法測竹香米和大米中銅 鋅錳鈉鎂含量[J].中國公共衛生雜志,2002,23(3): 5282528. [2] 李雯,杜秀月.原子吸收光譜法及其應用[J].鹽湖研 究雜志,2003,11(4):67271. [3] 燕冰,楊軍,周靖.火焰原子吸收光譜法測定冬葵葉 中幾種營養元素含量[J].哈爾濱師范大學:自然科學學報,2003,19(4):77280. [4] 王秀敏.原子吸收光譜法測定小麥品種子粒中鉀鈉鈣 鎂的含量[J].河北農業大學學報,2003,26(4):90293. [5] 王平,孫慧,張蘭傑.黑米、黑豆、黑芝麻中幾種微量元 素含量的測定[J].鞍山師范學院學報,2000,2(1):952 98. [6] UmemuraT,KitaguchiR,HaraguchiH.Counterion2 [J].AnalChem,1998,70(5):9362942. [7] DonerG,Ege
A.Evaluationofdigestionproceres rometry[J].AnalChimActa,2004,520(1/2):2172222. [8] BalasubramanianS,PugalenthiV.Determinationof nspectrometry[J].Talanta,1999,50(3):4572
467.
(上接第62頁) 分取污水處理廠的生活污水的原進水和處理後的出水,經預處理後,按文獻[1]中的標准比色法和本方法進行測定,結果見表1
。 表1 用目視比色法與分光光度法測得的色度結果的比較 Tab.1
byvisualcolorimetry andspectrophotometry 測定方法 Methodofdetermination 測得色度值 Valuesofcolorityfounddegree 20050403進水 20050403inletwater20050403出水 20050403 outletwater20050507進水 20050507 inletwater20050507 出水 20050507 outletwater目視比色法15°~20°10°左右10°~15°5°~10°分光光度法 18.9° 11.1° 10.8° 8.4° 由表1可知,鉻鈷標准比色法得到的結果是某 一范圍,本方法得到結果是一個確定的值,兩種方法得到結果一致。本方法的優點:預先建好標准曲線,每次測定時只需將水樣進行預處理,然後測定吸光度,儀器自動算出水樣的色度。操作簡單,結果准確,減少了人為誤差。參考文獻: [1] 國家環保局《水和廢水監測分析方法》編委會.水和廢 水監測分析方法[M].4版.北京:中國環境出版社, 2002. [2] GB11903-1989 水質色度的測定[S]. ・ 56・
❻ 生活污水BOD5測量方法和計算方法
1.水樣的預處理
(1) 水樣的pH值若超出6.5~7.5范圍時,可用鹽酸或氫氧化鈉稀溶液調節至近於7,但用量不要超過水樣體積的0.5%。若水樣的酸度或鹼度很高,可改用高濃度的鹼或酸液進行中和。
(2) 水樣中含有銅、鉛、鋅、鎘、鉻、砷、氰等有毒物質時,可使用經馴化的微生物接種液的稀釋水進行稀釋,或提高稀釋倍數,降低毒物的濃度。
(3) 含有少量游離氯的水樣,一般放置1~2h,游離氯即可消失。對於游離氯在短時間不能消散的水樣,可加入亞硫酸鈉溶液,以除去之。其加入量的計算方法是:取中和好的水樣100mL,加入1+1乙酸10 mL,10%(m/V)碘化鉀溶液l mL,混勻。以澱粉溶液為指示劑,用亞硫酸鈉標准溶液滴定游離碘。根據亞硫酸鈉標准溶液消耗的體積及其濃度,計算水樣中所需加亞硫酸鈉溶液的量。
(4) 從水溫較低的水域或富營養化的湖泊採集的水樣,可遇到含有過飽和溶解氧,此時應將水樣迅速升溫至20℃左右,充分振搖,以趕出過飽和的溶解氧。從水溫較高的水域廢水排放口取得的水樣,則應迅速使其冷卻至20℃左右,並充分振搖,使與空氣中氧分壓接近平衡。
2.水樣的測定
(1) 不經稀釋水樣的測定;溶解氧含量較高、有機物含量較少的地面水,可不經稀釋,而直接以虹吸法將約20℃的混勻水樣轉移至兩個溶解氧瓶內,轉移過程中應注意不使其產生氣泡。以同樣的操作使兩個溶解氧瓶充滿水樣後溢出少許,加塞水封。瓶不應有氣泡。立即測定其中一瓶溶解氧。將另一瓶放入培養箱中,在20±1℃培養5d後。測其溶解氧。
(2) 需經稀釋水樣的測定:根據實踐經驗,稀釋倍數用下述方法計算:地表水由測得的高錳酸鹽指數乘以適當的系數求得(見下表)。
