1. 无需酸来碱再生: 在混床自中树脂需要用化学药品酸碱再生, 而EDI则消除了这些有害物质的处理和繁重的工作。保护了环境。
2. 连续、简单的操作: 在混床中由于每次再生和水质量的变化,使操作过程变得复杂,而EDI的产水过程是稳定的连续的, 产水水质是恒定的,没有复杂的操作程序,操作大大简便化。
3. 降低了安装的要求:EDI系统与相当处理水量的混床相比,有较不的体积,它采用积木式结构,可依据场地的高度和窨灵活地构造。 模块化的设计, 使EDI在生产工作时能方便维护。
以上资料来自深圳市科瑞环保设备有限公司,仅供参考,希望能够帮到你。
② 超纯水设备哪些牌子的好,有什么推荐
工业高纯水设备可以将水中的导电介质几乎完全去除,又将水中不离解的胶体物质、气体及有机物均去除至很低程度的水。电阻率约10~18.3MΩ.cm极限值。超纯水,是一般纯水设备很难达到的程度,通常采用预处理、反渗透技术、高纯化处理以及后级处理四大步骤,多级过滤、高性能离子交换(抛光)、超滤过滤器、紫外灯、除TOC装置等多种处理方法,电阻率方可达18.25MΩ.cm。
工业高纯水设备用途:超纯水水质分为五个行业标准,分别为18MΩ.cm、15MΩ.cm、10MΩ.cm、2MΩ.cm、0.5MΩ.cm,以区分不同水质。
工业高纯水设备的应用领域
最近几年电去离子在各个工业领域都越来越受重视,许多工业系统开始采用电去离子作为其水处理系统的更新换代技术,如电力工业、制药工业、微电子工业、电镀与金属表面处理等。
(1)电力工业
据推算电力行业水处理单元的操作费用约占电力成本的10%,而用电去离子替代离子交换树脂可以使每处理1000加仑水的成本由11美元降至1.75美元。
(2)制药工业
虽然药用水的特点是并不要求很高的去离子程度,但电去离子系统具有同时去盐和控制微生物指标的特点,因此已有多家企业采用RO/EDI集成系统。据称该类系统性能稳定,全流程计算机连续监控,全自动操作无人值守。
(3)电子工业
电子工业对水质的要求极高,水电阻率要稳定的大于18MΩ,而EDI出水一般在15-17 MΩ左右,因此在电子级水的生产过程多采用EDI+抛光树脂系统,即在EDI之后加离子交换,此工程虽然仍需离子交换,但由于EDI已除去了大部分离子,抛光树脂几乎不用再生,因此水处理费用仍然很低。
(4)电镀与金属表面处理
电去离子可用于电镀废水处理可以使水重复使用并回收重金属离子。美国已有该类型系统的实验装置。
(5)其他领域
电去离子在食品工业、化学工业等都有很广泛的应用:多室流化床、设备的横截面一般为矩形,用垂直挡板将设备沿长度方向分成多室(一般4~8室)。挡板下沿与分布板面之间留有几十毫米的间隙,作为室间粉粒通道。最后一室有控制床面的堰板。流体平行进入各室,颗粒则依次通过各室,因此多室流化床不仅能抑制颗粒在整个床层内的返混,而且还能调节通入各室流体的流速和温度。多室流化床比多层流化床设备容易控制,总压降也小;但传热、传质推动力较多层床小,用于干燥时空气热量利用效率较差。 两器流化床 有两个流化床,在左侧流化。
工业高纯水设备工艺流程
1、采用离子交换方式,其流程如下:
原水→原水加压泵→多介质过滤器→活性炭过滤器→软水器→精密过滤器→阳树脂过滤床→阴树脂过滤床→阴阳树脂混床→微孔过滤器→用水点
2、采用两级反渗透方式,其流程如下:
原水→原水加压泵→多介质过滤器→活性炭过滤器→软水器→精密过滤器→第一级反渗透 →PH调节→中间水箱→第二级反渗透(反渗透膜表面带正电荷)→纯化水箱→纯水泵→微孔过滤器→用水点
