导航:首页 > 纯水知识 > 纯水中活性硅

纯水中活性硅

发布时间:2022-08-21 22:51:13

① 水中有哪些有机物和无机物

有机物即有机化合物。含碳化合物(一氧化碳、二氧化碳、碳酸盐、金属碳化物等少数简单含碳化合物除外)或碳氢化合物及其衍生物的总称。有机物是生命产生的物质基础。
有机物的特点:
多数有机化合物主要含有碳、氢两种元素,此外也常含有氧、氮、硫、卤素、磷等。部分有机物来自植物界,但绝大多数是以石油、天然气、煤等作为原料,通过人工合成的方法制得。
和无机物相比,有机物数目众多,可达几百万种。有机化合物的碳原子的结合能力非常强,互相可以结合成碳链或碳环。碳原子数量可以是1、2个,也可以是几千、几万个,许多有机高分子化合物甚至可以有几十万个碳原子。此外,有机化合物中同分异构现象非常普遍,这也是造成有机化合物众多的原因之一。
有机化合物除少数以外,一般都能燃烧。和无机物相比,它们的热稳定性比较差,电解质受热容易分解。有机物的熔点较低,一般不超过400℃。有机物的极性很弱,因此大多不溶于水。有机物之间的反应,大多是分子间反应,往往需要一定的活化能,因此反应缓慢,往往需要催化剂等手段。而且有机物的反应比较复杂,在同样条件下,一个化合物往往可以同时进行几个不同的反应,生成不同的产物。
无机物即无机化合物。一般指碳元素以外各元素的化合物,如水、食盐、硫酸、石灰等。但一些简单的含碳化合物如一氧化碳、二氧化碳、碳酸、碳酸盐和碳化物等,由于它们的组成和性质与无机物相似,因此也作为无机物来研究。绝大多数的无机物可以归入氧化物、酸、碱、盐四大类。
有机物不都是高分子的比如常见的甲烷苯乙烯就不是无机物不是都是低分子的,比如分子筛,某些陶瓷就不是,他们都是硅酸盐缩合形成的无机高分子化合物

