A. 高分子膜的用途
高分子聚合膜廣泛的應用於各種膜分離過程中。膜材料的性能直接決定了膜分離過程性能的高低, 因而研製出具有高選擇性、高通量、基本無缺陷並能大規模生產的膜一直以來是膜分離技術研究的重點內容。
膜蒸餾技術在海水和苦鹹水的淡化、廢水處理、低溫果汁濃縮、中醫葯制備等領域得到了廣泛的研究, 由於膜蒸餾淡化技術可以利用低品位能源( 如廢熱、太陽能等) 作為其驅動動力, 因而在能源緊張和水資源緊張的當今越來越受到重視。但是低蒸餾通量和價格高昂的膜材料成為制約膜蒸餾技術商業化應用的關鍵。
得到應用的高分子膜材料主要有三種, 即聚四氟乙烯( PTFE) 、聚偏氟乙烯( PVDF) 和聚丙烯( PP) 。它們的疏水性能都較好, 其中PTFE 膜的疏水性最好。從耐氧化性及化學穩定性看, PTFE 膜優於其他兩種膜,這使得PTFE 膜在膜蒸餾過程中應用較廣; PVDF 膜次之; PP 膜化學穩定性及耐氧化性相對較差,但由於價格低廉, 市場應用廣闊。
B. 膜蒸餾法除鹽的原理是什麼
膜蒸餾過程幾乎是在常壓下進行,設備簡單、操作方便,在技術力量較薄弱的地區也有實現的可能性;在非揮發性溶質水溶液的膜蒸餾過程中,因為只有水蒸汽能透過膜孔,所以蒸餾液十分純凈,可望成為大規模、低成本制備超純水的有效手段;該過程可以處理極高濃度的水溶液,如果溶質是容易結晶的物質,可以把溶液濃縮到過飽和狀態而出現膜蒸餾結晶現象,是目前唯一能從溶液中直接分離出結晶產物的膜過程;膜蒸餾組件很容易設計成潛熱回收形式,並具有以高效的小型膜組件構成大規模生產體系的靈活性;在該過程中無需把溶液加熱到沸點,只要膜兩側維持適當的溫差,該過程就可以進行,有可能利用太陽能、地熱、溫泉、工廠的余熱和溫熱的工業廢水等廉價能源。
C. 用疏水層析法分離一種蛋白質類葯物的具體步驟
超濾是一種具有分子水平的薄膜過濾手段,超濾膜作為分離介質,以膜兩側的壓力差為推動力,將不同分子量的溶質進行選擇性分離。超濾過程一般是在常溫低壓下進行的,對分離熱敏性、保味性和易發生化學變化的物質最為適用。在生物合成葯物中主要用於大分子物質的分級分離和脫鹽濃縮,小分子物質的純化,醫葯生化制劑的去熱原處理等。
1除熱原
制劑中去除熱原一般是利用活性碳反復吸附,該方法勞動強度大、損耗大、得率低。超濾去除熱原的原理是使用小於熱原分子量的超濾膜攔截熱原,該方法已經得到美國食品與醫葯管理局認證,具有勞動強度小、產品得率高、產品質量好的優點。
上海第四制葯股份有限公司採用卷式超濾器小裝置,以截留分子量2萬的膜進行了硫酸(雙氫)鏈黴素葯除熱原試驗,試驗結果表明,採用超濾法代替傳統的活性炭吸附熱原,對於硫酸(雙氫)鏈黴素生產是可行的。上海福達制葯有限公司採用截留分子量1萬的磺化聚醚碸膜(SPES),進行黃芪注射液的除熱原超濾,再經活性炭吸附,使產品熱原合格率從原來的經常波動到目前的100%合格。上海天廚味精廠採用截留分子量為1萬的SPES超濾膜,對丙氨酸、谷氨酸、賴氨酸等氨基酸溶液除熱原,通過鱟試劑法測試結果,結果均為陰性。
由於葯液有效成分(如黃酮類、生物鹼類、總甙類等),其分子量都在1000以下。故對制葯制劑尤其是注射劑使用超濾除熱原是最適合的。空軍北京醫院葯局用超濾法制備了復方丹參、茵梔花、生脈3種復方中草葯注射液,所得超濾產品澄清度好,放置3個月後,無沉澱出現。用化學分析法對注射液中的鞣質、蛋白質、澱粉等項含量進行測定,結果顯示超濾過的產品中,上述雜質的含量均低於衛生標准,除雜質的效果很好。實驗證明,經超濾處理後的去熱原注射液並不會使原方有效成分損失。如復方丹參超濾品測得的281nm光密度值較高,薄層層析檢測出有原兒茶醛斑點,可見的斑點及其熒光點多且清晰。張英輝採用超濾法去除人參皂苷熱原,結果發現:超濾法可有效的去除熱原,又可有效的減少人參總皂苷的損失,該法簡便、可靠、效果好,可用於去除人參皂苷熱原。