3、采用EDI方式,其流程如下:
原水→原水加压泵→多介质过滤器→活性炭过滤器→软水器→精密过滤器→一级反渗透机→中间水箱→中间水泵→EDI系统→微孔过滤器→用水点
工业高纯水设备水质标准
出水水质完全符合我国电子工业部电子级水质技术标准(18MΩ.cm、15MΩ.cm、10MΩ.cm、2MΩ.cm、0.5MΩ.cm五级标准)、我国电子工业部高纯水水质试行标准、美国半导体工业用纯水指标、日本集成电路水质标准、国内外大规模集成电路水质标准。
③ 去离子水与纯净水有什么区别
1、超纯水(常称纯净水):是美国科技界为了研制超纯材料,应用反渗透技术或超临界精细技术来制造的水.这种水中几乎没有什么杂质,更没有细菌、病毒、含氯二恶英等有机物.随着制备用的反渗透膜结构的不同,有弱酸性超纯水也有中性超纯水.美国、西欧、日本等国从来没有把超纯水纳入到饮用水范围内,只是偶而喝一下,每一个人一年平均喝纯净水不到 20 加伦.而我国已有上万家生产这种超纯水,从美国引进上万套的反渗透设备,成了世界上最大的反渗透设备的客户.纯净水对人有什么生态效应有待进一步考察,但有一点值得特别注意到,这种水分子的极度串联和线团化结构,不易通过细胞膜,使细胞膜两侧引起严重的浓差电位,致使膜内可通过膜壁的那些细胞质内的电离型离子的逆向渗透到细胞膜外侧的纯净水线团中,致使身体内有益的生命相关元素向体外流失.有些敏感的人感觉越喝越不解渴,越想喝,长久下来感觉无力,对正在成长的小孩们有比较突出的副作用.
2、富氧水(加氧的纯净水),这也是美国医学科学界为了研究生物细胞的厌氧和好氧性而用的医学研究用水.现在据不完全统计国内有 200 多家在生产纯净水的同时生产富氧水.这种水中确实有氧分子.让人喝进胃之后,通过胃绒毛细胞膜,直拉进入细胞内,期望与血液中的生态氧一样,让细胞内线粒体用来分解各种营养物,“生产”生物能量.但是与愿望相反,线粒体本身将从新鲜血液所得到的 95% 生态氧用来“烧掉”葡萄糖等转化成热能,而 5% 的生态氧化转化成氧气分子并吸收一个电子,成为对人类生命最可怕的超氧自由基,其电荷半径很小,有很大的强负荷标度值,破坏细胞的正常分裂作用,成为人类衰老的最重要的根源,在这种情况下人为地引进氧分子,将引起什么样的生态效果值得深思.
3、酸碱离子水:这是日本最先提出的方法,但是日本对这种水越来越冷淡了,因为碱性水并没有帮助消化,一方面引起了胆结石、肾结石等病症,才知道无机碱性水促进食物中各种金属离子的沉淀聚集的事实,所以过分的无机碱性对生态并不是好的.
4、矿泉水:有两种:一种是从地壳深处 1000-3000 米远古生态水流出的泉水;二是从地表溶岩流出的矿质溶解水.前者是包含相当量的第二、三、四类生命相关元素.后一种矿泉水中多少有一些矿质.我国矿泉水的国家标准的内函是世界顶级的,可以说包括了几乎所的生命相关的第二、第三、第四、第六、第七类元素群.可是在批准某种矿泉水生产许可证里,只要符合 Ca2+、Mg2+、Sr2+等 2-3 个元素含量就可以.近年来矿泉水厂生产不少假矿泉水,难以区别真假.
5、城市管道水:这是我国城市人口主要饮用水来源.这几年江河受严重的污染,使城市管道水的质量大有下降之势.其中最可怕的是为了消毒,用大量的氯气或含氯漂白粉等,这些在杀菌的同时,带来了游离氯对各种有机物的氯化作用.因此城管道水的水源是个最大问题,如果有像农夫山泉这样的水源就很好了.