② 阳极氧化水洗时使用纯水和自来水有什么区别

铝材阳极氧化工艺流程:机械抛光——除油——水洗——化学抛光——水洗——阳极氧化——水洗——封闭—机械光亮化学抛光商品:铝材碱性抛光液阳极氧化商品:铝材阳极氧化液封闭商品:铝材着色封闭液铝材阳极氧化和染色工艺经过染色法处理的铝制品,颜色美观、鲜艳、抗腐蚀性、耐磨性及绝缘性高于一般的铝制品。将铝的工件悬于适当的电解质溶液内,以此作阳极进行电解。在电解过程中,水中的氢氧根离子在阳极放出电子成为水和新生态的氧,它使铝氧化成较厚的氧化铝膜,因为这个过程是金属制品作阳极被氧化的,所以叫做阳极氧化。铝制品经阳极氧化后,再经着色、封闭、处理即成染色品。一、染色工艺 1.预处理:铝制件在多次机械加工过程中,沾有较多的油脂、少量磨料、灰尘及有缺陷的氧化膜等,这些物质导电性差,不能进行阳极氧化,故需预先处理。方法是用四氯化碳、三氯乙烯、汽油或甲苯作清洗剂,将铝件浸入,用毛刷刷洗,然后风干,再浸入水中,多次清洗。油去尽后,立即用热水冲洗。如果表面生成一层黑色的膜,还要放在32%的硝酸溶液浸泡20秒钟,以便除去黑膜,最后用冷水冲洗干净。浸入蒸馏水中,备作制氧化膜用。 2.阳极氧化: ⑴硫酸电解液的配制:由硫酸18-20公斤和去离子水80-82公斤混合而成,此时溶液比重约为1.125-1.140。有时为了获得防护性能好的氧极氧化膜,通常往硫酸电解液中添加少量草酸。 ⑵氧化工艺:将线路仪表安装好,将要染色铝件作阳极并全部浸入电解液中,然后接通电源,按下列工艺条件控制。电解液温度控制在12-25℃,阳极电流密度1-2安/分米2,槽中电压13-23伏之间。时间30-40分钟左右。按上述工艺操作完毕,随时将铝件从电解液中取出,把所沾的酸液用清水冲洗干净,低凹部分更应注意,否则会有白斑出现。酸液清洗干净后,浸入清洁水中备用。 3.染色:铝件经过阳极氧化后,表面形成了能吸附,以共价键或氢键等键型键合而成有色络合物,出现色泽。 ⑴染料选择:染料分无机染料和有机染料两种。无机染料多为无机盐组成,染色时将铝件分别在甲、乙两种化合物溶液中浸泡,生成带色化合物,达到染色目的。无机染色溶液染料颜色 溶液甲 溶液乙 染色化合物名称名称 浓度 名称 浓度蓝或浅蓝 亚铁氰化钾 10-50 氯化铁 10-100 普鲁士蓝褐色 铁氰化钾 10-50 硫酸铜 10-100 铁氰化铜黑色 醋酸钴 50-100 高锰酸钾 15-25 氧化钴黄色 重铬酸钾 50-100 醋酸铅 100-200 重铬酸铅金黄色 大苏打 10-50 高锰酸铅 10-50 三氧化二锰白色 醋酸铅 10-50 硫酸钠 10-50 硫酸铅橙黄色 铅酸铝 5-10 硝酸银 50-100 铬酸银有机染料品种繁多,现将常用染料,染液浓度,所呈色泽列表介绍如下,以供参考。染料色泽 染料名称 染液浓度 备注黄色 酸性媒介RH直接黄棕D3G醇溶黄GR直接冻黄G 0.7-11-50.5-11-2 凡是酸性染料都应加入冰醋酸1-2毫升调整pH用酒精作溶剂黄色 茜素黄印地素桔黄酸性橙H 1-211-2 该染料染色须加亚硝酸钠10克,温水一升配成染色液,染色时间30分钟,再在硫酸25毫升温水一升中显色一分钟。红色 直接耐晒桃红G酸性大红GR茜素红S 2-55-105-10 红色 碱性玫瑰精酸性橙Ⅱ 0.753 两种染料分别溶解后合并为一升 草绿 直接耐晒翠绿直接绿B 3-52-5 蓝色 直接耐晒翠蓝GL活性艳蓝酸性湖蓝V酸性湖蓝A 2-5522-5 黑色 酸性毛元ATT酸性皮元NBC 10-1510-15 ⑵染色操作: ①染单色法:将经阳极氧化,用清水洗净的铝制品,立即浸入40-60℃的着色液中浸泡。浸泡时间:浅色30秒钟-3分钟;深色、黑色3-10分钟。染后取出,用清水洗净。 ②染多色法:若在同一铝件上染两种或多种不同颜色、或印出山水、花鸟、人物、文字时,则其手续甚繁,有涂料掩蔽法、直接印染法、泡沫塑料扑染法等。上述各法操作不同,但原理一致。现将涂料掩蔽法介绍如下:此法主要是将快干易清洗的清漆薄而均匀地涂刷在真正需要的黄色上,把它掩蔽起来。待漆膜干后,将铝件全部浸入稀铬酸溶液中,以退去未涂刷清漆部分的黄色,取出,用清水洗去酸液,低温烘干后,再染红色,如欲染第三、四色可照上法操作。 4.封闭:经染色的铝件用水洗净后,立即放入90-100℃的蒸馏水中煮30分钟。经过这样处理后,表面变得均匀无孔,形成致密的氧化膜。着色所涂的染料就沉淀在氧化膜内,再也擦不掉了,被封闭后的氧化膜不再具有吸附性,并且耐磨、耐温、绝缘性都得到加强。将经过封闭处理的铝件的表面擦干,再用软布擦亮,就能得到美丽鲜艳的铝制品,如染多色,封闭处理后,应将铝件上所涂的保护剂除去,小面积用棉花沾丙酮揩去,大面积可将染色铝件浸入丙酮内把漆洗去。三、注意事项 1.铝件洗油处理后,应立即进行氧化,不应放置过久。铝件制作氧化膜时,要全部浸入电解液中,槽电压从头至尾要平稳一致,同一批产品,必须完全一致,这一点即使在染色时亦应遵循。 2.在阳极氧化过程中,电解质中溶液的铝、铜、铁等不断增加,影响铝的光泽等。当铝含量大于24克/升,铜大于0.02克/升,铁含量大于2.5克/升时,电解液应考虑更换。 3.购买原料与染料要选择纯度高的产品,因一般杂质稍多或掺有元明粉、糊精时,染色效果不佳。 4.大量染色时,染液初浓后淡,染出颜色即会出现深浅不一,故应注意适时掺兑稍浓染液,尽可能保持染液浓度的一致性。 5.染多色时,应先染浅色后染深色,由黄、红、蓝、棕、黑顺序染色。染第二色前,喷漆应干燥,使涂料紧贴铝面,否则染料会浸入,出现毛边界限不明等。 6.铝中含杂质影响染色:含硅超过2.5%,底膜显灰色,宜染深色。含镁超过2%,染色带暗淡。含锰色调嫩,但不鲜艳。含铜色调带钝,含铁、镍、铬太多时色彩沉闷

