① 蒸餾,干餾,分餾分別是什麼反應
蒸餾,分流一般情況下不涉及反應,僅在反應精餾特殊等情況時發生化學反應
干餾是固體或有機物的分解,發生分解反應
② 什麼是干餾,蒸餾和分餾 怎麼區別
【干來餾】固體或有機物在隔源絕空氣條件下加熱分解的反應過程。干餾的結果是生成各種氣體、蒸氣以及固體殘渣。氣體與蒸氣的混合物經冷卻後被分成氣體和液體。干餾是一個復雜的化學反應過程,包括脫水、熱解、脫氫、熱縮合、加氫、焦化等反應。不同物質的干餾過程雖各有差別,但一般均可分為三個階段:①脫水分解;②熱解;③縮合和碳化。
【蒸餾】一種熱力學的分離工藝,它利用混合液體或液-固體系中各組分沸點不同,使低沸點組分蒸發,再冷凝以分離整個組分的單元操作過程,是蒸發和冷凝兩種單元操作的聯合。
【分餾】分離幾種不同沸點的混合物的一種方法;對某一混合物進行加熱,針對混合物中各成分的不同沸點進行冷卻分離成相對純凈的單一物質過程。
【區別】干餾是化學變化,蒸餾、分餾是物理變化。蒸餾只進行一次汽化和冷凝,一般只分離出一種物質;分餾要連續進行多次汽化和冷凝,分離出多種成分。分餾實際上是多次蒸餾,它更適合於分離提純沸點相差不大的液體有機混合物。
③ 蒸餾和分餾有什麼區別
當液態物質受熱時蒸氣壓增大,待蒸氣壓大到與大氣壓或所給壓力相等時液體沸騰,即達到沸點。所謂蒸餾就是將液態物質加熱到沸騰變為蒸氣,又將蒸氣冷卻為液體這兩個過程的聯合操作。
分餾:如果將兩種揮發性液體混合物進行蒸餾,在沸騰溫度下,其氣相與液相達成平衡,出來的蒸氣中含有較多量易揮發物質的組分,將此蒸氣冷凝成液體,其組成與氣相組成等同(即含有較多的易揮發組分),而殘
留物中卻含有較多量的高沸點組分(難揮發組分),這就是進行了一次簡單的蒸餾。
如果將蒸氣凝成的液體重新蒸餾,即又進行一次氣液平衡,再度產生的蒸氣中,所含的易揮發物質組分又有增高,同樣,將此蒸氣再經冷凝而得到的液體中,易揮發物質的組成當然更高,這樣我們可以利用一連串的有系統的重復蒸餾,最後能得到接近純組分的兩種液體。
應用這樣反復多次的簡單蒸餾,雖然可以得到接近純組分的兩種液體,但是這樣做既浪費時間,且在重復多次蒸餾操作中的損失又很大,設備復雜,所以,通常是利用分餾柱進行多次氣化和冷凝,這就是分餾。
在分餾柱內,當上升的蒸氣與下降的冷凝液互凝相接觸時,上升的蒸氣部分冷凝放出熱量使下降的冷凝液部分氣化,兩者之間發生了熱量交換,其結果,上升蒸氣中易揮發組分增加,而下降的冷凝液中高沸點組分(難揮發組分)增加,如果繼續多次,就等於進行了多次的氣液平衡,即達到了多次蒸餾的效果。這樣*近分餾柱頂部易揮發物質的組分比率高,而在燒瓶里高沸點組分(難揮發組分)的比率高。這樣只要分餾柱足夠高,就可將這種組分完全徹底分開。工業上的精餾塔就相當於分餾柱。
詳見
http://www.instrument.com.cn/bbs/shtml/20051216/302170/
④ 分餾和蒸餾還有干餾的區別
蒸餾:利用物質沸點的不同,通過加熱,使沸點低的物質先氣化,再經過冷回凝成為液答體,進行物質的分離和提純。
分餾:利用蒸餾的原理分別多次蒸餾,進行多種物質混合的分離。如,石油的分餾
干餾:隔絕空氣加強熱,使物質發生復雜的物理化學變化,分解的過程。如,煤的干餾
最大的區別
蒸餾、分餾,是物理變化
干餾,是化學變化
⑤ 干餾、蒸餾和分餾怎麼區別
【干餾】固體或有機物在隔絕空氣條件下加熱分解的反應過程。干餾的結果專是生成各種氣體、蒸氣屬以及固體殘渣。氣體與蒸氣的混合物經冷卻後被分成氣體和液體。干餾是一個復雜的化學反應過程,包括脫水、熱解、脫氫、熱縮合、加氫、焦化等反應。不同物質的干餾過程雖各有差別,但一般均可分為三個階段:①脫水分解;②熱解;③縮合和碳化。
【蒸餾】一種熱力學的分離工藝,它利用混合液體或液-固體系中各組分沸點不同,使低沸點組分蒸發,再冷凝以分離整個組分的單元操作過程,是蒸發和冷凝兩種單元操作的聯合。
【分餾】分離幾種不同沸點的混合物的一種方法;對某一混合物進行加熱,針對混合物中各成分的不同沸點進行冷卻分離成相對純凈的單一物質過程。