北京中醫葯大學葯廠對比了活性碳和超濾兩種工藝,發現對清開靈注射液除熱原,兩種工藝均可行,但超濾法得到產品中:黃岑甙的含量高,產品顏色淺,微粒數量明顯少。利用超濾膜過濾川參通注射液、冠舒注射液、松梅樂注射液及大輸液中的熱原,實驗表明,葯液通過超濾後,熱原的截除率獲得滿意的結果,達到葯典的規定,去除熱原是可靠的。超濾不但可去除熱原,還能去除大於膜孔的高分子物質,提高注射液的澄明度和穩定性,而且超濾膜孔徑越小,脫色作用越明顯。
2小分子精製
對於抗生素類的小分子物質,其傳統的生產過程,要經過過濾、萃取、濃縮、結晶等工藝,存在過程冗長、收率低、能耗大等缺點,而且在精製過程中有微量大分子雜質殘留,如蛋白質、核酸、多醣等,這些雜質可能對人體產生副作用。利用超濾膜可以除去大分子雜質,簡化操作工藝。
青黴素是一種熱敏性物質,其活性單位受環境影響較大,溫度稍高或者處理時間延長均會導致活性單位降解。因此青黴素精製要求在15℃以下快速完成。目前青黴素精製過程中,需要加入十五烷基溴化吡啶作為破乳劑,而該破乳劑毒性大、價格昂貴,採用超濾工藝去除發酵副產品和殘留物以及一些可溶性蛋白質,無需加入破乳劑,而且過程簡單快捷。
超濾系統已應用於紅黴素、青黴素、頭孢菌素、四環素、林可黴素、慶大黴素、利福黴素等抗生素的過濾生產。美國Merck公司利用截留分子量為2.4萬的超濾膜過濾頭黴素發酵液,收率比鋪有助濾劑層的鼓式真空過濾機高出2%,達到98%,材料費用降低2/3,設備投資費用減少20%。另外利用超濾膜可有效地對頭孢菌素C發酵液進行加工處理,而不使膜堵塞或結垢,提高回收率,使得濃縮液中頭孢菌素C的濃度比原發酵液中的更高。韓少抑等利用超濾膜提純螺旋黴素,發現:截留分子量為5000的芳香聚醯胺超濾膜能去除蛋白等大分子雜質,起到納濾預處理作用。
維生素C是人體必需的一種營養成分,在醫學和營養學上有著廣泛的應用。目前,維生素C的生產方式主要有兩種:萊式法和兩步發酵法。其中兩步發酵法是我國科技人員首創的生產工藝,此工藝工程中常採用加熱沉澱法去除雜質,既耗能又造成有效成分古龍酸損失,收率也低。採用超濾膜系統代替加熱沉澱法去除發酵液中殘留的菌絲體、蛋白質和懸浮微粒等雜質,省去了預處理、加熱、離心等工序,既節約了能耗又提高了古龍酸的收率。
中葯中有效成分的分子量大多不超過1000,而無效成分如澱粉、多糖、蛋白質、樹脂等雜質的相對分子質量均在5萬以上。因此,用截留分子量適宜的超濾膜能夠很容易地將兩者分開。與傳統的化學分離方法相比較,膜分離的方法不僅效率高、操作簡便,而且成本低、經濟效益好,所以越來越多地被人們所採用。
3大分子精製
隨著生物技術的發展,大分子類葯物數量急劇增加,由於該類產品具有熱不穩定性,超濾的低溫快速過濾特性成為該類物質精製的重要方法。
利用截留分子量為2萬PS管式超濾膜系統濃縮植酸酶發酵液的實驗顯示,植酸酶的濃縮倍數可以達到6.53倍,濃縮收率為99.69%,截留率為99.93%。
利用PAN超濾膜從藏氂牛血中分離純化凝血酶的實驗顯示,所得凝血酶平均比活為38.24IU/mg,比傳統方法所得比活提高2倍。
利用超濾膜從豬血中純化SOD的方法有三個優點:①除去大量的小分子雜質;②濃縮SOD可節省隨後使SOD沉澱所需的溶劑;③能大大提高後續熱變性純化的效果,SOD總回收率達62%,比活性達5000U/mg。
在丙種球蛋白製品的生產過程中將超濾技術用於蛋白質的脫醇和濃縮。
將超濾技術用於人血白蛋白濃縮和脫醇。
採用超濾法濃縮分離免疫初乳中的抗體,以上這些應用都取得了良好濃縮效果。
