導航:首頁 > 蒸餾問題 > 分子蒸餾技術參考文獻

分子蒸餾技術參考文獻

發布時間:2023-03-09 14:50:06

Ⅰ 分子蒸餾技術的分子蒸餾技術的特點

分子蒸餾技術作為一種與國際同步的高新分離技術,具有其它分離技術無法比版擬的優點:
1、操作溫權度低(遠低於沸點)、真空度高(空載≤1Pa)、受熱時間短(以秒計)、分離效率高等,特別適宜於高沸點、熱敏性、易氧化物質的分離;
2、可有效地脫除低分子物質(脫臭)、重分子物質(脫色)及脫除混合物中雜質;
3、其分離過程為物理分離過程,可很好地保護被分離物質不被污染,特別是可保持天然提取物的原來品質;
4 、分離程度高,高於傳統蒸餾及普通的薄膜蒸發器。

Ⅱ 分子蒸餾的應用

1、單甘酯的生產
分子蒸餾技術廣泛應用於食品工業,主要用於混合油脂的分離。可得到w(單脂肪酸甘油酯)>90%的高純度產品。從蒸餾液面上將單甘酯分子蒸發出來後立即進行冷卻,實現分離。利用分子蒸餾可將未反應的甘油、單甘酯依次分離出來。單甘酯即甘油一酸酯,它是重要的食品乳化劑。單甘酯的用量目前占食品乳化劑用量的三分之二。在商品中它可起到乳化、起酥、蓬鬆、保鮮等作用,可作為餅干、麵包、糕點、糖果等專用食品添加劑。單甘酯可採用脂肪酸與甘油的酯化反應和油脂與甘油的醇解反應兩種工藝製取,其原料為各種油脂、脂肪酸和甘油。採用酯化反應或醇解反應合成的單甘酯,通常都含有一定數量的雙甘酯和三甘酯,通常w(單甘酯)=40%~50%,採用分子蒸餾技術可以得到w(單甘酯)>90%的高純度產品。此法是目前工業上高純度單甘酯生產方法中最常用和最有效的方法,所得到的單甘酯達到食品級要求。分子蒸餾單甘酯產品以質取勝,逐漸代替了純度低、色澤深的普通單甘酯,市場前景樂觀,開發分子蒸餾單甘酯可為企業帶來豐厚的利潤。
2、魚油的精製
從動物中提取天然產物,也廣泛採取分子蒸餾技術,如精製魚油等[8]。魚油中富含全順式高度不飽和脂肪酸二十碳五烯酸(簡稱EPA)和二十二碳六烯酸(簡稱DHA),此成分具有很好的生理活性,不僅具有降血脂、降血壓、抑制血小板凝集、降低血液黏度等作用,而且還具有抗炎、抗癌、提高免疫能力等作用,被認為是很有潛力的天然葯物和功能食品。EPA、DHA主要從海產魚油中提取,傳統分離方法是採用尿素包合沉澱法[9]和冷凍法[10]。運用尿素包合沉澱法可以有效地脫除產品中飽和的及低不飽和的脂肪酸組分,提高產品中DHA和EPA的含量,但由於很難將其他高不飽和脂肪酸與DHA和EPA分離,只能使w(DHA+EPA)<80%。而且產品色澤重,腥味大,過氧化值高,還需進一步脫色除臭後才能製成產品,回收率僅為16%;由於物料中的雜質脂肪酸的平均自由程同EPA、DHA乙酯相近,分子蒸餾法盡管只能使w(EPA+DHA)=72 5%,但回收率可達到70%,產品的色澤好、氣味純正、過氧化值低,而且可以將混合物分割成DHA與EPA不同含量比例的產品。因此分子蒸餾法不失為分離純化EPA、DHA一種有效方法。
3、油脂脫酸
在油脂的生產過程中,由於從油料中提取的毛油中含有一定量的游離脂肪酸,從而影響油脂的色澤和風味以及保質期。傳統工業生產中化學鹼煉或物理蒸餾的脫酸方法有一定的局限性。由於油品酸值高,化學鹼煉工藝中添加的鹼量大,鹼在與游離脂肪酸的中和過程中,也皂化了大量中性油使得精煉得率偏低;物理精煉用水蒸氣氣提脫酸,油脂需要在較長時間的高溫下處理,影響油脂的品質,一些有效成分會隨水蒸氣溢出,從而會降低保健營養價值。
馬傳國等在對高酸值花椒籽油脫酸的研究中,利用分子蒸餾對不同酸值的花椒籽油進行脫酸,能獲得比較高的輕(脂肪酸)、重(油脂)餾分得率,這是目前化學鹼煉或物理蒸餾等工藝所不能達到的。對酸值為28mgKOH/g和41 2mgKOH/g的高酸值油脂用分子蒸餾法脫酸後,油脂的酸值分別下降到2 6mgKOH/g和3 8mgKOH/g,油脂的得率分別為86%和80 9%,中性油脂基本沒有損失。所以利用分子蒸餾技術對高酸值油脂脫酸具有良好的效果,具有廣闊的應用前景。
4、高碳醇的精製
高碳脂肪醇是指二十碳以上的直鏈飽和醇,具有多種生理活性。目前最受關注的是二十八烷醇和三十烷醇,它們具有抗疲勞、降血脂、護肝、美容等功效,可做營養保健劑的添加劑,某些國家也作為降血脂葯物,發展前景看好。
精製高碳醇,其工藝十分復雜,需要經過醇相皂化,多種及多次溶劑浸提,然後用多次柱層析分離,最後還要採用溶劑結晶才能得到一定純度的產品。日本採用蠟脂皂化、溶劑提取、真空分餾的方法得到w(高碳醇)=10%~30%的產品。而劉元法等對米糠蠟中二十八烷醇精製研究中得出,經多級分子蒸餾後,可得到w(高碳醇)=80%的產品。張相年等利用富含二十八烷醇的長鏈脂肪酸高碳醇酯,還原得到二十八烷醇。即以蟲蠟為原料,在乙醚中加氫化鋁鋰(AlLiH4),在70~80℃還原2 5h得到高碳醇混合物,經分子蒸餾純化,高碳醇純度達到w(高碳醇)=96%,其中w(二十八烷醇)=16 7%。利用分子蒸餾技術精製高碳醇,工藝簡單,操作安全可靠,產品質量高。 (二)在精細化工中的應用
分子蒸餾技術在精細化工行業中可用於碳氫化合物、原油及類似物的分離;表面活性劑的提純及化工中間體的制備;羊毛脂及其衍生物的脫臭、脫色;塑料增塑劑、穩定劑的精製以及硅油、石蠟油、高級潤滑油的精製等。在天然產物的分離上,許多芳香油的精製提純,都應用分子蒸餾而獲得高品質精油。
1、芳香油的提純
隨著日用化工、輕工、制葯等行業和對外貿易的迅速發展,對天然精油的需求量不斷增加。精油來自芳香植物,從芳香植物中提取精油的方法有:水蒸氣蒸餾法、浸提法、壓榨法和吸附法。精油的主要成分大都是醛、酮、醇類。且大部分都是萜類,這些化合物沸點高,屬熱敏性物質,受熱時很不穩定。因此,在傳統的蒸餾過程中,因長時間受熱會使分子結構發生改變而使油的品質下降。
陸韓濤等用分子蒸餾的方法對山蒼子油、姜樟油、廣藿香油等幾種芳香油進行了提純,結果見表3。結果表明,分子蒸餾技術是提純精油的一種有效的方法,可將芳香油中的某一主要成分進行濃縮,並除去異臭和帶色雜質,提高其純度。由於此過程是在高真空和較低溫度下進行,物料受熱時間極短,因此保證了精油的質量,尤其是對高沸點和熱敏性成分的芳香油,更顯示了其優越性。
此外,利用分子蒸餾技術分離毛葉木姜子果油中的檸檬醛可得到w(檸檬醛)=95%,產率53%的產品;對乾薑的有效成分的分離中,通過調節不同的蒸餾溫度和真空度可得到不同的有效成分種類及其相對含量,調節適宜的蒸餾溫度和真空度可獲得相對含量較高的有效成分。
2、高聚物中間體的純化
在由單體合成聚合物的過程中,總會殘留過量的單體物質,並產生一些不需要的小分子聚合體,這些雜質嚴重影響產品的質量。傳統清除單體物質及小分子聚合體的方法是採用真空蒸餾,這種方法操作溫度較高。由於高聚物一般都是熱敏性物質,因此溫度一高,高聚物就容易歧化、縮合或分解。例如,對聚醯胺樹脂中的二聚體進行純化,採用常規蒸餾方法只能使w(二聚體聚醯胺樹脂)=75%~87%,採用分子蒸餾技術則可以使w(二聚體聚醯胺樹脂)=90%~95%。在對酚醛樹脂和聚氨酯的純化中,採用分子蒸餾的方法可以使酚醛樹脂中的單體酚含量脫除到w(單體酚)<0 .01%,使w(二異氰酸酯單體)<0 .1%。分子蒸餾技術能極好地保護高聚物產品的品質,提高產品純度,簡化工藝,降低成本。
3、羊毛脂的提取
羊毛脂及其衍生物廣泛應用於化妝品。羊毛脂成分復雜,主要含酯、游離醇、游離酸和烴。這些組分相對分子質量較大,沸點高,具熱敏性。用分子蒸餾技術將各組分進行分離,對不同成分進行物理和化學方法改性,可得到聚氧乙烯羊毛脂、乙醯羊毛脂、羊毛酸、異丙酯及羊毛聚氧乙烯脂等性能優良的羊毛脂系列產品。 利用分子蒸餾技術,在醫葯工業中可提取天然維生素A、維生素E;製取氨基酸及葡萄糖的衍生物;以及胡蘿卜和類胡蘿卜素等。現以維生素E為例:天然維生素E在自然界中廣泛存在於植物油種子中,特別是大豆、玉米胚芽、棉籽、菜籽、葵花籽、米胚芽中含有大量的維生素E。由於維生素E是脂溶性維生素,因此在油料取油過程中它隨油一起被提取出來。脫臭是油脂精練過程中的一道重要工序,餾出物是脫臭工序的副產品,主要成分是游離脂肪酸和甘油以及由它們的氧化產物分解得到的揮發性醛、酮碳氫類化合物,維生素E等。從脫臭餾出物中提取維生素E,就是要將餾出物中非維生素E成分分離出去,以提高餾出物中維生素E的含量。曹國峰等將脫臭餾出物先進行甲脂化,經冷凍、過濾後分離出甾醇,經減壓真空蒸餾後再在220~240℃、壓力為10-3~10-1Pa的高真空條件下進行分子蒸餾,可得到w(天然維生素E)=50%~70%的產品。採取色譜法、離子交換、溶劑萃取等可對其進一步精製。此外,在分子生物學領域中,可以將分子蒸餾技術作為生物研究的一種前處理技術,以保存原有組織的生物活性和制備生物樣品等。
綜上所述,分子蒸餾技術作為一種特殊的新型分離技術,主要應用於高沸點、熱敏性物料的提純分離。實踐證明,此技術不但科技含量高,而且應用范圍廣,是一項工業化應用前景十分廣闊的高新技術。它在天然葯物活性成分及單體提取和純化過程的應用還剛剛開始,尚有很多問題需要進一步探索和研究。