③ 纯水和超纯水区别存在是什么了

什么是纯水,什么是高纯水,什么是超纯水,同时要明确三者有何区别。
纯水所指的纯水又称纯净水,是指以符合生活饮用水卫生标准的水为原水,通过电渗析法、离子交换法、反渗透法、蒸馏法及其他适当的加工方法,制得的密封于容器内,且不含任何添加物,无色透明,可直接饮用的水。市场上出售的太空水,蒸馏水均属纯净水。
从纯技术上,纯水是指既将水中易去除的强电介质去除,又将水中难以除去的硅酸及二氧化碳等弱电解质去除至一定程度的水。纯水的含盐量在1.0mg/L以下,电导率小于50μs/cm。
高纯水是指将水中的导电介质几乎全部去除,又将水中不离解的胶体物质、气体和有机物均去除至很低程度的水。高纯水的含盐量在0. 3mg/L以下,电导率小于0. 2μs/cm。
超纯水是在高纯水的基础上进一步将水中的导电介质几乎完全去除,又将水中不离解的胶体物质、气体及有机物均去除至很低程度的水。电阻率大于18MΩ.cm,或接近18.25MΩ.cm极限值。超纯水是一般工艺很难达到的程度,可以将微滤技术、超滤技术、反渗透技术、EDI连续电除盐技术,离子交换技术的两种及以上的技术,通过合理的工艺设计,设备选型,方可制造出超纯水,电阻率可达18.20MΩ.cm。
从上面对纯水、高纯水和超纯水的相关该你可以知道,纯水和超纯水区别存在于很多方面,现归纳如下:
1、电导率不同,纯水电导率在2-10us/cm之间,高纯水电导率小于0.2us/cm,超纯水的电导率为0.1-0.056us/cm;
2、制造的难易程度不同,目前市场上使用的纯水基本上都是经过反渗透、蒸馏等方法制得,高纯水是经过反渗透法、离子交换法或者EDI等几种方法组合制得,而超纯水是在高纯水的基础上还要经过光氧化技术、精处理和抛光处理等一系列复杂的纯化技术制得的。
3、重金属、细菌、微粒数等指标也大不相同,纯水杂质含量是ppm级,高纯水为ppf级,而超纯水为ppb级,简单地说超纯水中已经没有什么杂质,接近于理论上的水。
4、使用的领域也不相同,这是有其电导率和重金属、细菌、微粒等指标不同决定的。不同的领域,对水质的要求存在很大区别。
5、对输送管道材质的要求也不相同,超纯水对输送管道材质的要求要比纯水和高纯水严格的多。

④ 实验室纯水分几个等级

实验室纯水分四个等级,即:

1、蒸馏水:

实验室最常用的一种纯水,虽设备便宜,但极其耗能和费水且速度慢,应用会逐渐减少。蒸馏水能去除自来水内大部分的污染物。

2、去离子水:

应用离子交换树脂去除水中的阴离子和阳离子,但水中仍然存在可溶性的有机物,可以污染离子交换柱从而降低其功效,去离子水存放后也容易引起细菌的繁殖。

3、反渗水:

反渗水克服了蒸馏水和去离子水的许多缺点,利用反渗透技术可以有效的去除水中的溶解盐、胶体,细菌、病毒、细菌内毒素和大部分有机物等杂质。

4、超纯水:

超纯水在TOC、细菌、内毒素等指标方面并不相同,要根据实验的要求来确定,如细胞培养则对细菌和内毒素有要求,而HPLC则要求TOC低。

拓展资料:

实验室纯水的分类与标准:国家实验室纯水标准(GB/T 6682)依据水的纯度(水的导电性)分1、2、3级,1级电导率小于0.1μs/cm;2级电导率小于1.0μs/cm;3级电导率小于5.0μs/cm;