工業廢水可由重鉻酸鉀法測得的COD值確定,通常需作三個稀釋比,即使用稀釋水時,由COD值分別乘以系數0.075、0.15、0.225,即獲得三個稀釋倍數;使用接種稀釋水時,則分別乘以0.075、0.15和0.25,獲得三個稀釋倍數。
高錳酸鹽指數(mg/L)
系 數
<5
—
5~10
0.2、0.3
10~20
0.4、0.6
>20
0.5、0.7、1.0
CODcr值可在測定水樣COD過程中,加熱迴流至60min時,用由校核試驗的鄰苯二甲酸氫鉀溶液按COD測定相同步驟制備的標准色列進行估測。
稀釋倍數確定後按下法之一測定水樣。
① 一般稀釋法:按照選定的稀釋比例,用虹吸法沿筒壁先引入部分稀釋水(或接種稀釋水)於1000mL量筒中,加入需要量的均勻水樣,再引入稀釋水(或接種稀釋水)至800mL,用帶膠板的玻璃棒小心上下攪勻。攪拌時勿使攪棒的膠板露出水面,防止產生氣泡。
按不經稀釋水樣的測定步驟,進行裝瓶,測定當天溶解氧和培養5d後的溶解氧含量。
另取兩個溶解氧瓶,用虹吸法裝滿稀釋水(或接種稀釋水)作為空白,分別測定5d前、後的溶解氧含量。
② 直接稀釋法:直接稀釋法是在溶解氧瓶內直接稀釋。在已知兩個容積相同(其差小於lmL)的溶解氧瓶內,用虹吸法加入部分稀釋水(或接種稀釋水),再加入根據瓶容積和稀釋比例計算出的水樣量,然後引入稀釋水(或接種稀釋水)至剛好充滿,加塞,勿留氣泡於瓶內。其餘操作與上述稀釋法相同。
在BOD5測定中,一般採用疊氮化鈉修正法測定溶解氧。如遇干擾物質,應根據具體情況採用其他測定法。
3.BOD5計算
不經稀釋直接培養的水樣:
BOD5(mg/L)=c1-c2
式中:cl—水樣在培養前的溶解氧濃度(mg/L);
c2—水樣經5d培養後,剩餘溶解氧濃度(mg/L)。
經稀釋後培養的水樣:
式中:B1—稀釋水(或接種稀釋水)在培養前的溶解氧濃度(mg/L);
B2—稀釋水(或接種稀釋水)在培養後的溶解氧濃度(mg/L);
—稀釋水(或接種稀釋水)在培養液中所佔比例;
—水樣在培養液中所佔比例。
❼ 色度稀釋倍數法稀釋倍數怎樣操作
1、主題內容與適用范圍 本標准規定了兩種測定顏色的方法。
本標准測定經15min澄清後專樣品的顏色。pH值對顏色有屬較大影響,在測定顏色時應同時測定pH值。 1.1 比色法參照採用國際標准ISO 7887—1985millipore sdi 《水質顏色的檢驗和測定》。
❽ 稀釋倍數法測定色度有沒有限值
1、標准上說:試料的色度在50倍以下時,每次稀釋倍數為2倍,我認為這個說法並不等同於最小內單位就是2倍,標准上只說容了稀釋倍數法測定色度的單位為倍,單位為倍不等同於最小單位為2倍.
2、測出的色度值常規情況下保留整數.
❾ 稀釋倍數怎麼算
稀釋倍數=原液濃度/(原液濃度×移取體積/定容體積)
例如,你有一瓶100mg/L的溶液,要稀釋3倍、5倍、10倍、20倍。現有300毫升的容量瓶或其他可定容的容器。
稀釋3倍,即移取100mg/L的溶液100mL,定容至300mL;
稀釋5倍,即移取100mg/L的溶液60mL,定容至300mL;
稀釋10倍,即移取100mg/L的溶液30mL,定容至300mL;
稀釋20倍,即移取100mg/L的溶液15mL,定容至300mL。
(9)生活污水色度的測定稀釋倍數法擴展閱讀:
稀釋指對現有溶液加入更多溶劑而使其濃度減小的過程。在稀釋後溶液的濃度減小,但溶質的總量不變。
例如將一莫耳(約58.5克)的食鹽(溶質)溶在一升的水(溶劑)中,溶液的體積莫爾濃度為1M,若再加入一升的水,溶液的體積莫爾濃度變為0.5M,但溶液食鹽的總量仍為一莫耳。
溶劑是一種可以溶解固體,液體或氣體溶質的液體,繼而成為溶液。在日常生活中最普遍的溶劑是水。而所謂有機溶劑即是包含碳原子的有機化合物溶劑。溶劑通常擁有比較低的沸點和容易揮發。或是可以由蒸餾來去除,從而留下被溶物。
因此,溶劑不可以對溶質產生化學反應。它們必須為低活性的。溶劑可從混合物萃取可溶化合物,最普遍的例子是以熱水沖泡咖啡或茶。溶劑通常是透明,無色的液體,他們大多都有獨特的氣味。
使用標簽上都有標識農葯復配指導,最常見的是以下這3種方法:
1,百分比濃度 這個是最常見的,許多常規農葯都是這樣標識的,用%號表示,其意思是說在100份葯劑,葯液及粉油劑中含有效成分的含量。
2,倍數法 這個也比較常見,用倍數表示,既1份葯液或者葯粉中加入的稀釋劑的量為原葯量的倍數。舉個簡單例子,如需要配製700倍的30%的多菌靈,意思是用1份30%的多菌靈,加700份水混合攪拌而成。
3,ppm 是表示應用中噴灑液的濃度,即一百萬份噴灑液種含有效成分的份數。