Ⅲ 分子蒸餾技術的分子蒸餾技術工業化應用產品

A氨基酸酯阿魏酸三萜醇酯
B丙烯酸酯丙二醇酯苯乙烯-丙烯腈丙交酯薄荷酯白術揮發油苯基馬來醯亞胺柏木油菠蘿酮 C長鏈二元酸(C9-C18)粗石蠟除草劑柴胡揮發油茶樹油蒼術油川芎提取物蠶蛹油
D單甘酯(單硬脂酸甘油酯 單月桂酸甘油脂等)(牛油及豬油等)脫膽固醇大蒜油丁三醇當歸提取物
2-丁基辛醇獨活提取物豆甾醇獨活提取物多糖酯多不飽和脂肪酸對苯二甲酸二乙酯脫除多氯聯苯
E二十八烷醇(米糠蠟、蜂蠟、蔗蠟) 二聚酸二十碳五烯酸(EPA)二十二碳六烯酸(DHA)二十二烷內酯 F廢油再生番茄紅素輔酶Q蜂蠟呋喃脂酚醛樹脂 防風提取物氟油(全氟烴、氟氯碳油、全氟聚醚)
G高碳醇固化劑(脫除TDI、MDI、HDI等)共軛亞油酸果糖酯硅油(聚硅氧烷或聚硅醚)谷甾醇谷維素
桂皮油香茅油香根油橄欖油廣藿香油(廣藿香醇、廣藿香酮)癸二酸二辛酯光穩定劑
H花生四烯酸(ARA)胡椒基丁醚β-胡蘿卜素及類胡蘿卜素(棕櫚油 柑橘油 甜橙油 桔皮油 螺旋藻等)海狗油
(雙酚A及F型)環氧樹脂花椒籽油紅花籽油互葉白千層油
J聚甘油酯聚酯聚醚聚烯烴聚乙二醇(酯)聚氨酯聚戊烯醇聚四氫呋喃姜油樹脂 姜辣素 姜烯酚焦油
角鯊烯結構酯芥酸醯胺鹼金屬精煉 甲基庚烯酮 間甲基苯甲酸3-甲基吲哚激素縮體姜樟油鯨醇
K葵花籽油糠蠟礦物油渣脫蠟奎寧衍生物擴散泵油天然抗氧化劑
L瀝青脫蠟辣椒油樹脂辣椒紅色素辣椒鹼氯菊酯磷酸酯連翹揮發油鄰苯二甲酸二辛酯
M玫瑰油米槁精油沒食子酸醛類衍生物毛油脫酸(高酸值米糠油 、小麥胚芽油、花椒籽油等)米糠蠟茉莉精油煤焦油酶解脂肪酸
N 萘甲醛檸檬醛
P PET再生(聚對苯二甲酸乙二醇酯)葡萄糖衍生物天然蘋果香精帕羅西汀硼酸乙二醇醚
Q 茄尼醇(廢次煙葉、馬鈴薯葉)3-羥基丙腈(HPN)
R (礦物及合成)潤滑油(聚α-烯烴、石蠟氯化合成油、烷基苯合成油、聚異丁烯合成油) L-乳酸松香酯 S 生物柴油(脂肪酸甲酯或乙酯) 三烯生育酚三氯新(三氯-2羥基二苯醚)三甘醇三十烷醇三聚酸雙甘油酯
鼠尾草抗氧劑石油渣油(精製或脫除)殺蟲劑食用油脫酸縮水甘油基化合物羧酸二酯(潤滑油)蒜素
鯊烯(三十碳六烯酸) 十二烷內酯雙-β-羥乙基對苯二甲酸酯酸性氯化物生物鹼衍生物四唑-1-乙酸 T 碳氫化合物萜烯烴(酯)桃醛 塔爾油(妥爾油)
W (天然及合成)脂溶性維生素(A、D、E、K)烷基糖苷(烷基苷 烷基多苷 烷基多糖苷 烷基聚糖苷 烷基葡萄糖苷) X 小麥胚芽油新洋茉莉醛香附子烯α-香附酮香芝麻蒿揮發油香葉醇香紫蘇內酯
Y 亞麻酸 油酸醯胺 (深海及發酵)魚油魚肝油燕麥油羊毛脂羊毛醇異氰酸酯預聚物岩蘭草油月桂二酸
氧化樂果(聚)乙二醇酯油酸二乙醇醯胺月桂酸二乙醯胺乙醛酸乙醯氨基苯乙酸乙酯異構體亞麻籽油
同位素鈾濃縮依託芬那酯乙氧基脂肪醇乙氧脂肪酸液化煤乙烯基吡咯烷酮玉米油乙醯檸檬酸酯 Z 植物甾醇植物蠟芝麻素真空泵油制動液中碳鏈甘油三酯(MCT)脂肪酸及其衍生物增塑劑增效醚
甾醇酯 蔗糖酯紫羅蘭酮酯類油(雙酯、多元醇酯、復酯)植物油脫臭餾出物紫蘇籽油蔗蠟棕蠟
鎮靜劑棕櫚油
棗子酊