泉瑞QTCJ系列小型去离子水设备可满足用户的不同需求,产水水量10L-50L/h,水质完全符合国家实验室1、2、3级标准,不同级别的水其生产工艺、生产产本相差较大,所以其用途也相以区分。

三级水是**级别的实验室级纯水,推荐用于玻璃器皿洗涤;水浴、高压灭菌锅用水以及超纯水系统的进水。

二级水一般用于常规实验室应用,比如缓冲液、pH 溶液及微生物培养基的制备;为超纯水系统、临床生化分析仪、培养箱、老化机供水;也可为化学分析或合成制备试剂。

一级水往往用于严格的实验应用,如HPLC 流动相制备;GC 空白样制备和样品稀释、HPLC、AA、ICP-MS等高精度分析技术;缓冲液、哺乳动物培养基制备及试管婴儿;分子生物学试剂制备(DNA 测序、PCR 扩增等);电泳及杂交实验溶液配制等。

通常我们实验室工作人员为了实验的准确与精确性,采用一级标准的水用于二级水的实验应用中。

⑤ 海水中的营养元素

请浏览原网页。^^

在人类已经发现的100多种化学元素中,已有80多种在海水中被检出。海水中由N、P、Si等元素组成的某些盐类,是海洋植物生长必需的营养盐,通常称为“植物营养盐”(Floralnutrients)、“微量营养盐”(Micronutrients)或“生源要素”。此外,海水中痕量Fe,Mn,Cu,Zn,Mo,Co,B等元素,也与生物的生命过程密切相关,称为“痕量营养元素”。

由于各类营养元素在海水中含量很低,在海洋表层常常被海洋浮游植物大量消耗,甚至成为海洋初级生产力的限制因素,所以,又称它们为“生物制约元素”(thebiologicallimitingelemens)。

下面主要讨论氮、磷和硅这些海洋植物营养盐在海洋中的存在形式、分布变化规律和循环。

4.4.1海洋中氮、磷、硅的主要存在形式

一、海洋中氮的主要存在形式

海洋中,氮以溶解氮(N2)、无机氮化合物、有机氮化合物等多种形式存在。
在各种形式的氮化合物中,能被海洋浮游植物直接利用的是溶解无机氮化合物(DissolvedInorganicNitrogen,DIN),包括硝酸盐、亚硝酸盐和铵盐。三者在海水中总量约为5.4×1017g。仅占海洋总氮量的2.4%。在大洋表层水中,它们的含量分别为(1~600)μg/dm3,(0.1~50)μg/dm3,(5~50)μg/dm3。

氮是构成海洋生物体内蛋白质、氨基酸的主要组分。据研究,海水中无机氮化合物被同化为植物细胞中的氨基酸,
此外,近年来的一些研究表明,还原浮游植物也会直接利用一部分溶解有机氮化合物(DissolvedOrganicNotrogen,DON),但是吸收量甚少。

二、海洋中磷的存在形式

海洋中的磷分无机和有机两种主要存在形式。

(一)海洋中的无机磷酸盐

海洋中的无机磷酸盐又有溶解态和颗粒态之分。

水溶液中溶解无机磷酸盐(DissolvedInorganicphosphorus,DIP)存在如下平衡:

在海水和纯水中,由于离子强度不同,在相同温度下,H3PO4的三级离解常数有显著差异,在25℃时,pK1在海水中为1.6,纯水中为2.2;pK2在海水中为6.1,纯水中为7.2;pK3在海水中为8.6,纯水中为12.3。H3PO4为弱三元酸,其各种形式在水溶液中的分布受pH值控制(图4—12)。由图4—12可见,在海水(pH=8,S=33,t=20℃)中,约87%的DIP以

其中,两个或两个以上的磷酸根基团通过P—O—P键结合在一起,形成链状或环状结构。多磷酸盐仅占海水总磷含量的一小部分,它们能和多种金属阳离子形成溶解态络合物。

海洋中颗粒态无机磷酸盐(PIP)主要以磷酸盐矿物存在于海水悬浮物和海洋沉积物中。其中丰度最大的是磷灰石(apatite),约占地壳总磷量的95%以上,磷灰石是包括人在内的各种生物体的牙齿、骨骼、鳞片等器官的主要成分。磷灰石的通式为Ca10(PO4)6X2,其中X=F-,OH-,Cl-。分子中Ca的可能取代物为Na+,K+,Ag+,Sr2+,Mn2+,

