废水离子交换处理方法主要包括顺流再生和逆流再生两种方式。顺流再生是指再生和交换过程中的水流方向相同,而逆流再生则是新鲜再生剂首先与饱和度较低的树脂接触,随后是再生度较低的再生剂与饱和度高的树脂接触,这样可以更有效地利用再生剂,从而提高再生效果。
近年来,电再生和热再生技术也崭露头角。电再生是通过在电渗析器的淡水隔室内填充阳树脂和阴树脂,利用电极化产生的H+和OH-来同时再生阳阴树脂。而热再生则利用树脂对温度的敏感性,如H型阳树脂在低温(25℃)下利于交换,高温(85℃)时则有利于离子浓度提高的再生过程,只需调整水温即可,无需额外添加再生剂。
在废水处理中,离子交换可以回收有价值的物质。例如,含铬废水中,通过H型阳树脂交换去除Cr3+、Fe3+等阳离子,而阴树脂则在酸性条件下交换去除主要以H2Cr2O7形式存在的Cr6+。交换后,铬被吸附在树脂上,废水得到净化。阳树脂失效后可用酸再生,阴树脂则用碱再生,通过系列反应,铬可以回收并用于生产。
这种方法同样适用于处理其他金属表面加工废水,如含金、镍、镉、铜的废水,以及从原子核反应器、医院和实验室废水中回收放射性物质。离子交换法的再生方式和原理广泛应用于废水处理的多个领域。
借助于离子交换剂中的交换离子同废水中的离子进行交换而除去废水中有害离子的方法。 人类对自然界中的某些离子交换现象早已有所认识。古希腊著作中已有关于使用粘土脱去水中矿物质的叙述。1850年有人发现了土壤中离子交换的现象,以后又有人发现泥土吸附地下水中的离子是可逆反应。
⑵ 废水离子交换处理法运行方式
废水处理技术中,离子交换处理法采用了两种主要的运行方式:静态运行和动态运行。静态运行过程是将适量的树脂投入水中,进行混合,直到离子交换反应达到一种平衡状态。然而,由于反应的可逆性,除非树脂对需要去除的同性离子有极高的选择性,否则大部分树脂交换容量可能无法充分利用,因为逆反应会削弱交换效果。
为了提高离子交换的效率并减少逆反应,动态运行方式被广泛应用。在这种模式下,交换剂——通常为树脂填充在圆柱形床中,废水以连续的方式通过床内进行交换。这种流动的处理方式有助于增强树脂与废水之间的接触,从而更有效地去除离子,提高处理效率。
借助于离子交换剂中的交换离子同废水中的离子进行交换而除去废水中有害离子的方法。 人类对自然界中的某些离子交换现象早已有所认识。古希腊著作中已有关于使用粘土脱去水中矿物质的叙述。1850年有人发现了土壤中离子交换的现象,以后又有人发现泥土吸附地下水中的离子是可逆反应。
⑶ 如何用离子交换法处理含铜电镀废水
离子交换树脂:
离子交换树脂除铜效果颇佳,树脂法处理含高浓度氨铜漂洗液已见报道;也有工厂采用弱
酸性阳离子交换树脂处理酸性硫酸盐镀铜漂洗废水;有些企业用强碱性阴离子交换树脂处
理焦磷酸盐镀铜废水,使部分水循环利用[6]。另外鳌合树脂具有选择性好、吸附容量
大、快速等优点受到水处理专家的青睐,许多研究者合成了多种多样的鳌合树脂用于铜的
去除和回收,宋吉明等[7]利用钠型氨基磷酸鳌合树脂使得处理后的出水Cu2+的质量浓度不大于0.015mg/L,M.R.Lutfor等[8]通过将聚丙烯晴嫁接在淀粉上制备含氨基功能团的鳌合树脂,在pH值为6时对铜的吸附能力高达3.0mmol/g,并且交换速度快。然而由于这些鳌合树脂价格昂贵,大多停留在试验阶段,较少在工业中大规模应用。
离子交换纤维:
离子交换纤维是近年来发展较快的一种离子交换新材料,在重金属废水处理领域也有较大的发展。改性聚丙烯腈纤维对电镀废水中铜的吸附研究表明,含铜电镀废水经改性聚丙烯腈纤维吸附后,铜离子的含量显著低于国家排放标准[9]。近年来天然纤维研究成为热点,天然纤维价格低廉,来源广泛,是一种很有前途的离子交换剂,利用椰子外壳,棕榈纤维和稻米外壳等天然纤维去除重金属离子的研究效果很好。
⑷ 离子交换的水处理中的应用
EDI(Electro-de-ionization)是一种将离子交换技术、离子交换膜技术和离子电迁移技术(电渗析技术)相结合的纯水制造技术。该技术利用离子交换能深度脱盐来克服电渗析极化而脱盐不彻底,又利用电渗析极化而发生水电离产生H和OH离子实现树脂自再生来克服树脂失效后通过化学药剂再生的缺陷,是20世纪80年代以来逐渐兴起的新技术。经过十几年的发展,EDI技术已经在北美及欧洲占据了相当部分的超纯水市场。