Ⅳ 分子蒸餾技術的介紹

分子蒸餾是一種特殊的液--液分離技術,它不同於傳統蒸餾依靠沸點差分離原理回,而是靠不同物質分子運答動平均自由程的差別實現分離。當液體混合物沿加熱板流動並被加熱,輕、重分子會逸出液面而進入氣相,由於輕、重分子的自由程不同,因此,不同物質的分子從液面逸出後移動距離不同,若能恰當地設置一塊冷凝板,則輕分子達到冷凝板被冷凝排出,而重分子達不到冷凝板沿混合液排出。這樣,達到物質分離的目的。

Ⅳ 分子蒸餾的設備發展

1. 北京新特科技發展公司分子蒸餾設備,北京新特科技發展公司是由北京化工大學創辦的全資高科技公司,成立十幾年來,所開發的分子蒸餾(短程蒸餾)技術及工業化裝置得到了迅猛發展,該項目於1998年獲國家石化局(原化工部)科技進步一等獎,同年被國家科技部列為全國重點推廣項目,另外完成「863」國家項目一項,並獲得2001年度國家科技進步二等獎。被專家們譽為「國內領先、國際先進,是產、學、研相結合的典範」。
2. 美國POPE科學公司成立於1963年,(前身是AUTHOR SMITH公司,世界最早的從事分子蒸餾技術開發和設備製造的先驅)。是專業從事蒸餾、精餾設備的製造廠家,產品涵蓋實驗室、中試和工業生產用設備。Pope採用的刮板式工藝(Wiped-Film Style)的特點是:短暫的進料液體滯留時間、憑借高真空性能的充分降溫、最佳的混合效率,以及最佳的物質和熱傳導。這種高效的熱分離技術的結果是:最小的產品降解和最高的產品質量。物料暴露給加熱壁的時間非常短(僅幾秒鍾),這部分歸因於帶縫隙的刮板設計,它迫使進料液體向下運動,並且滯留時間、薄膜厚度和流動特性都受到嚴格控制。
3. 德國NGW公司分子蒸餾設備,又稱短程蒸餾,英文名稱為:short-path evaporator,其操作壓力范圍為:0.001-1000mbar。採用兩級回收瓶,真空的密封性能更好。在蒸餾的同時,重相和輕相組份均能連續取樣進行檢測,取樣次數可以達到10次以上。在0.001mar的真空條件下進行的薄膜蒸發過程稱為短程蒸發過程,蒸發器中部保證集成冷凝器,在小於或等於0.001mbar的真空條件下進行的薄膜蒸發過程統稱為分子蒸餾.分子蒸餾能達到0.001mbar的超低真空度,這是因為蒸發面和冷凝面的距離小於或等於被分離物料的分子平均自由程,而這是傳統類型的蒸餾無法達到的。
4. 德國威帝恩公司為真空蒸餾設備的專業生產廠家,提供刮膜蒸發和短程/分子蒸餾設備。產品從小試,中試,到大型生產設備。世界上最大的短程蒸餾設備即為VTA提供。這些設備專門用於熱敏物質和高沸點物質的蒸餾分離和提純,短程蒸餾真空度可達0.001毫巴,使物質的沸點降低,蒸餾的持續時間縮短,避免對蒸餾產品的破壞。
5.德國UIC公司成立於1950年,UIC公司專攻於蒸餾設備的設計和交鑰匙工程,為客戶的各種需求提供最佳解決方案,並且有世界上最小的實驗研究用的短程蒸餾設備。採用上部進料,物料從進料管進入後加到物料分配盤上,物料盤旋轉離心分配物料到蒸發器四周側壁,不會出現結焦現象。全加熱型蒸發器為模塊化設計,具有三個獨立的加熱區域(蒸發區域、重組分出料區域、餾分出料區域和內置冷凝器)以保證物料在整個蒸餾過程中具有良好的流動性。UIC設備具有一次離心成膜+ 一次機械成膜,膜更均勻,真空度可達0.001毫巴。