(二)海洋中的有机磷化合物

海洋中颗粒有机磷化合物(POP)指生物有机体内、有机碎屑中所含的磷。前者主要存在于海洋生物细胞原生质,例如,遗传物质核酸(DNA、RNA)、高能化合物三磷酸腺苷(ATP)、细胞膜的磷脂等等。所有生物细胞中都含有有机磷化合物,所以,磷是生物生长不可替代的必需元素。在海洋生物体中,C/P原子比为(105~125):1,而陆地植物由于没有含磷的结构部分,C/P原子比高得多,约为800∶1。

海水中还存在溶解有机磷化合物(DOP)。在真光层内,DOP含量可能超过DIP。研究发现,某些不稳定的溶解有机磷化合物是海洋循环中十分活跃的组分。

三、海水中硅的存在形式

海水中硅主要以溶解硅酸盐和悬浮二氧化硅两种形式存在。硅酸是一种多元弱酸,在水溶液中有下列平衡:

通过0.1~0.5μm微孔滤膜,并可用硅钼黄比色法测定的低聚合度溶解硅酸等称为“活性硅酸盐”,这部分硅酸盐易于被硅藻吸收。

硅酸脱水之后转化成为十分稳定的硅石(Silica,SiO2):

H4SiO4→SiO2+2H2O

硅是海洋植物,特别是海洋浮游植物硅藻(Diatom)类生长必需的营养盐,硅藻吸收蛋白石(Opal,SiO2·2H2O)用以构成自身的外壳。含硅海洋生物的残体沉降到海底后,形成硅质软泥,是深海沉积物的主要组分。

4.4.2海洋中硝酸盐、磷酸盐、硅酸盐的分布与变化

一、平面变化

受生物活动、大陆径流、水文状况、沉积作用、人为活动等各种因素的影响,海洋中微量营养盐的平面分布通常表现为沿岸、河口水域的含量高于大洋,太平洋、印度洋高于大西洋。开阔大洋中高纬度海域高于低纬度海域。但有时因生物活动和水文条件的变化,在同一纬度上,也会出现较大的差异。

以磷酸盐为例,在海洋浮游植物繁盛季节,沿岸、河口水域表层海水中含量可降到很低水平(0.1μmol/dm3)。而在某些受人为活动影响显著的海区,当磷、氮等营养盐大量排入,并在水体中积累时,则可能造成水体污染,出现富营养化,甚至诱发赤潮(Redtidal)。

大洋表层水中,DIP含量远低于沿岸区域,并且,不同区域的含量存在一定差异。在热带海洋表层水中,由于生物生产量大,DIP含量低,通常仅为0.1~0.2μmol/dm3,而北大西洋和印度洋表层水中DIP含量则可达2.0μmol/dm3。总的来说,大洋表层水中DIP分布比较均匀,变化范围一般不超过0.5~1.0μmol/dm3。

大洋深层水中,由北大西洋向南,经过非洲周围海域、印度洋东部到太平洋,DIP含量平稳地增加,最终富集于北太平洋深层水中。营养要素在大洋深层水中的这种分布,与大洋深水环流和海洋中营养要素的生物循环作用有关。起源于北大西洋的低温、高盐、寡营养的表层水在格陵兰附近海域沉降,形成北大西洋深层水(NADW),途经大西洋,进入印度洋,最后到达北太平洋。在深层水团这一运动过程中,不断地接受上层沉降颗粒物质分解释放的营养要素,故营养盐不断得以富集。图4—13是大洋2000m深处DIP的分布。由图可见,大洋2000m深处水中DIP含量由北大西洋1.2μmol/dm3逐渐升高到北太平洋的3.0μmol/dm3。不仅DIP如此,深层大洋水中,DIN和溶解硅也有类似的分布,当然不同元素的富集程度有所差异。对N和P来说,约富集2倍,而硅则富集5倍左右。这可能与海洋生物残体中含硅的硬壳组织比含N,P的软组织更快地从表层沉降到深层有关。

二、铅直分布

由图4—14可见,三种营养盐在大洋中铅直分布呈现类似的特点。

在大洋真光层,由于海洋浮游生物大量吸收营养盐,致使它们的含量都很低,有时甚至被消耗降低至分析零值。被生物摄取的N,P,Si等营养盐转化为生物颗粒有机物。生物新陈代谢过程的排泄物和死亡后的残体在向深层沉降的