EDI装置包括阴/阳离子交换膜、离子交换树脂、直流电源等设备。其中阴离子交换膜只允许阴离子透过,不允许阳离子通过,而阳离子交换膜只允许阳离子透过,不允许阴离子通过。离子交换树脂充夹在阴阳离子交换膜之间形成单个处理单元,并构成淡水室。单元与单元之间用网状物隔开,形成浓水室。在单元组两端的直流电源阴阳电极形成电场。来水水流流经淡水室,水中的阴阳离子在电场作用下通过阴阳离子交换膜被清除,进入浓水室。在离子交换膜之间充填的离子交换树脂大大地提高了离子被清除的速度。同时,水分子在电场作用下产生氢离子和氢氧根离子,这些离子对离子交换树脂进行连续再生,以使离子交换树脂保持最佳状态。EDI装置将给水分成三股独立的水流:纯水、浓水、和极水。纯水(90%-95%)为最终得到水,浓水(5%-10%)可以再循环处理,极水(1%)排放掉。图2表示了EDI的净水基本过程。
EDI装置属于精处理水系统,一般多与反渗透(RO)配合使用,组成预处理、反渗透、EDI装置的超纯水处理系统,取代了传统水处理工艺的混合离子交换设备。EDI装置进水要求为电阻率为0.025-0.5MΩ·cm,反渗透装置完全可以满足要求。EDI装置可生产电阻率高达15MΩ·cm以上的超纯水。 EDI装置不需要化学再生,可连续运行,进而不需要传统水处理工艺的混合离子交换设备再生所需的酸碱液,以及再生所排放的废水。其主要特点如下:
EDI的净水基本过程
·连续运行,产品水水质稳定
·容易实现全自动控制
·无须用酸碱再生
·不会因再生而停机
·节省了再生用水及再生污水处理设施
·产水率高(可达95%)
·无须酸碱储备和酸碱稀释运送设施
·占地面积小
·使用安全可靠,避免工人接触酸碱
·降低运行及维护成本
·设备单元模块化,可灵活的组合各种流量的净水设施
·安装简单、费用低廉
·设备初投资大 EDI装置与混床离子交换设备属于水处理系统中的精处理设备,下面将两种设备在产水水质、投资量及运行成本方面进行比较,来说明EDI装置在水处理中应用的优越性。
(1)产品水水质比较
EDI装置是一个连续净水过程,因此其产品水水质稳定,电阻率一般为15MΩ·cm,最高可达18MΩ·cm,达到超纯水的指标。混床离子交换设施的净水过程是间断式的,在刚刚被再生后,其产品水水质较高,而在下次再生之前,其产品水水质较差。
(2)投资量比较
与混床离子交换设施相比EDI装置投资量要高约20%左右,但从混床需要酸碱储存、酸碱添加和废水处理设施及后期维护、树脂更换来看,两者费用相差在10%左右。随着技术的提高与批量生产,EDI装置所需的投资量会大大的降低。另外,EDI装置设备小巧,所需厂房远远小于混床。
(3)运行成本比较
EDI装置运行费用包括电耗、水耗、药剂费及设备折旧等费用,省去了酸碱消耗、再生用水、废水处理和污水排放等费用。
在电耗方面,EDI装置约0.5kWh/t水,混床工艺约0.35kWh/t水,电耗的成本在电厂来说是比较经济的,可以用厂用电的价格核算。
在水耗方面,EDI装置产水率高,不用再生用水,因此在此方面运行费用低于混床。
至于药剂费和设备折旧费两者相差不大。
总的来说,在运行费用中,EDI装置吨水运行成本在2.4元左右,常规混床吨水运行成本在2.7元左右,高于EDI装置。因此,EDI装置多投资的费用在几年内完全可以回收。 EDI装置属于水精处理设备, 具有连续产水、水质高、易控制、占地少、不需酸碱、利于环保等优点, 具有广泛的应用前景。随着设备改进与技术完善以及针对不同行业进行优化, 初投资费用会大大降低。可以相信在不久的将来会完全取代传统的水处理工艺中的混合 。
控制氮含量的方法(4种):生物硝化-反硝化(无机氮延时曝气氧化成硝酸盐,再厌氧反硝化转化成氮气);折点氯化(二级出水投加氯,到残余的全部溶解性氯达到最低点,水中氨氮全部氧化);选择性离子交换;氨的气提(二级出水pH提高到11以上,使铵离子转化为氨,对出水激烈曝气,以气体方式将氨从水中去除,再调节pH到合适值)。每种方法氮的去除率均可超过90%。