Ⅵ 自然界分離篩選維生素E生產菌

對經酯化、溶劑萃取法處
理過的原料進行分離,分離效率較高,工藝成熟,
易於工業化。

Ⅶ 張繼軍的河北工業大學教授

張繼軍,男, 博士,化工過程機械專業 ,教授,河北工業大學化工學院碩士生導師。 1984-1991就讀於河北工學院,獲工學碩士學位;
1991-1992河北冶金研究所;
1992-2001核工業第四研究設計院設備所任副所長;98年評為高級工程師;
2001至今 石家莊工大化工設備有限公司總經理;2007年評為正高級工程師;
2007至今 天津衡創工大現代塔器技術有限公司,任董事長兼總經理;
2007-2009 就讀於河北工業大學攻讀博士學位;
2008至今 美國獨資天津北洋工大科技開發公司,任董事長兼總經理;
2009至今 河北工業大學教育部海水高效利用工程研究中心教授 1、乾燥技術及裝備
2、蒸發結晶技術及裝備
3、氣液分離技術及裝備
4、過濾技術及裝備
5、海水利用技術及裝備 1.盤式連續乾燥器,現代乾燥技術(第二版)[M].178-199.化學工業出版社.
2.Precipitation of Calcium from Seawater Using CO2 [J]. Advanced Materials Research Vols,2011:747-752.
3.盤式連續乾燥器的耙葉設計探討[J].化學工程,2011,39(3):13-17.
4.對羥基左旋苯甘氨酸三效熱泵蒸發結晶工藝的開發研究[J].現代化工,2007,27,(04):54-56.
5.水平管外降膜蒸發傳熱性能的實驗研究[J].化工機械,2006,33(6):329-331.
6. 液體並流塔板技術進展[J].化學工程,2010,38(10):33-36.
7. 傳導乾燥與對流乾燥的能耗與成本對比分析[J].化學工程,2008,36(12):63-65.
8.熱夾點技術簡介及其應用進展[J].石油和化工設備,2008,11(5):14-18.
9. 盤式連續乾燥器設計及應用實例,化學工程實用專題設計手冊[M].2002.學苑出版社.
10.利用CO2脫除海水的的鈣離子和鎂離子[J].化工進展,2012,31(3):681-686.
11.彎管中液固兩相流固粒對壁面磨損的數值模擬[J].石油和化工設備,2008,11(1):5-9. 12. 12.分子蒸餾技術及設備的研究進展[J].化工進展,2008,27(增):331-336. 1、石家莊科學技術研究與發展計劃:新型旋流浮選機研製 11108271A
2、河北省高等學校科學技術研究重點項目:氰化氫生產中混合氣的氨回收技術研究ZH2011226
3、河北省科技支撐計劃:新型高效節能綠色污泥分離干化處理技術的研究與開發

Ⅷ 卵磷脂型DHA的新發現

(一)卵磷脂型DHA的來源
卵磷脂型DHA只存在於蛋黃中,因此只能來源於蛋黃。而魚油DHA、藻油DHA不是甲酯型,就是乙酯型或甘油三酯型。
(二)卵磷脂型DHA的分子結構
卵磷脂Lecithin是一類含磷脂類物質,最早由Uauquelin於1812年從人腦中發現, Golbley於1844年從蛋黃中分離出卵磷脂(也稱為蛋黃素),並於1850年按照希臘文lekithos(蛋黃)命名為Lecithos。廣義的卵磷脂是各種磷脂的總稱,包括磷脂醯膽鹼(Phosphatidylcholine,PC)、磷脂醯乙醇胺(Phosphatidythanolamine,PE)、神經鞘磷脂(Sphingomyelin,SM)、肌醇磷脂(Phosphatidylinositol,PI)、溶血磷脂醯膽鹼(Lysophosphatidylcholine,LPC))磷脂醯絲氨酸(Phosphatidyserine,PS)等,狹義的卵磷脂是指磷脂醯膽鹼(PC)。
科學家經過長期研究發現,雞蛋黃中卵磷脂主要為磷脂醯膽鹼(70%~75%)和磷脂醯乙醇胺(15%~20%),當卵磷脂成分中的R1,R2為DHA時即形成了卵磷脂型DHA。磷脂醯膽鹼和磷脂醯乙醇胺的結構式(R1,R2代表脂肪酸)如下:


(三)新一代卵磷脂型DHA具備的特點
1、純天然
市售的甲酯型和乙酯型DHA是通過分子蒸餾等方法把魚油或海藻中的DHA水解下來分離純化得到的,而蛋黃中含有的卵磷脂型DHA是雞吃了含有DHA或α-亞麻酸的飼料,在雞體內經過一系列消化吸收等生理反應自然形成的,具有純天然特性。至於雞為什麼會在體內轉化、吸收並特異性的積累形成卵磷脂型DHA還需要科學界進一步探索研究。
2、更容易被人體吸收
DHA存在形態不同,被人體吸收利用的效率差異很大。乙酯型DHA在人體內是以被動擴散的方式被吸收,吸收率僅為20%左右;甘油三酯型吸收率遠高於乙酯型,也只有50%左右。因為卵磷脂可促進脂肪酸代謝,因此蛋黃卵磷脂型DHA在人體內吸收方式為主動吸收,吸收率接近100%。
3、安全性高
眾所周知,蛋黃因為其營養豐富及安全性高是嬰幼兒添加輔食的第一選擇。蛋雞是「生物篩」,雞蛋形成過程中的屏蔽效能可將對嬰幼兒健康產生不利影響物質阻擋在雞蛋之外,因此蛋黃卵磷脂型DHA既不含對人體有升高膽固醇和破壞血管內膜作用的豆蔻酸、月桂酸等;也不存在被重金屬污染而超標問題,產品更安全,媽媽和寶寶的健康更有保障。
同時,從人體對各種DHA的消化吸收過程來看,甲酯型DHA在人體內分解為甲醇和DHA;乙酯型DHA分解為乙醇和DHA;卵磷脂型DHA分解為卵磷脂和DHA。甲醇具有毒性,乙醇對胚胎和嬰幼兒具有刺激性,而磷脂是很好的乳化劑,能促進乳糜微粒的形成,有助於提高乳糜的穩定性和運輸脂肪酸的能力。因此可以促進DHA的運輸能力,進而提高吸收率。磷脂的乳化能力具有與膽汁的協同作用,具有節約膽汁的作用,對於肝膽發育尚未完全的嬰幼兒具有更大價值。
4、營養豐富
蛋黃中卵磷脂型DHA屬於動物胚胎磷脂,除了卵磷脂和DHA外,還富含人體所必須的其他營養素:蛋白質和多種礦物質(鈣、鐵、鋅、硒、鉀、鎂等)和多種維生素(如維生素A、維生素E、維生素B2、B12,還含有豐富的長鏈不飽和脂肪酸—油酸、亞油酸以及多種氨基酸,打破了單純補充DHA的模式,實現了生命所需營養的全方位補充,能對孕產婦和嬰幼兒進行全面營養補充。
5、穩定性好
卵磷脂和DHA緊密結合在一起, 相比游離DHA更穩定,不易被氧化,保質期更長。
6、降低血液中膽固醇濃度,防止膽結石
體內過多的膽固醇會發生沉澱,從而形成膽結石,蛋黃卵磷脂型DHA中的卵磷脂可將膽固醇乳化為極細的顆粒,這種微細的乳化膽固醇顆粒可透過血管壁被組織利用,故具有降低血液中的膽固醇濃度及防止膽結石的作用。
7、產品氣味、滋味好
新一代蛋黃卵磷脂型DHA氣味芬芳,有淡淡的蛋香味,作為輔食添加在牛奶、面條、粥等主食里,使主食的滋味、氣味更好,能夠增加食慾;即使直接用溫水沖服,也很容易被孕婦和嬰幼兒接受和喜愛。
附:
卵磷脂型DHA與普通乙酯型DHA對比表 項 目 蛋黃DHA 普通DHA製品 來源 蛋黃 魚油、海藻油 DHA類型 卵磷脂型 乙酯型 生產工藝 生物技術 分子蒸餾等方法 產品形態 粉末 油狀 溶劑殘留 無 有 豆蔻酸,月桂酸等 無 有(藻油) 消化吸收方式 主動吸收 被動吸收 DHA消化吸收率 ≥99% 21% 人體消化產生的物質 卵磷脂+DHA 乙醇+DHA 穩定性 穩定,不易氧化 不穩定,易氧化 口感及風味 蛋香味,無腥味 腥味重 適宜人群 孕產婦,嬰幼兒 老年人,心腦血管病患者 主要營養成分對比 DHA含量(例) 100mg/袋 100mg/粒 卵磷脂(PC) 豐富 無 蛋白質 豐富 無 多種維生素(維生素A、維生素E、維生素B2、B12等) 富含 少量或無 多種礦物質(鈣、鐵、鋅、硒、鉀、鎂等) 富含 無 油酸(長鏈不飽和脂肪酸) 豐富 無 亞油酸(長鏈不飽和脂肪酸) 富含 無 多種氨基酸 豐富 無 (四)卵磷脂型DHA的研究進展
卵磷脂型DHA只存在於蛋黃中,但由於含量極低,吃普通雞蛋無法起到補充卵磷脂型DHA的作用。中國農業大學的科學家發明創新的復合植物提取物促進技術,採用純植物提取物,根據生物富集和轉化過程中各個階段的特點,經過反復試驗,把純植物提取物進行科學配比,再與飼料充分發酵融合,充分釋放了純植物提取物的活性,使其在生物富集、轉化過程的各個階段發揮了強有力地促進作用,大大提高了富集率和轉化率,為人們提供更多更好更優質的卵磷脂型DHA創造了條件。
卵磷脂+DHA是1+1>2
卵磷脂存在於人體所有的器官和細胞中,是構成細胞膜的主要成分,占細胞膜乾重的70—80%,並集中存在腦及神經系統,磷脂醯膽鹼因此被稱為「細胞膜的建築磚」。卵磷脂肩負著細胞的營養代謝、能量代謝、信息傳遞等功能,是生命和健康的必需物質,被譽為與蛋白質、維生素並列的「第三營養素」。
牛奶、動物的腦、骨髓以及大豆和雞蛋等食物中都含有卵磷脂,其中蛋黃卵磷脂是營養成分最完整,營養價值最高的。卵磷脂的質量差異取決於所含活性成分的含量,其中最主要的活性成分即磷脂醯膽鹼和磷脂醯乙醇胺。
DHA是腦細胞增殖和大腦溝回形成所必須的重要構成成分的物質,但是僅有獨立的腦神經細胞,大腦仍不能夠正常思維,只有當各神經細胞間建立起信息傳遞的通道時,大腦才能具備思維的能力。信息傳遞的通道,就象一條條高速公路,高速公路的路面決定信息傳遞的速度,DHA促進了高速公路的延伸,保證高速公路四通八達;而高速公路的護欄,可確保信息傳遞的准確性,防止信息「上錯路」,卵磷脂不但是高速公路路面的物質前體,同時也是護欄的重要組成部分。DHA和卵磷脂二者緊密合作才能保證信息安全高速准確地到達目的地,二者對大腦的作用相輔相成,密不可分。因此,同時補充卵磷脂和DHA能起到事半功倍的效果,使得1+1>2。
參考文獻:
1、Beckermann B, Beneke M, Seitz I. (1990). Comparativebioavailability of eicosapentaenoic acid and docosahexaenoic acid fromtriglycerides, free fatty acids and ethyl esters in volunteers.Arzneimittelforschung; 40(6): 700-704.
2、Best CA, Laposata M. (2003). Fatty acid ethylesters: toxic non-oxidative metabolites of ethanol and markers of ethanolintake. Front Biosci; 8: 202-17.
3、Bondía-Martínez E,López-Sabater MC,Castellote-BargallóAI,Rodríguez-PalmeroM,González-CorbellaMJ,Rivero-Urgell M,Campoy-Folgoso C,Bayés-García R.(1998).
4、Fatty acid composition of plasma and erythrocytes interm infants fed human milk and formulae with and without docosahexaenoic andarachidonic acids from egg yolk lecithin.Early Hum Dev.; 53 Suppl:S109-19.