【區別】干餾是化學變化,蒸餾、分餾是物理變化。蒸餾只進行一次汽化和冷凝,一般只分離出一種物質;分餾要連續進行多次汽化和冷凝,分離出多種成分。分餾實際上是多次蒸餾,它更適合於分離提純沸點相差不大的液體有機混合物。
⑥ 為什麼蒸餾是化學反應
反應精餾就抄包含了化學反應襲啊!藉助迴流來實現高純度和高回收率的分離操作 ,應用最廣泛。對於各組分揮發度相等或相近的混合液,為了增加各組分間的相對揮發度,可以在精餾分離時添加溶劑或鹽類,這類分離操作稱為特殊蒸餾,其中包括恆沸精餾、萃取精餾和加鹽精餾。在精餾時混合液各組分之間發生化學反應的,稱為反應精餾。
⑦ 干餾,分餾,蒸餾的區別
根據干餾,分餾,蒸餾的定義,可以得出三者主要區別如下:
1.應用場景不同。
2.反應後產物的形態不同。
3.反應過程中發生的變化不同。
4.蒸餾和分餾的差別主要在於,蒸餾只進行一次汽化和冷凝,分離出的物質一般較純;分餾要連續進行多次汽化和冷凝,分離出的物質依然是混合物,只不過沸點范圍不同,從本質上講,蒸餾和分餾沒有差別,分餾是蒸餾原理的一種運用。
(7)蒸餾與反應蒸餾擴展閱讀
干餾是固體或有機物在隔絕空氣條件下加熱分解的反應過程。干餾的結果是生成各種氣體、蒸氣以及固體殘渣。氣體與蒸氣的混合物經冷卻後被分成氣體和液體。干餾是人類很早就熟悉和採用的一種生產過程,如干餾木材制木炭,同時得到木精(甲醇)、木醋酸等。在第一次世界大戰前,工業上丙酮就是由木材幹餾所得的木醋酸用石灰中和,再經干餾而製得的。
分餾(fractional distillation)是分離幾種不同沸點的混合物的一種方法,過程中沒有新物質生成,只是將原來的物質分離,屬於物理變化。分餾是對某一混合物進行加熱,針對混合物中各成分的不同沸點進行冷卻分離成相對純凈的單一物質過程。
蒸餾是一種熱力學的分離工藝,它利用混合液體或液-固體系中各組分沸點不同,使低沸點組分蒸發,再冷凝以分離整個組分的單元操作過程,是蒸發和冷凝兩種單元操作的聯合。與其它的分離手段,如萃取、過濾結晶等相比,它的優點在於不需使用系統組分以外的其它溶劑,從而保證不會引入新的雜質。
⑧ 蒸餾是不是化學反應
不是,蒸餾是利用互溶組分的溶點或溶程的不同而將組分分離的單元操作。
⑨ 反應蒸餾技術及反應蒸餾技術在化工生產中的應用
E1, E2, E3, E4—換熱器F1, F2, F3—閃蒸罐EX1—膨脹裝置T1—精餾塔R1—反應罐FEED1—初始混合氣體
FEED2—苯PRODUCT1—主要產品甲烷PRODUCT2—主要產品枯烯BOTTOMS—尾氣
罐中出來的上部氣體S10中主要為甲烷、乙烷
和未反應完全的丙烯, 進一步冷凝後作兩相分
離, 氣體尾氣BOTTOMS 中主要為乙烷和丙
烷, 液體S12中含有丙烯迴流進入反應罐。
2熱力學方法的選擇
在化工流程模擬軟體PRO / II中, 需要通
過不多的已知物性數據對物系的熱力學性質和
傳遞性質進行估算, 估算的准確與否將直接影
響模擬結果的准確性。選擇適當的物性方法經
常是決定模擬結果的精確度的關鍵步驟, 選用
不恰當的物性方法將得到錯誤的計算結果。對
於絕大多數煉油和石化裝置, 所處理的物系均
為烴類系統和石油餾分, 其中可能含有一些非
烴氣體, 如氫氣、空氣、二氧化碳、一氧化
碳、硫化氫等。這些都可以認為是非極性物
質。對於非極性物質, 可以選用狀態方程來計
算熱力學性質。迄今為止, 文獻上發表的狀態
方程已上百個, 但是經常使用的方程只有十來
個, 而最重要、最符合本模型的僅僅2~3個。
現選用不同的熱力學方法進行估算。
211Soave - Redliofi - Kwong狀態方程( SRK
方程)
該方程是Georgi Soave在1972年發表的,
其計算公式如下:
P =
RT
V - b
-
a ( T)
V (V + b)
式中b = Σi
xi bi
bi = 0108664RTci /Pci
Tci、Pci ———成分i的臨界溫度和臨界壓
力
a ( T) = Σi
Σj
XiXj ( ai aj ) 1 /2 (1 - Kij )
ai = aciαi
aci = 0142747 (RTci ) 2 /Pci
αi
015 = 1 +mi (1 - Tci