过程中,由于微生物的矿化作用和氧化作用,有一部分重新转化为DIN、DIP和溶解硅酸盐,释放回水中。因而随深度的增大,其含量逐渐增大,并在某一深度达到最大值,此后不再随深度而变化。

当然,在各大洋中不同深度处,硝酸盐、磷酸盐和硅酸盐的含量有一定差异。对硝酸盐来说,表现为印度洋>太平洋>大西洋;磷酸盐为印度洋=太平洋>大西洋;而硅酸盐则与前两者有较明显的不同,即太平洋和印度洋的深层水中含量比大西洋深层水高得多。

在河口、近岸地区,营养盐的铅直分布明显受生物活动、底质条件与水文状况的影响。若上下层水体交换良好,铅直含量差异较小,但是在某些水体交换不良的封闭或半封闭海区,上下层海水难以对流混合,在200米以下

加。在上升流海区,由于富含N、P的深层水的涌升,也会影响它们的铅直分布。

三、季节变化

关于海水中营养盐的季节变化,已有不少研究。结果表明,中纬度(温带)海区和近岸浅海海区的季节变化较为明显,而且与海洋浮游植物生物量的消长有明显的关系,反映了生命过程的消长(图4—15)。

海水磷酸盐的季节变化。夏季(7月)浮游植物繁盛期间,无机氮被大量消耗,加上温跃层的存在,妨碍了上下层海水的混合,它们的含量都降低到很

浮游植物繁殖速率下降,生物残体中的有机氮化合物逐步被微生物矿化分解,加上水体混合作用,其含量逐渐上升并积累起来。到冬季,表层和底层水中无机氮含量都达到最大值。春季,浮游植物生长又开始

仍保持一定含量。

对比图4—16和4—17,可以看出,英吉利海峡海水中磷酸盐的季节变化规律与无机氮基本类似。

硅酸盐的季节变化与磷酸盐、硝酸盐的季节变化有密切关系,但也有其特点。主要表现在海洋浮游植物繁盛季节,尽管溶解硅被大量消耗,但其在海水中的含量仍保持一定水平,而不象N、P那样可降低至分析零值(图4—18)。这是因为每年有相当大量的含硅物质由陆地径流和风带入海洋,使海水中溶解硅得以补充。有人估计,每年补充到海洋的溶解硅总量约相当于3.24×108tSiO2。其中,由河流携带入海洋的悬浮物质是决定海水中硅含量的主要因素。

4.4.3海洋中氮、磷、硅的循环

一、海洋中的氮循环

海洋中不同形式的氮化合物,在海洋生物,特别是某些特殊微生物的作用下,经历着一系列复杂的转化过程,这些过程可简要概括如图4—19。

图中各具体转化过程分别为:

1)生物固氮作用(Biologicalnitrogenfixation):分子态氮(N2)

程;

收合成有机氮化合物,构成生物体一部分的过程;

3)硝化作用(Nitrification):在某些微生物类群的作用下,NH3

4)硝酸盐的还原作用(Assimilatorynitraterection):被生物摄

5)氨化作用(Ammoniafication):有机氮化合物经微生物分解产生

下,还原为气态氮化合物(N2或N2O)的过程。

二、海洋中的磷循环

图4—20是海洋中磷循环的示意图,图中左边是大西洋一个测站(21°12’N,122°5’W)的位温和磷酸盐含量的铅直剖面图,右边表示海洋中磷循环中控制磷分布的几个主要过程:

1)富含营养盐的上升流,这是真光层磷酸盐的主要来源;

2)在真光层,磷酸盐通过光合作用(photosynthesis)被快速地结合进生物体内,并向下沉降;

3)下沉的生物颗粒在底层或浅水沉积物中被分解,所产生的磷酸盐直接返回真光层,再次被生物所摄取利用;

4)在表层未被分解的部分颗粒沉降至深层,其中大部分在深层被分解,参加再循环;

5)表层和深层海水之间存在的缓慢磷交换作用;

6)少部分(5%)在深层也未被分解的颗粒磷进入海洋沉积物,海洋沉积物的磷经过漫长的地质过程最终又返回陆地,参加新一轮的磷循环。

三、海洋中硅的循环

海洋中硅的循环过程为:在春季,因浮游植物繁殖而被吸收,使海水中的硅被消耗;在夏、秋季,植物生长缓慢时,海水中的硅有一定回升;临近冬季时,生物死亡,其残体缓慢下沉,随着深层回升压力增加,有利于颗粒硅的再溶解作用,又缓慢释放出部分溶解硅。最后,未溶解的硅下沉到海底,加入硅质沉积中,经过漫长的地质年代后,可重新通过地质循环进入海洋(图4—21)。