用超濾法把高分子多糖類化合物單獨分離出來,制備具有特殊葯理作用的葯物,使中葯不同分子量組分用於不同的治療目的,達到葯物的綜合利用,是膜分離的重要功能。
選用截留分子量為5萬的PS超濾膜替代醇沉法處理板藍根水提液,實現了高效、節能。
利用CA超濾膜濃縮銀耳浸提液,其產品收率較常規濃縮方法提高了22.4%,同時縮短了濃縮時間。
採用超濾一滲濾法,改進香菇多糖的提取純化工藝,提高產品收率、降低生產成本。
用超濾法代替透析法去除海洋真菌多糖提取液中的小分子雜質,結果表明超濾法所得產品的得率和多糖含量都高於透析對照組,另外多糖中的色素大部分會被超濾膜吸附,這對提高粗品多糖含量是有利的。
中空纖維超濾膜可以有效提取六味地黃湯活性多糖,工藝簡單,生產周期短。
4膜蒸餾
膜蒸餾是利用疏水性微孔膜將兩種溫度不同的水溶液分隔開,在膜兩側水蒸氣壓力差的作用下,熱側的水蒸氣通過膜孔進入冷側,在冷側冷凝下來。膜蒸餾與常規蒸餾中的蒸發-傳送-冷凝過程相同。兩者都以氣-液平衡為基礎,都需要蒸發潛熱以實現相變。相對於常規分離過程,其優點是:①理論上100%分離離子、大分子、膠體、細胞及其他不揮發性物質;②操作溫度比傳統蒸餾過程低;③操作壓力比過程低;④對膜的機械性能要求低;⑤適於特種物質分離,而且可以分離極高濃度的物質,甚至可以產生結晶;⑥高效。將膜蒸餾用於熱敏性物質的濃縮,能很好地發揮其低溫濃縮的特性。青黴素作為抗生素應用於臨床已有50年歷史,一般採用溶媒萃取法提取,但提取過程復雜。利用直接接觸式膜蒸餾濃縮青黴素水溶液,濃縮過程比較穩定。益母草和赤芍是中醫臨床常用中葯,水蘇鹼和芍葯苷是兩者指標性成分,皆為水溶性,沸點比水高。將真空膜蒸餾法用於益母草與赤芍提取液的濃縮是可行的,具有效率高、耗能少、操作方便的優點,且有效成分的截留率為100%。
D. 厲害了,新技術能從鹽水裡提取出100%的水
E. 蒸餾法實現海水淡化是什麼原理
蒸餾法的原理很簡單,就是我們在實驗室里制備蒸餾水的原理。把海水燒到沸騰,淡水蒸發為蒸汽,鹽留在鍋底,蒸汽冷凝為蒸餾水,即是淡水。
多級閃蒸
水在常規氣壓下,加熱到100℃才沸騰成為蒸汽。如果使適當加溫的海水進入真空或接近真空的蒸餾室,便會在瞬間急速蒸發為蒸汽。利用這一原理,可以做成多級閃急蒸餾海水淡化裝置。
可見,百年以來,人們一直在尋找各種各樣的方法淡化海水,以克服淡水資源緊缺的威脅,而我們新聞中所提到的膜蒸餾技術與納米光子學結合的海水淡化法,則又是新的進步與鼓勵,希望我們能早日求得解決之法,不過在這個問題徹底解決之前,小編還是例行提倡:節約用水,人人有責!
F. 海水淡化中分子蒸餾和膜蒸餾是不是一回事
分子蒸餾是一種在高真抄空下操作的蒸餾方法,這時蒸氣分子的平均自由程大於蒸發表面與冷凝表面之間的距離,從而可利用料液中各組分蒸發速率的差異,對液體混合物進行分離。
膜蒸餾是以疏水微孔膜為介質,在膜兩側蒸氣壓差的作用下,料液中揮發性組分以蒸氣形式透過膜孔,從而實現分離的目的。
都是要在水面和空氣面產生氣壓差,一個是利用抽負壓形式,另一個是利用膜兩面的壓力差形式實現的,兩者不一樣的。
G. 膜蒸餾與滲透汽化有什麼區別膜蒸餾與滲透汽化有什麼區別
1.水由液態或固態轉變成汽態,逸入大氣中的過程稱為蒸發 2.利用液體混合物中各組分揮發度的差別,使液體混合物部分汽化並隨之使蒸氣部分冷凝,從而實現其所含組分的分離叫蒸餾
H. 直接接觸式膜蒸餾的膜蒸餾技術的原理
膜蒸餾技術傳質和傳熱模型如圖所示,當多組分的熱流體流過多空膜的熱側。多孔疏水膜內的作用之一是可容將溫度和組成不同的兩種料液隔開,其二是在膜兩側蒸汽壓差的作用下,揮發性的輕組分以蒸汽形式通過膜孔,以擴散形式從膜熱側到達冷側,冷凝,這就是膜蒸餾的基本過程。需要指出的是所謂冷側既可以設一與膜保持一定Z距離的冷壁(即間接接觸式),也可以不設冷壁直接與冷卻水相接(直接接觸式)兩種冷卻方式。膜蒸餾技術以其能常壓低溫操作、可利用廢熱等優點,被認為能用於海水淡化、超純水的制備、非揮發性物質水溶液的濃縮和結晶、回收水溶液中的揮發性物質等方面。