6、磁化水:什么水都可以通过磁性处理得到高能态水是一个很大的误解.大量的实验表明,水中没有含 d 轨道的微磁矩络合金属离子(即生命动力元素)的水经过再强大的磁场也不能稳定住水的高能态结构.
7、人造矿溶水:近来许多学者纷纷都提出水中要有一些金属离子,这本是很好的事情.但人造矿溶水的道路还是相当艰难的.在这一过程中提出了回归自然的水,这是值得采纳的概念.因为自然界本身极为和谐、合理,人硬去破坏自然秩序总有一天受到自然界给予的惩罚.
去离子水主要的是指镁和钙的含量低到一定指标,是软水!
④ 想在洛阳购买1吨左右的超纯水设备,大概需要多少钱
自来水→电动阀→多介质过滤器→活性炭过滤器→软化水器→中间水箱→低压泵 →PH值调节版系统→高效混合权器→精密过滤器→高效反渗透→中间水箱→EDI水泵 →EDI系统→微孔过滤器→用水点(最新工艺)
大概需要5—8万左右,具体还要看详细配置。如果大部分部件都采用进口,价格会高出不少。
⑤ 高纯水的使用范围有哪几个行业
超纯水机应用范围工业是一个行业统称,工业主要包括手工业、机器大工业、原料 加工、电镀、电子、采掘行业等等,该行业发展比较全面,发展速度 也非常快,市场发展潜力好。
⑥ EDI电去离子设备
西门子EDI模块INPURELX-Z连续生产高纯水,不需要化学药剂。针对工业应用而开发。
EDI电去离回子设备
INPURELX-Z工业型膜堆利答用连续电去离子技术(CEDI)生产高纯水,其产水水质等同甚至优于混床出水。INPURE膜堆可极其可靠的为电力、电子、太阳能、HPI/CPI、食品和饮料行业,以及实验室提供高品质的高纯水且不需要停机再生。
⑦ 上海哪里提供去离子水/工业纯水,或者超纯水设备的销售
edi电去离子水设备是结合了电渗析与离子交换两项技术各自的特点而发展起来的一项新技术,与普通电渗析相比,由于淡室中填充了离子交换树脂,大大提高了膜间导电性,显着增强了由溶液到膜面的离子迁移,破坏了膜面浓度滞留层中的离子贫乏现象,提高了极限电流密度;与普通离子交换相比,由于膜间高电势梯度,迫使水解离为H+和OH-,H+和OH-一方面参预负载电流,另一方面可以又对树脂起就地再生的作用,因此EDI不需要对树脂进行再生,可以省掉离子交换所必需的酸碱贮罐,也减少了环境污染。因此EDI去离子水系统具有如下优点:
1、出水水质具有最佳的稳定度。
2、能连续生产出符合用户要求的超纯水。
3、模块化生产,并可实现PLC全自动控制。
4、不需酸碱再生,无污水排放。降低了劳动强度,节省了酸碱和大量清洁水,减少了环境污染。
5、不会因再生而停机。
6、单一系统连续运转,不需备用系统。
edi电去离子水设备项目的技术创新点
EDI去离子水设备以离子交换纤维代替颗粒树脂作为电去离子隔膜间的填充物的研究在电去离子刚被认识时就已经开始了,但真正成功实现工业化的产品却是添加了树脂而不是纤维的电去离子,然而已有很多研究证明填充离子交换纤维比离子交换树脂有许多明显的优点,如:
(1)隔膜的间距可以减少,通常ED的隔膜间距为0.8-1.0mm,而电去离子为3mm左右,如果填充离子交换纤维则可以使隔膜介于二者之间,这样有利于缩短离 反渗透加电去离子装置纯水处理系统
子通道,提高极限电流密度。
(2)离子交换纤维比表面积大、交换速度快,因此更符合电去离子的要求。本项目的创新点表现在采用一种自主开发的离子交换纤维新材料,开发可以满足更高市场需求的纯水高端产品,填补国内高端产品的空白。