015 )
mi = 01480 + 11574ωi - 01176ωi
2
ωi ———成分i的離心因子
Kij ———成分i和j的二元交互作用參數
希臘字母α的導入是為了改善純組分蒸
汽壓力的預測, 而聯合公式通過Kij的導入來
計算a ( T)是為了改善混合物的壓力預測。使
28 化工流程模擬在蒸餾與反應流程中的應用
用Soave公式預測混合物包括兩個步驟: 第
一, 這個組分的偏心因子ωi 對每個組分都是
已調諧的, 這樣組分的蒸汽壓力可以精確預
測; 第二, 字母Kij是組分i和j的二元交互系
統的實驗數據所確定的, 以便相平衡能夠匹
配。輸入各單元參數和原工藝條件後運算結果
見表1。
表1 選用SRK方程模擬運算後結果
流體名稱FEED1 FEED2 PRODUCT1 PRODUCT2 BOTTOMS
流量
kmol·h - 1 1300197 350 759104 403132 172147
成分
甲烷01576 01000 01986 01000 01005
乙烷01077 01000 01011 01026 01535
丙烷01057 01000 01000 01057 01293
丁烷01009 01000 01000 01015 01030
丙烯01281 01000 01003 01034 01136
枯烯01000 01000 01000 01784 8107 ×10 - 6
苯01000 11000 01000 01840 01001
212Peng - Robinson狀態方程( PR方程)
該方程於1976 年由Peng和Robinson 提
出, 這是另一個立方型狀態方程:
P =
RT
V - b
-
a ( T)
V (V + b)
式中b = Σi
xi bi
bi = 0107780RTci /Pci
Tci、Pci ———成分i的臨界溫度和臨界壓
力
a ( T) = Σi
Σj
XiXj ( ai aj ) 1 /2 (1 - Kij )
ai = ac iαi
aci = 0145724 (RTci ) 2 /Pci
αi
015 = 1 + ni (1 - Tci
015 )
ni = 01480 + 11574ωi - 01176ωi
2
ωi ———成分i的離心因子
Kij ———成分i和j的二元交互作用參數
代入與SRK方程相同的數據運算模型, 結果
見表2。
表2 選用PR方程模擬運算後結果
流體名稱FEED1 FEED2 PRODUCT1 PRODUCT2 BOTTOMS
流量
kmol·h - 1 1300197 350 749125 405101 170155
成分
甲烷01576 01000 01982 01000 01005
乙烷01077 01000 01013 01028 01478
丙烷01057 01000 01000 01059 01292
丁烷01009 01000 01000 01015 01029
丙烯01281 01000 01005 01035 01195
枯烯01000 01000 01000 01780 915 ×10 - 6
苯01000 11000 01000 01830 01001
213Benedict - Webb - Rubin - Starling狀態方
程(BWRS方程)
該方程於1973年由Starling提出, 計算公
式為:
P =ρRT + (B0 RT -
A0 C0
T2 -
E0
T4 )ρ2
+ ( bRT - a -
d
T
)ρ3 +α( a +
d
T
)ρ6
+
cρ3
T2 (1 + rρ2 ) exp ( - rρ2 )
對此方程進行運算, 所得結果為模型運行錯
誤。
根據兩種方法計算結果與實際情況的比
較, SRK熱力學方法比PR熱力學方法在本模
型中更接近實際, 故優先選用。
3工藝優化
運用化工流程模擬軟體可以很方便地修改
工藝參數, 從而得出更好的工藝。
311改變S4的進料位置
S4為初始混合流體冷凝閃蒸後的液態混
合物, 改變其進入蒸餾塔塔板的位置, 綜合比
較各產品和剩餘氣體的流量、濃度, 從而得到