5、Carlier H., Bernard A, Caseli A. (1991). Digestionand absorption of polyunsaturated fatty acids. Reprod Nutr Dev; 31: 475-500.
6、Carlson SE,Ford AJ,Werkman SH,Peeples JM,Koo WW.(1996). Visual acuity and fatty acid status of term infants fed human milk andformulas with and without docosahexaenoate and arachidonate from egg yolklecithin.Pediatr Res; May;39(5):882-8.
7、DyerbergJ, Madsen P, Moller JM, Aardestrup I, Schmidt EB. (2010).Bioavailability of marine n-3 fatty acid formations. Prostaglandins Leutkot.Essent. Fatty Acids 83,137-141.
8、Fave G, Coste TC and Armand M. (2004).Physicochemical properties of lipids: New strategies to manage fatty acid bioavailability.Cellular and Molecular Biology TM 50 (7), 815-831.
9、Habber TS., Wilson JS, Minoti VA, Pirola RC. (1991).Fatty acid ethyl esters increase rat pancreatic lysosomal fragility. J. Lab.Clin. Med. 121:75-764.
10、HansenJB, Olsen JO, Wilsgård L, Lyngmo V, Svensson B. (1993). Comparativeeffects of prolonged intake of highly purified fish oils as ethyl ester ortriglyceride on lipids, homeostasis and platelet function in normolipaemic men. EurJ Clin Nutr;,47: 497-507.
11、Harris WS, Zucker ML, Dujovne CA. (1988). Omega-3fatty acids in hypertriglyceridemic patients: triglycerides vs methyl esters. AmJ Clin Nutr; 48: 992-997
12、Ikeda I, Sasaki E, Yasunami H, Nomiyama S, NakayamaM, Sugano M, Imaizumi K, Yazawa K. (1995). Digestion and lymphatic transport ofeicosapentaenoic and docosahexaenoic acids given in the form oftriacylglycerol, free acid and ethyl ester in rats. Biochim Biophys Acta; 1259:297-304.
13、Krokan HE, Bjerve KS, Mørk E. (1993). The enteral bioavailability ofeicosapentaenoic acid and docosahexaenoic acid is as good from ethyl esters asfrom glyceryl esters in spite of lower hydrolytic rates by pancreatic lipase invitro. Biochim Biophys Acta; 1168: 59-67.
14、Lambert MS, Botham KM, Mayes PA. (1997).Modification of the fatty acid composition of dietary oils and fats onincorporation into chylomicrons and chylomicron remnants. Br J Nutr.;76:435-45
15、Lange, L. G., and B. E. Sobel. (1983). Mitochondrial dysfunction inced by fatty acid ethyl esters, myocardialmetabolites of ethanol. J. CZin. Invest. 72: 724-731,1983.
16、Lawson LD, Hughes BG. (1988). Human absorption offish oil fatty acids as triacylglycerols, free acids, or ethyl esters. BiochemBiophys Res Commun, 52, 328-335.
17、MogelsonS, Pieper SJ, Lange LG. (1984). Thermodynamic bases for fatty acid ethyl ester synthase catalyzedesterification of free fatty acid with ethanol and accumulation of fatty acidethyl esters. Biochemistry. 1984 Aug 28;23(18):4082-7.
18、Neubronner J, Schuchardt JP, Kressel G, Merkel M,Schacky C and Hahn A. Enhanced increase of omega-3 index in response to longterm n-3 fatty acid supplementation from triacylglycerides versus ethyl esters.Eur. J. of Clin. Nutr.(2010),1-8.