EDI去离子的工业应用和市场需求
最近几年EDI去离子在各个工业领域都越来越受重视,许多工业系统开始采用电去离子作为其水处理系统的更新换代技术,如电力工业、制药工业、微电子工业、电镀与金属表面处理等。
(1)电力工业
据推算电力行业水处理单元的操作费用约占电力成本的10%,而用电去离子替代离子交换树脂可以使每处理1000加仑水的成本由11美元降至1.75美元。
(2)制药工业
虽然药用水的特点是并不要求很高的去离子程度,但电去离子系统具有同时去盐和控制微生物指标的特点,因此已有多家企业采用RO/EDI集成系统。据称该类系统性能稳定,全流程计算机连续监控,全自动操作无人值守。
〔3〕电子工业
电子工业对水质的要求极高,水电阻率要稳定的大于18MΩ,而EDI出水一般在15-17 MΩ左右,因此在电子级水的生产过程多采用EDI+抛光树脂系统,即在EDI之后加离子交换,此工程虽然仍需离子交换,但由于EDI已除去了大部分离子,抛光树脂几乎不用再生,因此水处理费用仍然很低。
(4)电镀与金属表面处理
电去离子可用于电镀废水处理可以使水重复使用并回收重金属离子。美国已有该类型系统的实验装置。
(5)其他领域
EDI去离子水设备在食品工业、化学工业等都有很广泛的应用:多室流化床、设备的横截面一般为矩形,用垂直挡板将设备沿长度方向分成多室(一般4~8室)。挡板下沿与分布板面之间留有几十毫米的间隙,作为室间粉粒通道。最后一室有控制床面的堰板。流体平行进入各室,颗粒则依次通过各室,因此多室流化床不仅能抑制颗粒在整个床层内的返混,而且还能调节通入各室流体的流速和温度。多室流化床比多层流化床设备容易控制,总压降也小;但传热、传质推动力较多层床小,用于干燥时空气热量利用效率较差。 两器流化床 有两个流化床,在左侧流化。
⑧ EDI超纯水处理设备的优点有哪些
EDI超纯水处理设备,电去离子简称EDI,是一种将离子交换技术,离子交换膜版技术和离子电迁移权技术相结合的纯水制造技术,属高科技绿色环保技术。巧妙地将电渗析技术和离子交换技术相融合,无需酸碱而连续制取高品质纯水。EDI的出现是水处理技术一次革命性的进步,EDI超纯水处理设备的优点:
1.可持续生产符合用户要求的合格超纯水,出水稳定;
2.无需化学药品进行再生,没有化学排放;
3.结构紧凑,占地面积小,制水成本低出厂前完成装置调试,现场安装调试简单;
4.运行操作简单,劳动强度低,培训容易。
EDI超纯水处理设备具备成熟的技术工艺,产水品质稳定,运行费用低,操作管理方便,被广泛应用在各行各业。
⑨ 电池行业超纯水设备
杭州永洁达净化科技有限公司
电池行业超纯水包括蓄电池生产用纯水,锂电池生产用纯水
,太阳能电池生产用纯水,蓄电池格板用纯水。电池中电解液的配备对纯水要求十分严格,
通常要求水的电导率在0.1us/cm(电阻值在10兆欧姆)以上,传统用来制备电池用超纯水的工艺是常采用阴阳树脂交换设备,该工艺的缺点在于树脂在使用一段时间以后要经常再生。随着膜分离技术的不断成熟,现在常常采用反渗透过滤工艺,或者是采用一级反渗透后面再经过离子交换混床(或电去离子EDI)工艺来制取超纯水。制备电池行业用超纯水的工艺流程电池行业制备超水的工艺大致分成以下几种:
1、电池行业超纯水设备采用离子交换方式,其流程如下:
原水→原水加压泵→多介质过滤器→活性炭过滤器→软水器→精密过滤器→阳树脂过滤床→阴树脂过滤床→阴阳树脂混床→微孔过滤器→用水点