最佳進料點。模擬運算結果見表3。
從表3可以看出, 根據產品甲烷的濃度和
尾氣枯烯的含量對比, 物料S4的最佳進料位
置為蒸餾塔塔板的第4層。
312改變蒸氨後換熱器E3、E4的換熱溫度
換熱器E3、E4的換熱溫度改變後, 產品
《化工裝備技術》第28卷第4期2007年29
表3 選用PR方程模擬運算後結果
進料塔
板位置
甲烷流量
kmol·h - 1
甲烷
濃度
%
枯烯流量
kmol·h - 1
枯烯
濃度
%
尾氣枯烯
含量
×10 - 6
第1層74813022 98153 31519965 77178 810865
第2層74813057 98155 31611300 78138 810683
第3層74813071 98157 31611293 78138 810557
第4層74813073 98157 31611291 78138 810547
第5層74813075 98156 31611290 78137 810551
第6層74813074 98156 31611289 78137 810556
第7層74813072 98155 31611287 78137 810552
和尾氣中枯烯的流量和濃度及迴流進入反應罐
的迴流流量也相應改變, 運算後結果見表4、
表5, 綜合比較可得最佳溫度控制點。
表4 換熱器E3換熱溫度的改變
溫度
℃
產品枯烯
流量
kmol·h - 1
產品枯烯
濃度
%
尾氣流量
kmol·h - 1
尾氣枯烯
含量
×10 - 6
S12迴流
流量
kmol·h - 1
35 31611291 78138 17212960 810547 714290
40 31614791 79147 17710329 810236 1014540
45 31618976 80147 18019907 810753 1413566
50 31714018 81139 18413300 811881 1913543
55 31719984 82104 18710697 813625 2516565
60 31813206 82155 18912116 816035 3814790
從表4可以看出, 隨著換熱器E3換熱溫
度的升高, 產品枯烯的產量和濃度增加, 尾氣
中枯烯的濃度也升高, 但變化不是很大, 只是
迴流流量增加較快, 選擇換熱溫度為50℃。
表5 換熱器E4換熱溫度的改變
溫度
℃
產品枯烯
流量
kmol·h - 1
產品枯烯
濃度
%
尾氣流量
kmol·h - 1
尾氣枯烯
含量
×10 - 6
S12迴流
流量
kmol·h - 1
- 25 31714018 81139 18413300 811881 1913543
- 28 31716092 81119 18218178 410633 3415521
- 29 31717248 81108 18119248 310836 4416888
- 30 31718947 80194 18017796 212878 6011557
- 31 31811412 80177 17911549 116735 8319138
- 32 31815234 80158 17619915 112163 12117759
分析表5的數據可以得到, 溫度越高, 雖
然產品中枯烯的濃度越高, 但尾氣中枯烯的含
量也越高, 當溫度過低時, 在產品濃度降低的
同時, 迴流量也加大了, 迴流管線的負荷也就
較大。所以綜合考慮, 選擇換熱器E4的冷卻
出口溫度為- 30℃。
313調節苯的加入量
根據蒸餾後塔底流體的丙烯含量, 再考慮
迴流流體中的丙烯及苯的含量, 調節苯的加入
量。
從表6可以看出, 隨著原料苯的增多, 產
品丙烯的產量有所提高, 其濃度變化不大, 尾
氣中丙烯的含量也增加了。根據表6數據, 苯
的加入量控制在365kmol/h左右為最好。
表6 調節苯的加入量
苯流量
kmol·h - 1
產品枯烯
流量
kmol·h - 1
產品枯烯
濃度
%
尾氣流量
kmol·h - 1
尾氣枯烯
含量
×10 - 6
S6迴流
流量