I. 與蒸餾相比,膜蒸餾有哪些特點
蒸餾是一種熱力學的分離工藝,它利用混合液體或液-固體系中各組分沸點不同,使低沸點組分蒸發,再冷凝以分離整個組分的單元操作過程,是蒸發和冷凝兩種單元操作的聯合。與其它的分離手段,如萃取、過濾結晶等相比,它的優點在於不需使用系統組分以外的其它溶劑,從而保證不會引入新的雜質。
膜蒸餾(MD)是膜技術與蒸餾過程相結合的膜分離過程,它以疏水微孔膜為介質,在膜兩側蒸氣壓差的作用下,料液中揮發性組分以蒸氣形式透過膜孔,從而實現分離的目的。與其他常用分離過程相比,膜蒸餾具有分離效率高、操作條件溫和、對膜與原料液間相互作用及膜的機械性能要求不高等優點。
膜蒸餾技術有很多特點:
(1)膜蒸餾過程幾乎是在常壓下進行,設備簡單、操作方便,在技術力量較薄弱的地區也有實現的可能性;
(2)在非揮發性溶質水溶液的膜蒸餾過程中,因為只有水蒸汽能透過膜孔,所以蒸餾液十分純凈,可望成為大規模、低成本制備超純水的有效手段;
(3)該過程可以處理極高濃度的水溶液,如果溶質是容易結晶的物質,可以把溶液濃縮到過飽和狀態而出現膜蒸餾結晶現象,是目前唯一能從溶液中直接分離出結晶產物的膜過程;
(4)膜蒸餾組件很容易設計成潛熱回收形式,並具有以高效的小型膜組件構成大規模生產體系的靈活性;
(5)在該過程中無需把溶液加熱到沸點,只要膜兩側維持適當的溫差,該過程就可以進行,有可能利用太陽能、地熱、溫泉、工廠的余熱和溫熱的工業廢水等廉價能源
J. 反滲透的濃水一般怎麼處理,求助請問反滲透的濃水
常見的反滲透濃水處理方式有:提高回收率、直接或間接排放、綜合利用、蒸發濃縮以及去除污染物。
1、蒸餾—結晶技術工藝
蒸餾法處理濃鹽水脫鹽多採用蒸餾一結晶工藝。它是淡化脫鹽方法,工業廢水的蒸餾法脫鹽技術基本上是從海水淡化技術基礎上發展而來的。該技術是把含鹽水加熱使之沸騰蒸發,再把蒸汽冷凝成淡水、濃縮液進一步結晶制鹽的過程。該方法的技術類型主要有多效蒸發、蒸汽壓縮冷凝及多級閃蒸等。
2、膜蒸餾一結晶技術
採用膜蒸餾分離技術加蒸發結晶組合的方式。與其它的膜分離過程相比,具有截留率高、能耗低、設備簡單,能處理反滲透等不能處理的高濃度廢水等優點,其有節能環保的優勢膜蒸餾一結晶是膜蒸餾和結晶兩種分離技術的耦合。
首先膜蒸餾過程中去除溶液中的溶劑,將料液濃縮至過飽和狀態然後在結晶器中得到晶體,該過程中溶劑的蒸發和溶質的結晶分別在膜組件和結晶器中完成該技術可以利用低熱值廢熱,節約能耗時低溫的操作條件對膜和設備的機械性能要求較低,可減少總的設備投資和維修成本。
3、濃鹽水低溫利用—蒸發-結晶工藝
濃鹽水低溫利用—蒸發-結晶工藝,採用海水淡化工程中的成熟技術,降低溫余熱作為熱源,利用蒸餾濃縮工藝將高含鹽水多效蒸發,回收蒸發淡水作為補充水,蒸發結晶後的殘留鹽渣作為次生廢物進一步處理,實現高含鹽水的零排放與回用。
(10)膜蒸餾是利用擴展閱讀
隨著工業的迅速發展,廢水的種類和數量迅猛增加,對水體的污染也日趨廣泛和嚴重,威脅人類的健康和安全。對於保護環境來說,工業廢水的處理比城市污水的處理更為重要。
工業廢水的處理雖然早在19世紀末已經開始,並且在隨後的半個世紀進行了大量的試驗研究和生產實踐,但是由於許多工業廢水成分復雜,性質多變,至今仍有一些技術問題沒有完全解決。這點和技術已臻成熟的城市污水處理是不同的。
濃水在工業上一般認為是普通水變為脫鹽水除去的部分,也就是說普通水=濃水+脫鹽水。