⑸ 水处理工艺之离子交换法,何为离子交换树脂
离子交换法在废水处理领域的广泛应用,得益于其再生性强、操作简便、工艺成熟和流程简短的特点。本文将深入解析离子交换工艺、原理,以及离子交换剂的使用,旨在为读者提供全面的知识储备,建议收藏。
离子交换法是一种通过离子交换剂上的离子与污水中的离子进行交换反应,以去除污水中有害离子的处理方法。与吸附法相比,离子交换法具有独特优势,主要吸附污水中的离子化物质,进行等当量的离子交换。
离子交换法在污水处理中发挥着重要作用,主要用于回收和去除污水中的金属离子,如金、银、铜、镉、铬、锌等,同时也能对有机污水进行处理和净化放射性污水。
离子交换的原理是水溶液通过树脂时,在固体颗粒与液体之间的界面上发生的固-液间离子交换过程。这一反应是可逆的,离子交换剂对不同组分展现出不同的平衡特性。在污水处理中,常见应用包括水的软化、除盐、去除或回收重金属离子等。
离子交换剂主要由骨架和交换基团构成,分为无机和有机两大类。无机离子交换剂包括天然沸石和人工合成沸石,它们既能作为阳离子交换剂,也能用作吸附剂。沸石通过其晶格空间的组分向颗粒内扩散,实现离子交换,分离污水的特定成分。沸石有多种类型,如方沸石、菱沸石、片沸石等。合成无机物离子交换剂具有均匀的空隙结构,能排出大分子,分子筛如合成毛沸石、合成菱沸石、合成丝光沸石等是广泛应用的实例。
有机离子交换剂主要由磺化煤和各种离子交换树脂组成。离子交换树脂是一种具有离子交换特性的有机高分子聚合电解质,结构上分为不溶于水的树脂本体和具有活性的交换基团两部分。树脂本体由有机化合物和交联剂组成的高分子共聚物构成,交联剂作用于形成立体的网状结构。交换基团则由起交换作用的离子和与树脂本体连接的离子组成。树脂的选择性体现在水中各种离子在与树脂交换时,其能力不同,有的离子容易被吸附但难以置换,有的则反之,这种性能即为离子交换树脂的选择性。
离子交换树脂的选择性受多种因素影响,包括离子带电荷的多少、原子序数大小以及溶液浓度。二价离子通常比一价离子更易被吸附,原子序数大的离子更容易吸附,而浓溶液中的低价离子易被树脂吸附。
特种离子交换树脂专门针对某一种或几种目标污染物离子具有选择性吸附能力。其官能团在普通树脂官能团的基础上经过特殊化学反应修饰改性,或者直接使用具有对特定污染物离子特殊亲和性的物质作为官能团。这类树脂适用于特定行业、水质以及特定目标污染物的选择性去除,普通树脂则主要用于脱盐、软化等方面。
离子交换设备包括固定床、移动床和流动床三种类型。固定床离子交换设备将树脂装入竖式交换容器中,料液不断流过树脂层,完成交换、反冲洗、再生和清洗等操作,为间歇式运行。移动床离子交换器中,树脂在运动中周期性移动,树脂层定期排出失效树脂并补充等量再生树脂。三塔多周期移动床系统由交换塔、再生塔和清洗塔组成,树脂层在移动中定期排出失效树脂并补充再生树脂。流动床离子交换设备有压力式和重力式两种,工程中常用的是重力式流动床,包括双塔式和三塔式两种类型。重力式双塔流动床由交换塔、再生清洗塔、水射器和辅助管路组成。
⑹ 水处理的物理化学处理方法有哪些
一、离子交换
离子交换法是水质软化和去除水中盐的主要方法。回在废水处理答中用来去除金属离子和一些非金属离子。例如,可去除废水中的钙、镁、钾、钠离子以及氯离子、硫酸根离子等。这种方法的实质是利用不可溶解的离子化合物(称为离子交换树脂)上的可交换离子或基团与水中其它同性离子进行离子交换反应,类似化学中的置换反应。这种离子交换过程是可逆的。当离子交换树脂工作一段时间后,树脂被废水中的离子所饱和,不能继续交换时,可利用树脂交换过程可逆的性质,对树脂进行再生以恢复交换的能力。
二、吸附
固体表面的分子或原子因受力不均衡而具有剩余的表面能,当某些物质碰撞固体表面时,受到这些不平衡力的吸引而停留在固体表面上,这就是吸附。这里的固体称吸附剂。被固体吸附的物质称吸附质。吸附的结果是吸附质在吸附剂上浓集,吸附剂的表面能降低。————格瑞水务