kmol·h - 1
350 31718947 80194 18017796 212878 6011557
360 32616796 81109 17119535 215423 4910288
365 33110751 81117 16715021 216837 4411746
370 33514825 81125 16311646 218253 3919938
380 34413002 81143 15414345 311396 3216252
390 35311362 81161 14518579 314811 2616930
314優化前後數據對比
比較優化前後產品的流量和濃度, 以及尾
氣中有毒氣體枯烯的含量, 從表7 中可以看
出, 優化後產品中枯烯的濃度得到提高, 尾氣
中枯烯的含量也降低到規定的標准之下。
表7 優化前後數據比較
甲烷流量
kmol·h - 1
甲烷
濃度
%
枯烯流量
kmol·h - 1
枯烯
濃度
%
尾氣流量
kmol·h - 1
尾氣中
枯烯含量
×10 - 6
優化
前
74813057 98155 31611300 78138 17214739 810683
優化
後
74813073 98157 33110751 81117 16715021 216837
4結束語
(1 ) 選擇了最符合本模型的熱力學方
法, 對工藝流程進行了優化。
(2) 提高了產品的濃度和流量, 尾氣中
枯烯的含量也控制在規定范圍以內。
(3) 為工藝控制提供理論依據, 實際生
產中還可以通過調節換熱器(E3、E4)的換熱溫
⑩ 精餾和蒸餾的區別
1、定義不同
精餾:精餾是利用混合物中各組分揮發度不同而將各組分加以分離的一種分離過程,常用的設備有板式精餾塔和填料精餾塔。精密精餾的原理及設備流程與普通精餾相同,只是待分離物系中的組分間的相對揮發度較小(<1.05~1.10),因而採用高效精密填料以實現待分離組分的分離提純。
蒸餾:蒸餾是一種熱力學的分離工藝,它利用混合液體或液-固體系中各組分沸點不同,使低沸點組分蒸發,再冷凝以分離整個組分的單元操作過程,是蒸發和冷凝兩種單元操作的聯合。
2、原理不同
精餾:精餾通常在精餾塔中進行,氣液兩相通過逆流接觸,進行相際傳熱傳質。液相中的易揮發組分進入氣相,氣相中的難揮發組分轉入液相,於是在塔頂可得到幾乎純的易揮發組分,塔底可得到幾乎純的難揮發組分。
料液從塔的中部加入,進料口以上的塔段,把上升蒸氣中易揮發組分進一步增濃,稱為精餾段;進料口以下的塔段,從下降液體中提取易揮發組分,稱為提餾段。從塔頂引出的蒸氣經冷凝,一部分凝液作為迴流液從塔頂返回精餾塔,其餘餾出液即為塔頂產品。
塔底引出的液體經再沸器部分氣化,蒸氣沿塔上升,餘下的液體作為塔底產品。塔頂迴流入塔的液體量與塔頂產品量之比稱為迴流比,其大小會影響精餾操作的分離效果和能耗。
蒸餾:利用液體混合物中各組分揮發度的差別,使液體混合物部分汽化並隨之使蒸氣部分冷凝,從而實現其所含組分的分離。是一種屬於傳質分離的單元操作。廣泛應用於煉油、化工、輕工等領域。其原理以分離雙組分混合液為例。
將料液加熱使它部分汽化,易揮發組分在蒸氣中得到增濃,難揮發組分在剩餘液中也得到增濃,這在一定程度上實現了兩組分的分離。兩組分的揮發能力相差越大,則上述的增濃程度也越大。在工業精餾設備中,使部分汽化的液相與部分冷凝的氣相直接接觸,
以進行汽液相際傳質,結果是氣相中的難揮發組分部分轉入液相,液相中的易揮發組分部分轉入氣相,也即同時實現了液相的部分汽化和汽相的部分冷凝。
3、分類不同
精餾:根據操作方式,精餾可分為連續精餾和間歇精餾;根據混合物的組分數,可分為二元精餾和多元精餾;根據是否在混合物中加入影響氣液平衡的添加劑,可分為普通精餾和特殊精餾(包括萃取精餾、恆沸精餾和加鹽精餾)。
若伴有化學反應,則稱為反應精餾。在有色金屬冶金中,精餾成功地用於粗鋅的精煉。工業上還常將金屬轉變為氯化物然後經精餾。
蒸餾:按方式分,簡單蒸餾、平衡蒸餾、精餾、特殊精餾。
按操作壓強分,常壓、加壓、減壓。
按混合物中組分,雙組分蒸餾、多組分蒸餾。
按操作方式分,間歇蒸餾、連續蒸餾。