2、电池行业超纯水设备采用两级反渗透方式,其流程如下:
原水→原水加压泵→多介质过滤器→活性炭过滤器→软水器→精密过滤器→第一级反渗透
→PH调节→中间水箱→第二级反渗透(反渗透膜表面带正电荷)→纯化水箱→纯水泵→微孔过滤器→用水点
3、电池行业超纯水设备采用EDI方式,其流程如下:
原水→原水加压泵→多介质过滤器→活性炭过滤器→软水器→精密过滤器→一级反渗透机→中间水箱→中间水泵→EDI系统→微孔过滤器→用水点三种制备化工行业用超纯水的工艺比较目前制备化工行业用超纯水的工艺基本上是以上三种,其余的工艺流程大都是在以上三种基本工艺流程的基础上进行不同组合搭配衍生而来。现将他们的优缺点分别列于下面:
1、第一种采用离子交换树脂其优点在于初投资少,占用的地方少,但缺点就是需要经常进行离子再生,耗费大量酸碱,而且对环境有一定的破坏性。
2、第二种采用两级反渗透设备,其特点为初投次比采用离子交换树脂方式要高,但无须树脂再生。其缺点在于相关膜原件需定期清洗或更换,水质相对来说不是太高,大都只能做到1us/cm左右,所以在不质要求更高的时候常采用一级反渗透后面再用混床(阴阳复床)把关。
3、第三种采用反渗透作预处理再配上电去离子(EDI)装置,这是目前制取超纯水最经济,最环保的超纯水制备工艺,不需要用酸碱进行再生便可连续制取超纯水,对环境没什么破坏性。其缺点在于初投资相对以上两种方式过于昂贵。我们公司生产的电池超纯水设备特点超纯水传统的制备工艺通常是采用离子交换树脂进行制取,但采用离子交换树脂通常需要经常性的进行树脂再生,即耗费物力又浪费人工,我们公司经过多年实践,同时结合最新的膜分离技术,常采用反渗透加离子交换系统(或EDI)相结合用来制备超纯水,该工艺与传统工艺相比具有运行成本低的优点(离子交换器的再生周期大大延长),运行可靠。与最新工艺相比具有造价低,耗材易得的优点。反渗透工艺技术先进,可靠。
⑩ 求水处理EDI电去离子设备概述,希望是具体的 每一个细节
EDI(Electrodeionization,电去离子技术),是一种将离子交换技术、离子交换膜技术和离子电迁移技术相结合的纯水制造技术。它巧妙的将电渗析和离子交换技术相结合,利用两端电极高压使水中带电离子移动,并配合离子交换树脂及选择性树脂膜以加速离子移动去除,从而达到水纯化的目的。在EDI除盐过程中,离子在电场作用下通过离子交换膜被清除。同时,水分子在电场作用下产生氢离子和氢氧根离子,这些离子对离子交换树脂进行连续再生,以使离子交换树脂保持最佳状态。 EDI设施的除盐率可以高达99%以上,如果在EDI之前使用反渗透设备对水进行初步除盐,再经EDI除盐就可以生产出电阻率高达成15M .cm以上的超纯水。 EDI 膜堆是由夹在两个电极之间一定对数的单元组成。在每个单元内有两类不同的室:待除盐的淡水室和收集所除去杂质离子的浓水室。淡水室中用混匀的阳、阴离子交换树脂填满,这些树脂位于两个膜之间:只允许阳离子透过的阳离子交换膜及只允许阴离子透过的阴离子交换膜。 树脂床利用加在室两端的直流电进行连续地再生,电压使进水中的水分子分解成 H+及 OH-,水中的这些离子受相应电极的吸引,穿过阳、阴离子交换树脂向所对应膜的方向迁移,当这些离子透过交换膜进入浓室后, H +和 OH-结合成水。这种 H+和 OH-的产生及迁移正是树脂得以实现连续再生的机理。 