⑥ 反渗透原水水质会影响反渗透选型吗具体举个例子吧

可定会,原水水质的好坏,直接关系到水系统预处理部分的设置,高盐、高氯等都需要通过预处理部分来解决,一般较常见的预处理单元有多介质过滤、活性炭过滤、阻垢剂、絮凝剂、超滤等

⑦ 超纯水的基本概况

超纯水处理是指下列杂质含量极低的水:
①无机电离杂质,如 Ca2+、Mg2+、Na+、K+、Fe2+、Fe3+、Mn2+、Al3+、HCO-、CO32-、SO42-、Cl2、NO3-、NO2-、SiO32-、PO43-等;
②有机物,如烷基苯磺酸、油、有机铁、有机铝以及其他碳氢化合物等;
③颗粒,如尘埃、氧化铁、铝、胶体硅等;
④微生物,如细菌、浮游生物和藻类等;
⑤溶解气体,如N2、O2、CO2、H2S等。超纯水中电离杂质的含量用水的电阻率数值来衡量。理论上,纯水 中只有H离子和OH离子参加导电。在25℃时超纯水的电阻率为 18.3(兆欧·厘米),一般约为15~18(兆欧·厘米)。
超纯水中有机物含量由测定有机物碳含量而定,电子工业超纯水中规定含量为50~200微克/升,并要求直径大于1微米的颗粒性物质每1毫升内含量为1~2个,微生物每1毫升为0~10个。现代采用预处理、电渗析、紫外线杀菌、反渗透、离子交换、超滤和各种膜过滤技术等,使超纯水的电阻率在25℃时达到18(兆欧·厘米)。
依各种原水水质和用户要求的不同,超纯水的制备工艺大体可分为预处理、脱盐和精处理三步。 超纯水,主要工艺流程
⒈预处理----复床 ----混床---抛光树脂
⒉预处理----反渗透---混床---抛光树脂
⒊预处理----反渗透----CEDI膜块----抛光树脂
传统超纯水制取设备工艺流程:原水—多介质过滤器—活性炭过滤器—一级除盐—混床—超纯水
膜法超纯水制取设备工艺流程:原水—超滤—反渗透—EDI—超纯水
在膜法工艺中,超滤,微滤替代澄清,石英砂过滤器,活性炭过滤器,除去水中的悬浮物胶体和有机物,降低浊度,SDI,COD等,可以实现反渗透装置对污水回用的安全,高效运行,以反渗透替代离子交换器脱盐,进一步除去有机物,胶体,细菌等杂质,可以保证反渗透出水满足EDI进水的要求,以EDI代替混床深度脱盐,利用电而不是酸碱对树脂再生,避免了二次污染。 中国国家实验室分析用水标准(GB6682-92)《分析实验室用水规格和实验方法》: 指标名称 一级水 二级水 三级水 1级水>10MΩ 2级水>1MΩ 3级水>0.2MΩ PH值范围(25℃) -- -- 5.0-7.5 比电阻MΩ.cm(25℃)> 10 1 0.2 电导率(25℃)≤ 0.1 1 5 可氧化物[以O计]mg/L -- 0.08 0.40 吸光度(254nm,1cm光程)≤ 0.001 0.01 -- 二氧化硅(mg/L) 0.02 0.05 -- 蒸发残渣(mg/L) -- 1.0 2.0

⑧ 纯净水中的指标是什么

1.形成的区别。

自来水是由天然水通过输水管自流(或经一级泵房提水加压)入水厂,在进入净水构筑物之前,投加混凝剂——硫酸铝或聚合氯化铝,加石灰提高原水碱度和预加氯(视原水水质而定)后,进入网格反应池混凝形成矾花,流经蜂窝斜管沉淀池进行沉淀分离,再经过气水反冲洗滤池进行过滤,进入清水池后加氯消毒,停留一定时间后经过二级泵房加压输送到供水管网,供生活饮用和生产使用。