19、NordøyA, Barstad L, Connor WE, Hatcher L. (1991). Absorption of the n-3eicosapentaenoic and docosahexaenoic acids as ethyl esters and triglycerides byhumans. Am J Clin Nutr 53:1185-90.
20、Saghir M, Werner J, Laposata M. (1997). Rapid invivo hydrolysis of fatty acid ethyl esters, toxic nonoxidative ethanolmetabolites. Am J Physiol.;273:G184-90.
21、Song JH, Inoue Y, Miyazawa T. (1997). Oxidativestability of docosahexaenoic acid-containing oils in the form of phospholipids,triacylglycerols, and ethyl esters. Biosci Biotechnol Biochem. 61(12):2085-8
22、Szczepiorkowski, Z. RI., G. R. Dickersin, and M.Laposata. (1995)Fatty acid ethyl esters decrease human hepatoblastoma cellproliferation and protein synthesis. GastroenteroZogy 108: 515- 522.
23、Visioli F, Rise P, Barassi MC, Marangoni F, Galli C.(2003). Dietary intake of fish vs. formulations leads to higher plasmaconcentrations of n-3 fatty acids. Lipids; 38: 415-418.
24、Valenzuela A, Valenzuela V, Sanhueza J, Nieto S.(2005). Effect of supplementation with docosahexaenoic acid ethyl ester andsn-2 docosahexaenyl monoacylglyceride on plasma and erythrocyte fatty acids inrats. Ann Nutr Metab; 49: 49-53.
25、Werner J, Laposata M, Fernandez-del Castillo C,Saghir M, Iozzo RV, Lewandrowski KB, Warshaw AL. (1997). Pancreatic injury in rats inced by fatty acid ethyl ester, a nonoxidativemetabolite of alcohol. Gastroenterology;113: 286–94.
26、Yang LY, Kuksis A, Myher JJ. (1990). Lipolysis ofmenhaden oil triacylglycerols and the corresponding fatty acid alkyl esters bypancreatic lipase in vitro: a reexamination. J Lipid Res. 31(1):137-47.
27、Yang LY, Kukis A, Myher JJ. (1990). Intestinalabsorption of menhaden and rapeseed and their fatty acid methyl and ethylesters in the rat. Biochem Cell Biol.;68:480-91
28、曹萬新,孟橘,田玉霞。DHA的生理功能及應用研究進展,中國油脂,2011,36(3)
29、常皓,王二雷,宮新統,劉靜波。蛋黃卵磷脂研究概況,食品工業科技,2010,5
30、丁慧萍,李艷紅,丁倩,張福東,王濤,王俐,蔡美琴。藻油及魚油二十二碳六烯酸復方制劑對兒童記憶功能的影響,中華臨床營養雜志,2011,19(2)
31、傅利軍,趙蔚蔚。蛋黃來源卵磷脂的應用及進展,食品安全導刊。2011,12
32、宮新統,林松毅,劉靜波,李丹,黃金枝。HPLC在高純度蛋黃卵磷脂提取技術中的應用研究。食品科學,2008,12
33、古紹彬,虞龍,向砥,於洋,余增亮。利用海洋微藻生產DHA和EPA的研究現狀及前景。中國水產科學,2001,8(3)
34、郝穎,汪之和。EPA、DHA的營養功能及其產品安全性分析。現代食品科技,2006,22(3)
36、李揚。高純度蛋黃卵磷脂制備工藝的研究。吉林大學,2007
梁井瑞,胡耀池,陳園力,蔣露,張紅漫。分子蒸餾法純化DHA藻油。中國油脂,2012,37(6)
37、劉偉民,馬海樂,李國文。魚油生理活性物質EPA和DHA分離進展。食品科學,2002, 23(10)
38、劉艷,豐利芳,唐慶,徐三清,羅小平。孕期補充DHA對脂多糖所致宮內感染仔鼠腦組織TLR4表達的影響。華中科技大學學報(醫學版),2011,40(4)
39、孟麗萍,張堅,趙文華。母親DHA攝入與胎兒、嬰兒DHA營養狀況及發育的關系。衛生研究,2005,34(2)
40、彭雲,李汴生,林應勝,黃巍峰,張影霞。微藻DHA在蛋糕中的應用。現代食品科技,2012,28(2)
41、任國譜,黃興旺,岳紅,肖蓮榮,申衍豪。嬰幼兒配方奶粉中二十二碳六烯酸(DHA)的氧化穩定性研究。中國乳品工業,2011,39(1)
42、阮征,吳謀成,胡筱波,薛照輝。多不飽和脂肪酸的研究進展。中國油脂,2003,28(2)
43、譚利偉,麻麗坤,趙進,尹兆正。蛋黃卵磷脂的應用研究進展。中國家禽,2005,21
44、田冰,劉亞軍,劉繼明。高效快速提取蛋黃卵磷脂的新方法。食品科技,2000,2
45、王衛飛,馬永鈞,范海星,王永華,楊博。酶法合成富含DHA、EPA甘油三酯的研究。中國油脂,2011,36(2)
46、吳克剛,孟宏昌。嬰幼兒配方奶粉強化DHA和AA的研究。中國乳品工業,2004,32(2)
47、張娟梅,柯崇榕,黃建忠。DHA單細胞油脂的萃取與濃縮。中國油脂,2008,33(10)
48、丁宗一,杜麗蓉。不同喂養方法對嬰幼兒生長速率影響的研究。中華兒科雜志,2002,40(11)
49、張義明。DHA的來源及合理應用。食品工業科技,2003,24(8)
50、周遠揚,雷百戰,潘藝。魚油EPA與DHA提取方法研究進展。廣東農業科學,2009,(12)
51、周冉,王飛,常明,岳紅坤,史蘭香,劉司婕。從微藻中提取分離EPA和DHA的方法。安徽農業科學,2012,40(14)
52、朱路英,張學成,宋曉金,況成宏,孫遠征。n-3多不飽和脂肪酸DHA、EPA研究進展。海洋科學,2007,31(11)