当进水中的 Na+及 CI-等杂质离子吸咐到相应的离子交换树脂上时,这些杂质离子就会发生象普通混床内一样的离子交换反应,并相应地置换出 H+及 OH-。一旦在离子交换树脂内的杂质离子也加入到 H+及 OH-向交换膜方向的迁移,这些离子将连续地穿过树脂直至透过交换膜而进入浓水室。这些杂质离子由于相邻隔室交换膜的阻挡作用而不能向对应电极的方向进一步地迁移,因此杂质离子得以集中到浓水室中,然后可将这种含有杂质离子的浓水排出膜堆。 几十年来纯水的制备是以消耗大量的酸碱为代价的,酸碱在生产、运输、储存和使用过程中,不可避免地会带来对环境的污染,对设备的腐蚀,对人体可能的伤害以及维修费用的居高不下。反渗透的使用大大减少了酸碱的用量,但是,还留着条?/span>尾巴?/span>。反渗透和电除盐的广泛使用,将会带给纯水制备一次产业性革命。 EDI的工作原理 自来水中常含有钠、钙、镁、氯、硝酸盐、矽等溶解盐。这些盐是由负电离子(负离子)和正电离子(正离子)组成。反渗透可以除去其中超过99%的离子。自来水也含有微量金属,溶解的气体(如CO2)和其他必须在工业处理中去除的弱离子化的化合物(如矽和硼)。 RO出水(EDI进水)一般为4?0μ/cm(电导),根据不同需要,超纯水或去离子水一般电阻为2?8.2MΩ穋m。 交换反应在模组的纯化学室进行,在那里阴离子交换树脂用它们的氢氧根据离子(OH)来交换溶解盐中的阴离了(如氯离子C1)。相应地,阳离子交换树脂用它们的氢离子(H)来交换溶解盐中的阳离子(如Na)。 在位于模组两端的阳极(+)和阴极(?/span>)之间加一直流电场。电势就使交换到树脂上的离子沿着树脂粒的表面迁移并通过膜进入浓水室。阳极吸引负电离子(如OH,CI)这些离子通过阴离子膜进入相临的浓水流却被阳离子选择膜阻隔,从而留在浓水流中。阴极吸引纯水流中的阳离子(如H,Na)。这些离子穿过阳离子选择膜,进入相临的浓水流却被阴离子膜阴隔,从而留在浓水流中。当水流过这两种平行的室时,离子在纯水室被除去并在相临的浓水流中聚积,然后由浓水流将其从模组中带走。在纯水及浓水中离子交换树脂的使用是ElectropupreEDI技术和专利的关键。一个重要的现象在纯水室的离子交换树脂中发生。在电势差高的局部区域,电化学反应分解的水产生大量的H和OH。在混床离子交换树脂中局部H和OH的产生使树脂和膜不需要添加化学药品就可以持续再生。 要使EDI处于最佳工作状态、不出故障的基本要求就是对EDI进水要求进行适当的预处理。进水中的杂质对去离子模组有很大影响。并可能导致缩短模组的寿命。 系统特点 ⊙ 产水水质高而稳定。 ⊙ 连续不间断制水,不因再生而停机。 ⊙ 无需化学药剂再生。 ⊙ 设想周到的堆叠式设计,占地面积小。 ⊙ 操作简单、安全。 ⊙ 运行费用及维修成本低。 ⊙ 无酸碱储备及运输费用。 ⊙ 全自动运行,无需专人看护 纯水处理技术的发展主要经历了阴、阳离子交换器+混合离子交换器;反渗透+混合离子交换器;反渗透+电去离子装置等阶段。?/span>预处理 + 反渗透 + 电去离子?/span>整套除盐系统,有着其他处理系统无可比拟的优点,正被广泛应用于纯水、高纯水的制备中。 应用领域 ⊙电厂化学水处理 ⊙电子、半导体、精密机械行业超纯水 ⊙制药工业工艺用水 ⊙食品、饮料、饮用水的制备 ⊙海水、苦咸水的淡化 ⊙精细化工、精尖学科用水 ⊙其他行业所需的高纯水制备