纯净水是以符合生活饮用水卫生标准的水为原料,采用多种工艺,把水中的重金属、三卤甲烷、有机物、放射性物质、微生物等有害、有毒、有异味物大部分去掉,消除对人体健康的直接和潜在危害,然后以桶装的形式上市销售,供给人们饮用。

矿泉水的形成是复杂的。它是由地下水流经了含有不同组分的岩层,经溶滤作用、阴阳离子交换吸附、生物地球化学等一系列物理、化学作用,使岩石中的微量和常量组分进入了地下水,富集到一定程度而形成各种不同类型的矿泉水。

2.成分的区别。

自来水是通过自来水公司处理过的供生活和生产的使用水,它含有二氯化合物等多种物质,还含有如Ca、Mg、Cl等离子及微量的细菌如大肠杆菌,另外还有一些其他的溶质。其中我国国家标准GB5749-85中规定:若只经过加氯消毒后供作生活饮用水的水源水,总大肠杆菌平均每升不得超过1000个,经过净化处理及加氯消毒后供作生活饮用水的水源水,总大肠杆菌平均每升不得超过10000个。

纯净水是通过蒸馏、反渗透等技术来净化原水的,而在去除有害物质的同时,也除去了几乎所有对人体有益的微量元素和矿物质。它是不含任何杂质,无毒无菌,易被人体吸收的含氧活性水。

矿泉水和自来水、纯净水不同,它含有锂、锶、锌、碘、硒等20多种微量元素和矿物质,有的还含有比较丰富的宏量元素,如富含Ga、Mg、K、Na等离子。

3.饮用方法的区别

自来水要煮开来喝。这样可以杀灭其中的细菌,同时也可以将大多数挥发性的有机物(如三卤甲烷)在煮沸后除去。

纯净水是直接可以饮用的水,无所谓加热或者煮沸,夏天一般凉饮,冬天加热后饮用的多。

矿泉水一般不应加热,可以稍微加温,最好不要煮沸。因为矿泉水含有钙、镁等宏量元素呈较多,有一定硬度,在常温下呈离子状态,加温煮沸后钙、镁等离子易与碳酸根生成水垢析出,所以矿泉水最佳饮用方法是在常温下直接饮用。

⑨ 超纯水系统的工艺流程

超纯水系统工艺流程

1、预处理系统→反渗透系统→中间水箱→粗混合床→精混专合床→纯属水箱→纯水泵→紫外线杀菌器→抛光混床→精密过滤器→用水对象 (≥18MΩ.CM)(传统工艺)

2、预处理→反渗透→中间水箱→水泵→EDI装置→纯化水箱→纯水泵→紫外线杀菌器→抛光混床→0.2或0.5μm精密过滤器→用水对象(≥18MΩ.CM)(新工艺)

3、预处理→一级反渗透→加药机(PH调节)→中间水箱→第二级反渗透(正电荷反渗膜)→纯水箱→纯水泵→EDI装置→紫外线杀菌器→0.2或0.5μm精密过滤器→用水对象(≥17MΩ.CM)(新工艺)

4、预处理→反渗透→中间水箱→水泵→EDI装置→纯水箱→纯水泵→紫外线杀菌器→0.2或0.5μm精密过滤器→用水对象(≥15MΩ.CM)(新工艺)

5、预处理系统→反渗透系统→中间水箱→纯水泵→粗混合床→精混合床→紫外线杀菌器→精密过滤器→用水对象 (≥15MΩ.CM)(传统工艺)

阅读全文

与纯水中活性硅相关的资料

热点内容
污水泵电机响声大是什么原因 浏览:668
名爵汽油滤芯多少钱 浏览:487
渠县污水处理厂所用工艺 浏览:275
净水活性炭有什么用 浏览:199
印染废水中cod排放量是多少 浏览:245
冷干机的滤芯如何拆下来 浏览:552
海尔净水器出水管接口怎么拆 浏览:13
河北水垢漏斗 浏览:689
白云区农村ppp污水项目 浏览:498
安吉尔水壶滤芯怎么拆 浏览:318
电厂化学废水调整及注意事项 浏览:892
什么叫纳米微晶技术净化器 浏览:43
百佳境界净水器如何 浏览:695
甲醇蒸馏塔再沸器的原理 浏览:268
ro膜氯化 浏览:984
洁厕灵能除垢 浏览:459
油烟机净化器的价格多少钱一台 浏览:334
净化器电源怎么测量 浏览:332
wq污水提升泵 浏览:415
污水处理50户需多少立方池 浏览:656