閱讀全文

與分子蒸餾技術參考文獻相關的資料

熱點內容
超濾沖洗需要加裝什麼 瀏覽:971
風神汽車空調濾芯怎麼換 瀏覽:661
美的飲水機怎麼關閉排水 瀏覽:493
汽車空濾芯放在哪裡 瀏覽:481
如何過濾開水中的水鹼 瀏覽:180
農村污水處理站初步設計 瀏覽:289
開污水檢測公司多少錢 瀏覽:155
核廢水變異人怎麼畫 瀏覽:50
新的凈水機放多少水可以用 瀏覽:818
變頻器在礦井提升系統中的應用 瀏覽:604
氨氮為什麼要純水凋零 瀏覽:937
反滲透膜更換安全應急措施 瀏覽:149
y型油過濾器型號 瀏覽:879
廢錨固樹脂是危險廢物嗎 瀏覽:71
鄭州污水處理設備什麼牌子好 瀏覽:833
雙擎電池濾芯選什麼牌子 瀏覽:307
徐工漢風g7空調濾芯在哪裡 瀏覽:637
ro膜高壓泵如何選型 瀏覽:357
陶瓷濾芯過濾棒為什麼容易壞 瀏覽:978
水龍頭濾嘴水垢怎麼去除 瀏覽:269